

Trigonometric Substitutions

A trigonometric substitution is required when trying to integrate a functions with a terms like

$$\sqrt{a^2 - b^2 x^2}$$
, $\sqrt{a^2 + b^2 x^2}$ or $\sqrt{b^2 x^2 - a^2}$.

These terms are tackled using the identities

$$1 - \sin^2 x = \cos^2 x$$
$$1 + \tan^2 x = \sec^2 x$$
$$\sec^2 x - 1 = \tan^2 x$$

If the expression inside the square root can be transformed into, for example, something resembling $1 + \tan^2 x$, we can use the second identity to replace it with $\sec^2 x$ which helps us simplify the integral.

Here's how the substitutions work:

Case 1:

Case 2:

Case 3:

For $\sqrt{a^2-b^2x^2}$, let $x=\frac{a}{b}\sin\theta$. For $\sqrt{a^2+b^2x^2}$, let $x=\frac{a}{b}\tan\theta$. For $\sqrt{b^2x^2-a^2}$, let $x=\frac{a}{b}\sec\theta$. Then we have,

For
$$\sqrt{a^2 + b^2 x^2}$$
, let $x = \frac{a}{b} \tan \theta$
Then we have,

For
$$\sqrt{b^2x^2 - a^2}$$
, let $x = \frac{a}{b}\sec\theta$.
Then we have,

$$\sqrt{a^2 - b^2 x^2}$$

$$= \sqrt{a^2 - b^2 \left(\frac{a}{b} \sin \theta\right)^2}$$

$$= \sqrt{a^2 - b^2 \left(\frac{a^2}{b^2} \sin^2 \theta\right)}$$

$$= \sqrt{a^2 - a^2 \sin^2 \theta}$$

$$= \sqrt{a^2 (1 - \sin^2 \theta)}$$

$$= a\sqrt{\cos^2 \theta}$$

$$= a|\cos \theta|$$

$$\sqrt{a^2 - b^2 x^2} \qquad \sqrt{a^2 + b^2 x^2} \qquad \sqrt{b^2 x^2 - a^2} \\
= \sqrt{a^2 - b^2 \left(\frac{a}{b}\sin\theta\right)^2} \qquad = \sqrt{a^2 + b^2 \left(\frac{a}{b}\tan\theta\right)^2} \qquad = \sqrt{b^2 \left(\frac{a}{b}\sec\theta\right)^2 - a^2} \\
= \sqrt{a^2 - b^2 \left(\frac{a^2}{b^2}\sin^2\theta\right)} \qquad = \sqrt{a^2 + b^2 \left(\frac{a^2}{b^2}\tan^2\theta\right)} \qquad = \sqrt{b^2 \left(\frac{a^2}{b}\sec^2\theta\right) - a^2} \\
= \sqrt{a^2 - a^2\sin^2\theta} \qquad = \sqrt{a^2 + a^2\tan^2\theta} \qquad = \sqrt{a^2\sec^2\theta - a^2} \\
= \sqrt{a^2(1 - \sin^2\theta)} \qquad = \sqrt{a^2(1 + \tan^2\theta)} \qquad = \sqrt{a^2(\sec^2\theta - 1)} \\
= a\sqrt{\cos^2\theta} \qquad = a|\sec\theta| \qquad = a|\tan\theta|$$

$$\sqrt{b^2 x^2 - a^2}$$

$$= \sqrt{b^2 \left(\frac{a}{b} \sec \theta\right)^2 - a^2}$$

$$= \sqrt{b^2 \left(\frac{a^2}{b^2} \sec^2 \theta\right) - a^2}$$

$$= \sqrt{a^2 \sec^2 \theta - a^2}$$

$$= \sqrt{a^2 \left(\sec^2 \theta - 1\right)}$$

$$= a\sqrt{\tan^2 \theta}$$

$$= a|\tan \theta|$$

For this substitution. $\theta = \sin^{-1}\left(\frac{bx}{a}\right)$, so Therefore, $a \cos \theta = a \cos \theta$

For this substitution,
$$\theta = \tan^{-1}\left(\frac{bx}{a}\right) \text{, so}$$

$$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}.$$
 Therefore, $a|\sec\theta| = a\sec\theta$

For this substitution, $\theta = \sec^{-1}\left(\frac{bx}{a}\right)$, so $0 \le \theta < \frac{\pi}{2}, \ \pi \le \theta < \frac{3\pi}{2}$ Therefore, $a|\tan\theta| = a\tan\theta$ **Example.** Solve the integral $\int \frac{1}{x\sqrt{x^2+3}}dx$.

