Solution; marking scheme

[6] 1. Consider the sequence $\left\{c_{n}\right\}$ defined by $c_{0}=2, c_{n+1}=\frac{c_{n}}{2}$ for $n \geq 1$.
(a) Show that $\left\{c_{n}\right\}$ is monotonic.
(b) Show that the sequence $\left\{c_{n}\right\}$ is bounded.
(c) Find $\lim _{n \rightarrow \infty} c_{n}$.

Solution.

(a) $c_{n+1}<c_{n}$ since $\frac{c_{n}}{2}<c_{n}$. So the sequence is decreasing.
(b) All members are positive; so the sequence is bounded from below by 0 . On the other hand, the sequence is decreasing by (a), so all members are smaller than the first term; so 2 is an upper bound for the sequence.
(c) $c_{n+1}=\frac{c_{n}}{2}$ gives $\lim _{n \rightarrow \infty} c_{n+1}=\lim _{n \rightarrow \infty} \frac{c_{n}}{2}$; so $L=\frac{L}{2}$; so $L=0$.
[5] 2. (a) State the definition of an oscillating sequence (i.e., what does it mean to say that a sequence $\left\{c_{n}\right\}$ is oscillating).
(b) Write "Yes" if the following sequence is oscillating, write 'No" if it is not oscillating. Do NOT justify.
(i) $2,-2,2,-2, \ldots$
(ii) $\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \ldots$.
(iii) $\frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \ldots$

Solution. (a) In the book.
(b) (i) No, (ii) No, (iii) Yes
[4] 3. You have 500 on your account. You add 100 each month. The annual interest is 12% compounded each month. Write down an explicit formula for your balance after n-many months.
Do not simplify. [Hint: Recall that if $c_{1}=a$ and $c_{n}=d+r c_{n-1}$, then $c_{n}=a r^{n-1}+d\left(\frac{r^{n-1}-1}{r-1}\right)$.]
Solution. Note that the monthly interest is 1% or 0.01 . In this context we have $c_{1}=a=500$ and $c_{n}=c_{n-1}+0.01 c_{n-1}+100$, i.e., $c_{n}=1.01 c_{n-1}+100$. Using the formula in the hint, $c_{n}=(1.01)^{n-1} 500+100\left(\frac{(10.1)^{n-1}-1}{1.01-1}\right)$.

