Solution; marking scheme

[4] 1. [2] (a) Convert 35° in radians.
[2] (b) Convert 2.5 radians in degrees.

Solution.

(a) 35° is $35\frac{\pi}{180}$ radians. (This is 0.61 radians.) (b) 2.5 radians is $2.5\frac{180}{\pi}$ degrees, or 143.24°.

[6] 2. Find all solutions of $\cos 4\theta = \frac{1}{2}$.

Solution. Set $\alpha = 4\theta$; $\cos \alpha = \frac{1}{2}$ gives $\alpha = \frac{\pi}{3} + 2k\pi$ or $\alpha = -\frac{\pi}{3} + 2k\pi$, where k ranges through all integers. Hence $4\theta = \frac{\pi}{3} + 2k\pi$ or $4\theta = -\frac{\pi}{3} + 2k\pi$, from where it follows that $\theta = \frac{\pi}{12} + k\frac{\pi}{2}$ or $\theta = -\frac{\pi}{12} + k\frac{\pi}{2}$, where k moves through all integers.

[5] 3. [2] (a) Express $z = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ in polar form.

[3] (b) Use your answer in (a) to find z^{14} ; your final answer should be as simple as possible and in Cartesian coordinates.

Solution. (a)
$$z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$$
.
(b) $z^{14} = \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)^{14} = \cos \frac{14\pi}{4} + i \sin \frac{14\pi}{4} = \cos \frac{7\pi}{2} + i \sin \frac{7\pi}{2} = -i$