Solution:

$$\int \frac{1}{x\sqrt{x^2+3}} dx = \int \frac{1}{x\sqrt{(\sqrt{3})^2+(1)^2x^2}} dx$$

so we can see that we have a term in the interval of the form $\sqrt{a^2+b^2x^2}$. Hence, we use the substitution described in Case 2 above.

Let $x = \frac{\sqrt{3}}{1} \tan \theta = \sqrt{3} \tan \theta$. Then, $dx = \sqrt{3} \sec^2 \theta d\theta$, and our integral becomes

$$\int \frac{1}{x\sqrt{x^2 + 3}} dx = \int \frac{1}{\sqrt{3} \tan \theta \sqrt{3} \tan^2 \theta + 3} \sqrt{3} \sec^2 \theta d\theta$$

$$= \int \frac{1}{\sqrt{3} \tan \theta \sqrt{3} (\tan^2 \theta + 1)} \sqrt{3} \sec^2 \theta d\theta$$

$$= \int \frac{\sec^2 \theta}{\tan \theta \sqrt{3} \sec^2 \theta} d\theta$$

$$= \frac{1}{\sqrt{3}} \int \frac{\sec^2 \theta}{\tan \theta \sec^2 \theta} d\theta$$

$$= \frac{1}{\sqrt{3}} \int \frac{\sec^2 \theta}{\tan \theta} d\theta$$

$$= \frac{1}{\sqrt{3}} \int \csc \theta d\theta$$

$$= \frac{1}{\sqrt{3}} \ln|\csc \theta - \cot \theta| + C$$

But we are not yet finished. Our integral started off with x as the variable, so we want to return our answer in terms of x.

From before, we had $x=\frac{\sqrt{3}}{1}\tan\theta \implies \tan\theta=\frac{x}{\sqrt{3}}$. Using a right-angled triangle (which we complete using the fact that $\tan\theta=\frac{\text{opposite}}{\text{adjacent}}$ and applying Pythagorus' Theorem to find the hypotenuse), we can figure out expressions for $\cot\theta$ in terms of x as well.

$$\csc\theta = \frac{x^2+3}{x}$$
 and $\cot\theta = \frac{\sqrt{3}}{x}$, so our final answer can becomes

$$\frac{1}{\sqrt{3}}\ln|\csc\theta - \cot\theta| + C = \frac{1}{\sqrt{3}}\ln\left|\frac{x^2 + 3}{x} - \frac{\sqrt{3}}{x}\right| + C$$

Example. Solve the integral $\int \frac{\sqrt{9-x^2}}{x^4} dx$.

Solution:

This substitution required for this question is the one described in Case 1. Let $x=3\sin\theta$. Then we get $dx=3\cos\theta d\theta$.

$$\int \frac{\sqrt{9 - x^2}}{x^4} dx = \int \frac{\sqrt{9 - (3\sin\theta)^2}}{(3\sin\theta)^4} 3\cos\theta d\theta$$

$$= \int \frac{\sqrt{9 - 9\sin^2\theta}}{3^4\sin^4\theta} 3\cos\theta d\theta$$

$$= \int \frac{3\sqrt{\cos^2\theta}}{3^4\sin^4\theta} 3\cos\theta d\theta$$

$$= \int \frac{3^2\cos^2\theta}{3^4\sin^4\theta} d\theta$$

$$= \frac{1}{3^2} \int \frac{\cos^2\theta}{\sin^4\theta} d\theta$$

$$= \frac{1}{9} \int \frac{\cos^2\theta}{\sin^2\theta} \cdot \frac{1}{\sin^2\theta} d\theta$$

