Values

[12] 1. (a) Find an equation of the plane Π parallel to the lines l_1 and l_2 and passing through the point P.

P(1,2,3)

$$x = 2t - 3 x = t + y$$

$$l_1: y = t + 1 l_2: y = -t - 1$$

$$z = -t + 2 z = 2t + 1$$

(b) Find the distance between the plane Π and the line l_1 .

136.130 deferred midterm Page 2 of 3 Values

[12] 2. Find all values of k such that the system

x	—	у	+	2z	=	0
		у	_	Z.	=	k
-x	+	2 <i>y</i>	_	3 <i>z</i>	=	1

has no solution. Is there any value of k for which there are infinitely many solutions?

[12] 3. Solve by Gauss-Jordan elimination

x_1	+	x_2	_	<i>x</i> ₃	+	x_4	=	2
$-2x_1$	_	x_2	+	<i>x</i> ₃			=	-4
x_1	+	<i>x</i> ₂	_	<i>x</i> ₃	+	$2x_4$	=	-1

136.130 deferred midterm Page 4 of 3

Values

[12] 4. Suppose that A is an invertible $n \times n$ matrix such that $2A^2 = I$, where I is the identity $n \times n$ matrix. Show that $A = \frac{1}{2}A^{-1}$.

[12] 5. (a) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

(b) Use
$$A^{-1}$$
 to solve $A \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

136.130 deferred midterm Page 6 of 3