Rectangular powers and Ramsey theory

Bob Quackenbush

ABSTRACT

For a finite structure A (e.g., a graph, poset, group, or lattice), let its set of finite powers be $\text{Pow}(A) = \{ A^n \mid n \geq 0 \}$ with $P_{m,n}(A)$ the set of all substructures of A^n isomorphic to A^m.

Choose positive integers n, m, k, c with $n > m > k$. Then we call an onto map $\Delta : P_{k,n}(A) \to [c] = \{1, \ldots, c\}$ a c-colouring. We seek $B \in P_{m,n}(A)$ such that the restriction of Δ to $\{ C \in P_{k,m}(A) \mid C \subseteq B \}$ is constant; such a B is said to be monochromatic with respect to Δ.

I will discuss the positive and negative results of this quest, couched in the language of rectangular powers and polymorphism clones.