math

Implicit Differentiation

Implicit differentiation is a technique used when you can not isolate one of the variables in an equation. For example, suppose you need to find $\frac{d y}{d x}$, for the curve described by

$$
\begin{equation*}
x^{2}+x y+y^{2}=3 . \tag{1}
\end{equation*}
$$

Isolating y is impossible here, so this is a case where implicit differentiation is required.
Consider (1), above. It is clear that y depends on x in that if x changes, y must also change for the equation to be satisfied. y depends on x, but we are unable to explicitly write down that dependence in the form $y=f(x)$. Nonetheless, when taking the derivative, we can still apply the chain rule - notice the similarity: In each of the examples below, on the left we differentiate an expression where all terms are explicitly written as functions of x on the left, while on the right, the expression is almost identical, except y is representing a function of x implicitly.

$$
\begin{array}{ll}
\text { - } \frac{d}{d x}\left(x^{2}+2\right)^{7}=7\left(x^{2}+2\right)^{6} \cdot \frac{d}{d x}\left(x^{2}+2\right) & \text { - } \frac{d}{d x}(y)^{7}=7(y)^{6} \cdot \frac{d}{d x}(y) \\
\text { - } \frac{d}{d x} x^{2}(\sin x)=x^{2} \frac{d}{d x} \sin x+\sin x \frac{d}{d x} x^{2} & \text { - } \frac{d}{d x}\left(x^{2} y\right)=x^{2} \frac{d}{d x}(y)+y \frac{d}{d x} x^{2}
\end{array}
$$

If you find it difficult dealing differentiating y implicitly, try mentally replacing y with a random function of x, and see if you can figure that out. Let's re-visit the above example:

$$
x^{2}+x y+y^{2}=3
$$

If differentiating here is difficult for you, try mentally replacing the y 's with some random function of x :

$$
x^{2}+x(\cos x)+(\cos x)^{2}=3
$$

In order to differentiate the second of the above terms, we must use the product rule:

$$
\frac{d}{d x} x(\cos x)=x \frac{d}{d x} \cos x+\cos x \frac{d}{d x} x
$$

Now, simply replace the random function with y and you have your answer:

$$
\frac{d}{d x} x(y)=x \frac{d}{d x} y+y \frac{d}{d x} x=x \frac{d y}{d x}+y
$$

The same applies to the third term, $(\cos x)^{2}$. This time the chain rule is applied.

$$
\frac{d}{d x}(\cos x)^{2}=2(\cos x) \frac{d}{d x}(\cos x), \quad \text { so } \quad \frac{d}{d x}(y)^{2}=2(y) \frac{d}{d x}(y)
$$

Example 1. Find $\frac{d y}{d x}$ in each of the following equations.

1. $\ln (y)-x=y^{2}$
2. $5 x y-2 y^{2}=1$
3. $\frac{y^{3}}{x-2}-x \cdot 2^{y}=6$

Solutions:

1.

$$
\begin{aligned}
\ln (y)-x=y^{2} & \Longrightarrow \frac{d}{d x} \ln (y)-\frac{d}{d x} x=\frac{d}{d x} y^{2} \\
& \Longrightarrow \frac{1}{y} \frac{d y}{d x}-1=2 y \frac{d y}{d x} \\
& \Longrightarrow \frac{1}{y} \frac{d y}{d x}-2 y \frac{d y}{d x}=1 \\
& \Longrightarrow \frac{d y}{d x}\left(\frac{1}{y}-2 y\right)=1 \\
& \Longrightarrow \frac{d y}{d x}=\frac{1}{\left(\frac{1}{y}-2 y\right)}
\end{aligned}
$$

2.

$$
\begin{aligned}
5 x y-2 y^{2}=1 & \Longrightarrow \frac{d}{d x} 5 x y-\frac{d}{d x} 2 y^{2}=\frac{d}{d x} 1 \\
& \Longrightarrow 5\left(x \frac{d y}{d x}+y\right)-2(2 y) \frac{d y}{d x}=0 \\
& \Longrightarrow 5 x \frac{d y}{d x}+5 y-4 y \frac{d y}{d x}=0 \\
& \Longrightarrow 5 x \frac{d y}{d x}-4 y \frac{d y}{d x}=-5 y \\
& \Longrightarrow \frac{d y}{d x}(5 x-4 y)=-5 y \\
& \Longrightarrow \frac{d y}{d x}=\frac{-5 y}{(5 x-4 y)}
\end{aligned}
$$

3.

$$
\begin{aligned}
\frac{y^{3}}{x-2}-x \cdot 2^{y}=6 & \Longrightarrow \frac{d}{d x}\left(\frac{y^{3}}{x-2}\right)-\frac{d}{d x} x \cdot 2^{y}=\frac{d}{d x} 6 \\
& \Longrightarrow \frac{(x-2) \cdot 3 y^{2} \frac{d y}{d x}-y^{3}(1)}{(x-2)^{2}}-\left(x \cdot 2^{y} \ln 2 \frac{d y}{d x}+2^{y}\right)=0 \\
& \Longrightarrow(x-2) \cdot 3 y^{2} \frac{d y}{d x}-y^{3}-(x-2)^{2}\left(x \cdot 2^{y} \ln 2 \frac{d y}{d x}+2^{y}\right)=0 \\
& \Longrightarrow(x-2) \cdot 3 y^{2} \frac{d y}{d x}-(x-2)^{2} \cdot x \cdot 2^{y} \ln 2 \frac{d y}{d x}-(x-2)^{2} 2^{y}=y^{3} \\
& \Longrightarrow(x-2) \cdot 3 y^{2} \frac{d y}{d x}-(x-2)^{2} \cdot x \cdot 2^{y} \ln 2 \frac{d y}{d x}=y^{3}+(x-2)^{2} 2^{y} \\
& \Longrightarrow \frac{d y}{d x}\left((x-2) \cdot 3 y^{2}-(x-2)^{2} \cdot x \cdot 2^{y} \ln 2\right)=y^{3}+(x-2)^{2} 2^{y} \\
& \Longrightarrow \frac{d y}{d x}=\frac{y^{3}+(x-2)^{2} 2^{y}}{(x-2) \cdot 3 y^{2}-(x-2)^{2} \cdot x \cdot 2^{y} \ln 2}
\end{aligned}
$$

Exercises

1. Solve for $\frac{d y}{d x}$ for each of the following using implicit differentiation.
(a) $x^{2}+y^{3}=6 x$
(b) $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$
(c) $2 x y-y^{2}=3$
(d) $y^{4}+4 y-3 x^{3} \sin (y)=2 x+1$
2. For each of the following, find the slope of the curve at the given point.
(a) $x^{2} y+y^{2} x=2, \quad(1,-2)$
(b) $\frac{1}{x^{3}}+\frac{1}{y^{3}}=2$,
(c) $12\left(x^{2}+y^{2}\right)=25 x y$,

Answers

1. (a) $\frac{d y}{d x}=\frac{6-2 x}{3 y^{2}}$
(b) $\frac{d y}{d x}=-\frac{x^{-\frac{1}{3}}}{y^{-\frac{1}{3}}}$
(c) $\frac{d y}{d x}=-\frac{y}{x-y}$
(d) $\frac{d y}{d x}=\frac{2+9 x^{2} \sin (y)}{4 y^{3}+4-3 x^{3} \cos (y)}$
2. (a) $m=0$
(b) $m=-1$
(c) $m=\frac{4}{3}$
