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[Values]

[10] 1. Let u = (1,−2, 0), v = (3, 0,−2), w = (3, 4,−6), p = (2, 4,−2, 0), and
q = (1, 0,−1, 1).

Calculate each of the following.

(a) 2u + 3(v − 2u)

2u + 3(v − 2u) = (5, 8,−6)

(b)
(
p • q

)
v × u

(
p • q

)
v × u = 4 · (−4,−2,−6) = (−16,−8,−24)

(c) The unit vector with the same direction asq.

(1, 0,−1, 1)√
1 + 0 + 1 + 1

=
(1, 0,−1, 1)√

3

(d) The cosine of the angle betweenu andw

cos θ =
u · w

||u|| ||v|| =
−5√
5
√

51

(e) The angle betweenu andw × u.

w × u is perpendicular tou. So the angle between the two is
π

2
.
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[15] 2.
(a) Let L be the line containing pointQ(1, 1, 0) and which is parallel tov = (1, 1, 3).

Find parametric equations for the lineL.

The parametric equations can be read straight from what we are given.

x = 1 + t

y = 1 + t

z = 3t

(b) Find the point of intersection of the lineL of part(a) with the planeΠ whose equation is
3x + 2y + z = 2.

Solve the system defined by the three equations from (a) and the one defining the plane.

Get (witht = −3

8
) x =

5

8
, y =

5

8
andz = −9

8
. So, the intersection point is(

5

8
,
5

8
,−9

8
).

(c) Find an equation in standard form of the plane containing the pointsP (−1, 2, 1),
Q(1, 1, 0), and theorigin, (0, 0, 0).

n = (−1, 2, 1) × (1, 1, 0) = (−1, 1,−3) is a vector perpendicular to the plane. So, the
point normal equation of the plane is

((x, y, z) − (1, 1, 0)) · (−1, 1,−3) = 0.

After expanding we get the equation in standard form:

−x + y − 3z = 0.
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[12] 3. Given the system

3x1 + 3x2 + 6x3 = 3
2x1 + x2 − x3 = 3

− x2 − 5x3 = 1
−5x1 − 2x2 + 5x3 = −8

(a) Write the augmented matrix of this system.



3 3 6 | 3
2 1 −1 | 3
0 −1 −5 | 1
−5 −2 5 | −8




(b) Convert the augmented matrix into reduced row echelon form using elementary row
operations. Specify which operations you are using.

The row reduced echelon form of the augmented matrix is



1 0 −3 | 2
0 1 5 | −1
0 0 0 | 0
0 0 0 | 0


 .

(c) Give the general solution of the system, using parameters where necessary.

Setx3 = t to getx1 = 2 + 3t andx2 = −1 − 5t. So, the general solution is
(x1, x2, x3) = (2 + 3t,−1 − 5t, t).
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[10] 4. Let

A =

[
2 1
0 1

]
, B =

[
2 6 2
3 3 1

]
, C =


−4 −1

3 0
1 2


 , D =

[
1 2
−2 0

]

For each expression,first determinewhether it is defined. If so, simply answer “Yes.”

If it is not defined, state the reason why not (answer “No, because. . . ”). You should be
able to do this part without doing any calculation.

Then, If the expressionis defined, evaluate it. (Note: In some cases, you can use rules for
matrix algebra to simplify the expression, or even to determine the answer without
calculation.)

(a) DA − AD

DA − AD =

[
2 −1
−2 −2

]
.

(b) (AD)T − DT AT

By a property linking transpose with matrix multiplication the result is

[
0 0
0 0

]
.

(c) BC − CB

This is not defined:BC is a 2 by 2 matrix, while CB is 3 by 3 matrix.

(d) 3AT + BC

3AT + BC = 3

[
2 0
1 1

]
+

[
12 2
−2 −2

]
=

[
18 2
1 2

]
.

N Zorboska (S.K.)

N Zorboska (S.K.)
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[13] 5.

(a) Find the inverse matrixA−1 of the matrixA =


 1 0 1
−2 1 −2
1 4 0


, and verify your answer

by matrix multiplication .

The row reduction technique yieldsA−1 =


−8 −4 1

2 1 0
9 4 −1


. To check the answer we

multiply A · A−1 and see if the result is the identity matrix of size 3.

(b) Let p =


1

1
0


 andq =


0

1
1


. By usingA−1, find the solution toAx = p, and the solution

to Ax = q, whereA andA−1 are as in part(a). No other methods may be used; no points
will be given if A−1 is not made use of (meaningfully).

The solution ofAx = p is x = A−1p =


−12

3
13




The solution ofAx = q is x = A−1q =


−3

1
3





