Solution; marking scheme

[4] 1. [2] (a) Convert 35° in radians.
[2] (b) Convert 2.5 radians in degrees.

Solution.
(a) 35° is $35 \frac{\pi}{180}$ radians. (This is 0.61 radians.)
(b) 2.5 radians is $2.5 \frac{180}{\pi}$ degrees, or 143.24°.
[6] 2. Find all solutions of $\cos 4 \theta=\frac{1}{2}$.

Solution. Set $\alpha=4 \theta ; \cos \alpha=\frac{1}{2}$ gives $\alpha=\frac{\pi}{3}+2 k \pi$ or $\alpha=-\frac{\pi}{3}+2 k \pi$, where k ranges through all integers. Hence $4 \theta=\frac{\pi}{3}+2 k \pi$ or $4 \theta=-\frac{\pi}{3}+2 k \pi$, from where it follows that $\theta=\frac{\pi}{12}+k \frac{\pi}{2}$ or $\theta=-\frac{\pi}{12}+k \frac{\pi}{2}$, where k moves through all integers.
[5] 3. [2] (a) Express $z=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$ in polar form.
[3] (b) Use your answer in (a) to find z^{14}; your final answer should be as simple as possible and in Cartesian coordinates.

Solution. (a) $z=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$.
(b) $z^{14}=\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)^{14}=\cos \frac{14 \pi}{4}+i \sin \frac{14 \pi}{4}=\cos \frac{7 \pi}{2}+i \sin \frac{7 \pi}{2}=-i$