$$= \frac{1}{9} \int \cot^2\theta \cdot \csc^2\theta d\theta$$

$$= -\frac{1}{9} \int \cot^2\theta \cdot -\csc^2\theta d\theta$$

Letting $u = \cot \theta$, we get $du = \csc^2 \theta d\theta$, so

$$-\frac{1}{9} \int \cot^2 \theta \cdot -\csc^2 \theta d\theta = -\frac{1}{9} \int u^2 du$$
$$= -\frac{1}{9} \cdot \frac{u^3}{3} + C$$
$$= -\frac{1}{9} \cdot \frac{\cot^3 \theta}{3} + C$$

Again, we want to give our answer in terms of x, not u or θ , so we will use the right-angled triangle as before. We had $x=3\sin\theta$, so $\sin\theta=\frac{x}{3}$ and the triangle becomes

From the triangle, $\tan \theta = \frac{x}{\sqrt{9-x^2}}$, so $\cot \theta = \frac{\sqrt{9-x^2}}{x}$, and our final answer becomes

$$-\frac{1}{9} \cdot \frac{\cot^3 \theta}{3} + C = -\frac{\sqrt{9 - x^2}}{27x} + C$$

Example. Solve the integral $\int \frac{2}{x^2 - 4x} dx$.

Solution:

Although this integral can be solved using partial fractions, a trig substitution can also be solved. In order for a trig substitution to be used, we need something in the integrand to be in one of the following forms:

$$a^2 - b^2 x^2$$
, $a^2 + b^2 x^2$, or $b^2 x^2 - a^2$

We do this by completing the square:

$$x^{2} - 4x = x^{2} - 4x + 4 - 4$$
$$= (x - 2)^{2} - 4$$

Letting u = x - 2, our integral becomes

$$\int \frac{2}{x^2 - 4x} dx = \int \frac{2}{u^2 - 4} du$$

Now, letting $2 \sec \theta = u$, we get $du = 2 \sec \theta \tan \theta$, so

$$\int \frac{2}{u^2 - 4} du = \int \frac{2}{(2 \sec \theta)^2 - 4} \cdot 2 \sec \theta \tan \theta d\theta$$

$$= \int \frac{4 \sec \theta \tan \theta}{4 \sec^2 \theta - 4} d\theta$$

$$= \int \frac{4 \sec \theta \tan \theta}{4 (\sec^2 \theta - 1)} d\theta$$

$$= \int \frac{\sec \theta \tan \theta}{\tan^2 \theta} d\theta$$

$$= \int \frac{\sec \theta}{\tan \theta} d\theta$$

$$= \int \frac{\sec \theta}{\tan \theta} d\theta$$

$$= \int \frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} d\theta$$

$$= \int \csc \theta d\theta$$

$$= \ln |\csc \theta - \cot \theta| + C$$

But we had $\sec \theta = \frac{u}{2} = \frac{x-2}{2}$, so using a right-angled triangle,

From the triangle, $\csc\theta = \frac{x-2}{\sqrt{x^2-4x}}$ and $\cot\theta = \frac{2}{\sqrt{x^2-4x}}$, so our final answer becomes

$$\ln \left| \frac{x - 2}{\sqrt{x^2 - 4x}} - \frac{2}{\sqrt{x^2 - 4x}} \right| + C$$

Exercises

Calculate each of the following integrals

- $1. \int \frac{1}{\sqrt{9-x^2}} dx$
- $2. \int \frac{3}{\sqrt{5-3x^2}} dx$
- 3. $\int \frac{1}{x^2 \sqrt{x^2 25}} dx$
- 4. $\int x^3 (5x^2 2)^{\frac{5}{2}} dx$
- $5. \int \frac{\sqrt{x^2 + 16}}{x^4} dx$
- 6. $\int 2x^5\sqrt{7+3x^2}dx$