Solution; marking scheme

Important: In all three questions use the function $f(x) = x^3 - 3x + 1$.

[7] 1. [3] (a) Show that there is a solution c of f(x) = 0 such that 0 < c < 1.

[4] (b) The first two steps of approximating the solution f(x) = 0 that is between 0 and 1 by means of the bisection method are given in the table below. Continue the procedure one more step and complete the third row of the table.

п	a	X _n	b	f(a)	$f(x_n)$	f(b)
1	0	0.5	1	1	-0.375	-1
2	0	0.25	0.5	1	0.265	-0.375
3						

Solution.

(a) As seen from the table, f(0)f(1) = (1)(-1) < 0, and the result follows from the Intermediate Value Theorem.

(b)

(0)						
3	0.25	0.375	0.5	0.265	-0.072	-0.375

[4] 2. There is a solution d of f(x) = 0 such that 1 < d < 2. What is the first approximation x_1 of the solution d if the method of linear interpolation is being used on the interval from 1 to 2?

Solution.
$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{1f(2) - 2f(1)}{f(2) - f(1)} = 1.25$$

[4] 3. The equation f(x) = 0 has the same set of solutions as the rearrangement $x = \frac{x^3 + 1}{3}$. The starting approximation is $x_1 = 0$. Use the method of successive approximations and the rearrangement $x = \frac{x^3 + 1}{3}$ to compute the next two approximations x_2 and x_3 of a solution of f(x) = 0.

Solution.
$$x_2 = \frac{x_1^3 + 1}{3} = \frac{1}{3} = 0.333$$
; $x_3 = \frac{x_2^3 + 1}{3} = \frac{(0.333)^3 + 1}{3} = 0.3456$.

B04.