Values

[12] 1. (a) Find an equation of the plane Π parallel to the lines l_{1} and l_{2} and passing through the point P .
$\mathrm{P}(1,2,3)$

$$
\begin{array}{rlrl}
x=2 t-3 & x & =t+y \\
l_{1}: y=t+1 & l_{2}: y & =-t-1 \\
z=-t+2 & z & =2 t+1
\end{array}
$$

(b) Find the distance between the plane Π and the line l_{1}.
136.130 deferred midterm

Values

[12] 2. Find all values of k such that the system

$$
\begin{aligned}
x-y+2 z & =0 \\
y-z & =k \\
-x+2 y-3 z & =1
\end{aligned}
$$

has no solution. Is there any value of k for which there are infinitely many solutions?
[12] 3. Solve by Gauss-Jordan elimination

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}+x_{4}=2 \\
& -2 x_{1}-x_{2}+x_{3} \\
& x_{1}+x_{2}-x_{3}+2 x_{4}=-4
\end{aligned}
$$

136.130 deferred midterm

Values

[12] 4. Suppose that A is an invertible $\mathrm{n} \times \mathrm{n}$ matrix such that $2 A^{2}=I$, where I is the identity $\mathrm{n} \times \mathrm{n}$ matrix. Show that $A=\frac{1}{2} A^{-1}$.
[12] 5. (a) Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$.
(b) Use A^{-1} to solve $A \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
136.130 deferred midterm

