April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>1 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: <u>Vector Geometry & Linear Algebra</u>

Linear Algebra EXAMINER: Various

Values

- [11] **1.** Let $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (2, 3, 1)$ be two vectors in \mathbb{R}^3 .
 - (i) Compute $5\mathbf{u} 3\mathbf{v}$.

(ii) Compute $\mathbf{u} \times \mathbf{v}$.

(iii) Compute $d(\mathbf{u}, \mathbf{v})$.

(iv) Find $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} \times \mathbf{v})$

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>2 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: Vector Geometry & Linear Algebra

Linear Algebra EXAMINER: Various

Values

[10] **2.** Let P(3,1,0), Q(1,2,0) and R(0,1,1) be three points in \mathbb{R}^3 . Find an equation in standard form for the plane that passes through P, Q and R.

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>3 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: <u>Vector Geometry & Linear Algebra</u>

<u>Linear Algebra</u> EXAMINER: <u>Various</u>

Values

- [8] 3. Consider the point P(6,3,-5) and the plane $\Pi: 2x + y 3z = 2$ in \mathbb{R}^3 .
 - (a) Find parametric equations for the line through $\,P\,$ perpendicular to the plane $\,\Pi\,$.

(b) Find the point of intersection of the line in part (a) with the plane Π .

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>4 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: <u>Vector Geometry & Linear Algebra</u>

Linear Algebra EXAMINER: Various

Values

Use matrices and the Gauss-Jordan method of elimination to solve the following system of equations; describe your answer in terms of the parameters s, t, u, v, ... (as necessary):

$$x_1 + 3x_2 - x_3 + x_4 - 2x_5 = 8$$

 $x_1 + 6x_2 - 4x_3 + 2x_4 - x_5 = 14$
 $2x_1 + 8x_2 - 4x_3 + 3x_4 - 4x_5 = 21$

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>5 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: <u>Vector Geometry & Linear Algebra</u>

<u>Linear Algebra</u> EXAMINER: <u>Various</u>

Values

[10] 5. (a) If k is a nonzero scalar and if the square $n \times n$ matrix A has an inverse, show that kA has an inverse and find an expression for this inverse in terms of k and A^{-1} .

(b) Evaluate the determinant of A where $A = \begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & 3 & 8 \\ 1 & 2 & -1 & 3 \\ 3 & 1 & -2 & 1 \end{bmatrix}$.

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>6 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: <u>Vector Geometry & Linear Algebra</u>

Linear Algebra EXAMINER: Various

Values

[8] **6**. Use Cramer's rule to solve for x_2 **only**, where

$$x_1 - x_2 + x_3 = 0$$

$$x_1 + x_2 - 2x_3 = 1$$

$$x_1 + 2x_2 + x_3 = 6$$

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>7 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: Vector Geometry & Linear Algebra

<u>Linear Algebra</u> EXAMINER: <u>Various</u>

Values

[13] 7. (a) Find two 2×2 matrices $A \neq 0$ and $B \neq 0$ such that AB = 0.

(b) Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 8 \\ 3 \end{bmatrix}$. Find the adjoint of A and use it to

find A^{-1} . Then use A^{-1} to solve the matrix equation $A\mathbf{x} = \mathbf{b}$.

April 15, 1999 FINAL EXAMINATION PAPER NO: <u>384</u> PAGE 8 of 11 DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS EXAMINATION: Vector Geometry & Linear Algebra **EXAMINER:** Various Values Determine which of the following statements are true and which are false. Give reasons for your answers. We will give no marks if you simply state (a) [12] 8. true or false, with no justification. [A matrix B is symmetric if $B^T = B$]. If A is any $n \times n$ matrix then $A + A^{T}$ is symmetric (true or false?) If A, B and C are $n \times n$ matrices, $A \neq 0$ and AB = AC then B = C(true or false?) (iii) Suppose that A is an $m \times n$ and B is a $p \times q$ matrix. If AB is defined and square, then BA is also defined and square (true or false?). (b) For the system $A\mathbf{x} = \mathbf{b}$, suppose that A is a 5×7 matrix, the rank of A is 3 and the rank of $[A|\mathbf{b}]$ is also 3. State (without proof) the nature of the solution(s) (i.e., the number of solutions and the number of parameters).

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>9 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: Vector Geometry &

<u>Linear Algebra</u> EXAMINER: <u>Various</u>

Values

[12] **9.** For each of the following sets of vectors, determine whether it is linearly dependent or independent; if dependent, then write one of the vectors as a linear combination of the other two:

(a)
$$\{\mathbf{v}_1 = (1,1,0), \ \mathbf{v}_2 = (2,3,1), \mathbf{v}_3 = (2,3,2)\}.$$

(b)
$$\{\mathbf{v}_1 = (1,0,2,0), \ \mathbf{v}_2 = (2,1,3,2), \mathbf{v}_3 = (7,2,12,4)\}$$

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>10 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: Vector Geometry & Linear Algebra

Linear Algebra EXAMINER: Various

Values

[12] **10.** Let S be the set of all vectors (x,y,z) in \mathbb{R}^3 such that z = x + y.

(a) Prove that S is a subspace of \mathbb{R}^3 .

(b) Find a spanning set for S.

April 15, 1999 FINAL EXAMINATION

PAPER NO: <u>384</u> PAGE <u>11 of 11</u>

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: <u>Vector Geometry & Linear Algebra</u>

Linear Algebra EXAMINER: Various

Values

[12] **11.** (a) Find a basis for the subspace generated by (or spanned by) the given set of vectors in \mathbb{R}^4 :

$$\left\{\mathbf{v}_1 = (1,1,0,0), \quad \mathbf{v}_2 = (0,1,0,0), \quad \mathbf{v}_3 = (2,5,0,0), \quad \mathbf{v}_4 = (0,1,1,2), \quad \mathbf{v}_5 = (1,5,2,4)\right\}$$

Note: also do part (b) below.

(b) What is the dimension of the subspace in part (a)? Justify your answer.

* * * * * *