HYPERBOLIC GEOMETRY

Recall the fifth axiom of the Euclidean geometry:
5. For every line l and every point P that does not lie on l, there exists a unique line m through P and parallel to l.

$$
l
$$

In hyperbolic geometry this axiom is replaced by
5. For every line l and every point P that does not lie on l, there exist infinitely many lines through P that are parallel to l.

New geometry models immerge, sharing some features (say, curved lines) with the image on the surface of the crystal ball of the surrounding three-dimensional scene.

PRELIMINARIES

Q. When do two circles intersect at the right angle?
A. Their radii to any the two intersecting points should be perpendicular.

The radial segments $O A$ and $A O_{1}$ are
perpendicular.

Basic construction \#0: given a circle \mathbf{C} and a point A on it, construct a bunch of circles intersecting C at A and perpendicular to C.

We are given a circle and a point A .
Construct its center O (old construction).

Join OA and construct its perpendicular through A.
Choose any point O1 (other than A) on the perpendicular.

Draw the circle centered at O1 and through A.
Choose O 2 and get another perpendicular circle.

POINCARE MODEL OF HYPERBOLIC GEOMETRY

The space (the new world) consists of all of the points in the interior of a circle. The circle itself is not a part of the space and it plays the role of a horizon.

There are two types of lines:
Hyperbolic lines (h-lines) of type 1: diameters of the circle H without the end-points.
Hyperbolic lines (h-lines) of type 2: circles intersecting H at the right angle; the part of that circle within H.

The two hyperbolic lines, one diameter in one arc, are in full stroke.

Basic construction \#1. Construct two h-lines of type 1, and two h-lines of type 2.

Construct the center O of H ; draw any two diameters.

Use construction \#0 (above) to get any two circles intersecting H at right angles; the parts of these circles within H are h-lines of type 2.

The notion of being parallel, in hyperbolic or Euclidean plane geometry, is the same as the notion of non-intersecting (parallel = non-intersecting). Thus, the top h-line of type 2 is parallel to the other 3 h -lines in the figure. (See Figure 4.3.3 in the textbook and the surrounding text.)

Basic important construction \#2. Given a point A, construct one \boldsymbol{h}-line of type 2 passing through A .

Initially we are given a point A within H .

Construct the center O of H , and join it with A .
(The diameter through A is an h -line of type 1 passing through A ; we are after an h -line of type 2 through A.)

Construct the perpendicular to OA at A ; connect with O one of the two intersection points of that perpendicular with H ; get one radius of H .

Construct the perpendicular to that radius is at the end point. This perpendicular intersects the line through OA at $\mathrm{i}(\mathrm{A})$. Bisect the line segment $\mathrm{A} \mathrm{i}(\mathrm{A})$ to get the line c_{A}.

Choose any point on the line c_{A} (we chose C_{A}) and draw a circle center at that point and passing through A ; the part of that circle within H is a desired h -line type 2.

Note: the center-line c_{A} contains the centers of all h-lines passing through A.

