B04.
MATH 1200: Test \#4 (Fall 2011)

Solution; marking scheme

Important: In all three questions use the function $f(x)=x^{3}-3 x+1$.
[7] 1. [3] (a) Show that there is a solution c of $f(x)=0$ such that $0<c<1$.
[4] (b) The first two steps of approximating the solution $f(x)=0$ that is between 0 and 1 by means of the bisection method are given in the table below. Continue the procedure one more step and complete the third row of the table.

n	a	x_{n}	b	$f(a)$	$f\left(x_{n}\right)$	$f(b)$
1	0	0.5	1	1	-0.375	-1
2	0	0.25	0.5	1	0.265	-0.375
3						

Solution.
(a) As seen from the table, $f(0) f(1)=(1)(-1)<0$, and the result follows from the Intermediate Value Theorem.
(b)

3	0.25	0.375	0.5	0.265	-0.072	-0.375

[4] 2. There is a solution d of $f(x)=0$ such that $1<d<2$. What is the first approximation x_{1} of the solution d if the method of linear interpolation is being used on the interval from 1 to 2 ?

Solution. $x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)}=\frac{1 f(2)-2 f(1)}{f(2)-f(1)}=1.25$
[4] 3. The equation $f(x)=0$ has the same set of solutions as the rearrangement $x=\frac{x^{3}+1}{3}$. The starting approximation is $x_{1}=0$. Use the method of successive approximations and the rearrangement $x=\frac{x^{3}+1}{3}$ to compute the next two approximations x_{2} and x_{3} of a solution of $f(x)=0$.

Solution. $x_{2}=\frac{x_{1}^{3}+1}{3}=\frac{1}{3}=0.333 ; x_{3}=\frac{x_{2}^{3}+1}{3}=\frac{(0.333)^{3}+1}{3}=0.3456$.

