
Eigenvalues and Eigenvectors

An eigenvector #»v of a linear transformation T is a non-zero vector that either does not change
direction or reverses direction under the action of the T . i.e.,

T ( #»v ) = λ #»v , λ ∈ R.

Here,

• #»v is the eigenvector.

• λ is the eigenvalue.

Every linear transformation can be represented with a square matrix, and we’ll almost always
use the matrix associated to the linear transformation when trying to solve for eigenvalues and
eigenvectors, so remember

Av = λv, v 6= 0

where A is the matrix representing T and v is a column matrix representing #»v . When asked to find
the eigenvalues and eigenvectors associated with a matrix or transformation, you are being asked to
find which λ and v satisfy the above equation.

Av = λv ⇐⇒ Av = λIv

⇐⇒ Av − λIv = 0

⇐⇒ (A− λI)v = 0

Since A is a square matrix, this represents a homogeneous system of equations, which has nontrivial
solutions when |A− λI| = 0 – and this is how we find the eigenvalues! The eigenvalues of a linear
transformation are the solutions to

|A− λI| = 0

Steps for finding eigenvalues and eigenvectors:

Given a square matrix A,

1. Solve |A− λI| = 0, for λ

2. For each eigenvalue found above, solve (A− λI)v = 0 for v using elementary row operations
on the associated augmented matrix.

Example. Find the eigenvalues and eigenvectors of the matrix

A =


5 −3 −3

−6 8 6

12 −12 −10


1



Solution:
First, we find the eigenvalues:

A− λI =


5 −3 −3

−6 8 6

12 −12 −10

− λ

1 0 0

0 1 0

0 0 1



=


5 −3 −3

−6 8 6

12 −12 −10

−

λ 0 0

0 λ 0

0 0 λ



=


5− λ −3 −3

−6 8− λ 6

12 −12 −10− λ



=⇒ |A− λI| =

∣∣∣∣∣∣∣∣∣
5− λ −3 −3

−6 8− λ 6

12 −12 −10− λ

∣∣∣∣∣∣∣∣∣
= (5− λ) [(8− λ)(−10− λ) + 72]− (−3) [(−6)(−10− λ)− 72] + (−3) [72− (8− λ)(12)]
= (5− λ)

[
λ2 + 2λ− 8

]
− (−3) [6λ− 12] + (−3) [12λ− 24]

= (5− λ)(λ+ 4)(λ− 2) + 18(λ− 2)− 36(λ− 2)

= (5− λ)(λ+ 4)(λ− 2)− 18(λ− 2)

= (λ− 2)((5− λ)(λ+ 4)− 18)

= (λ− 2)(−λ2 + λ+ 2)

= −(λ− 2)(λ2 − λ− 2)

= −(λ− 2)(λ− 2)(λ+ 1)

= −(λ− 2)2(λ+ 1)

Setting |A − λI| = 0, we find that λ = 2 is an eigenvalue of multiplicity 2, and λ = −1 is an
eigenvalue of multiplicity 1.

Now that we have found the eigenvalues, we move on to the eigenvectors. Remember, we find
the eigenvectors by solving (A− λI)v = 0 for v for each of the eigenvalues found above.

For λ = −1:

A− λI =


6 −3 −3

−6 9 6

12 −12 −9


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
6 −3 −3 0

−6 9 6 0

12 −12 −9 0

 R2→R1+R2−→


6 −3 −3 0

0 6 3 0

12 −12 −9 0


R3→−2R1+R3−→


6 −3 −3 0

0 6 3 0

0 −6 −3 0


R3→R2+R3−→


6 −3 −3 0

0 6 3 0

0 0 0 0


R1→ 1

6
R1−→


1 −1

2
−1

2
0

0 6 3 0

0 0 0 0


R2→ 1

6
R2−→


1 −1

2
−1

2
0

0 1 1
2

0

0 0 0 0


R1→ 1

2
R2+R1−→


1 0 −1

4
0

0 1 1
2

0

0 0 0 0



Let z = t. Then

y = −1

2
t

x =
1

4
t,

so all eigenvectors corresponding to the eigenvalue λ = −1 are of the form t〈1
4
,−1

2
, 1〉. We apply

the same process to find all eigenvectors associated to the other eigenvalue λ = 2.
For λ = −1:

A− λI =


3 −3 −3

−6 6 6

12 −12 −12

 ,
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so we need to solve 
3 −3 −3 0

−6 6 6 0

12 −12 −12 0


Applying Gauss-Jordan elimination, we find

3 −3 −3 0

−6 6 6 0

12 −12 −12 0

 −→


1 −1 −1 0

0 0 0 0

0 0 0 0

 ,
so letting v2 = s. and v3 = t, for s, t ∈ R we get

v1 = s+ t.

Hence, all eigenvalues associated to the eigenvalue λ = 2 are of the form 〈s + t, s, t〉, for any
s, t ∈ R.

Exercises

1. Find all eigenvalues and corresponding eigenvectors for the matrix

A =


7 4 −16

2 5 −8

2 2 −5

 .

2. Show that if λ is an eigenvalue of A with eigenvector #»v , then λn is an eigenvalue of An with
eigenvector #»v .

Hint: Use induction.

Answers

1. Eigenvalues: λ = 1, 3. Note that λ = 3 has multiplicity 2.
Eigenvectors: For λ = 1: 〈2t, t, t〉. For λ = 3: t〈−s+ 4t, s, t〉.
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