Eigenvalues and Eigenvectors

An eigenvector \vec{v} of a linear transformation T is a non-zero vector that either does not change direction or reverses direction under the action of the T. i.e.,

$$
T(\vec{v})=\lambda \vec{v}, \quad \lambda \in \mathbb{R}
$$

Here,

- \vec{v} is the eigenvector.
- λ is the eigenvalue.

Every linear transformation can be represented with a square matrix, and we'll almost always use the matrix associated to the linear transformation when trying to solve for eigenvalues and eigenvectors, so remember

$$
A v=\lambda v, \quad v \neq 0
$$

where A is the matrix representing T and v is a column matrix representing \vec{v}. When asked to find the eigenvalues and eigenvectors associated with a matrix or transformation, you are being asked to find which λ and v satisfy the above equation.

$$
\begin{aligned}
A v=\lambda v & \Longleftrightarrow A v=\lambda I v \\
& \Longleftrightarrow A v-\lambda I v=0 \\
& \Longleftrightarrow(A-\lambda I) v=0
\end{aligned}
$$

Since A is a square matrix, this represents a homogeneous system of equations, which has nontrivial solutions when $|A-\lambda I|=0$ - and this is how we find the eigenvalues! The eigenvalues of a linear transformation are the solutions to

$$
|A-\lambda I|=0
$$

Steps for finding eigenvalues and eigenvectors:

Given a square matrix A,

1. Solve $|A-\lambda I|=0$, for λ
2. For each eigenvalue found above, solve $(A-\lambda I) v=0$ for v using elementary row operations on the associated augmented matrix.

Example. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
5 & -3 & -3 \\
-6 & 8 & 6 \\
12 & -12 & -10
\end{array}\right]
$$

Solution:

First, we find the eigenvalues:

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
5 & -3 & -3 \\
-6 & 8 & 6 \\
12 & -12 & -10
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5 & -3 & -3 \\
-6 & 8 & 6 \\
12 & -12 & -10
\end{array}\right]-\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5-\lambda & -3 & -3 \\
-6 & 8-\lambda & 6 \\
12 & -12 & -10-\lambda
\end{array}\right] \\
\Longrightarrow|A-\lambda I| & \left.=\left\lvert\, \begin{array}{ccc}
5-\lambda & -3 & -3 \\
-6 & 8-\lambda & 6 \\
12 & -12 & -10-\lambda
\end{array}\right.\right] \\
& =(5-\lambda)[(8-\lambda)(-10-\lambda)+72]-(-3)[(-6)(-10-\lambda)-72]+(-3)[72-(8-\lambda)(12)] \\
& =(5-\lambda)\left[\lambda^{2}+2 \lambda-8\right]-(-3)[6 \lambda-12]+(-3)[12 \lambda-24] \\
& =(5-\lambda)(\lambda+4)(\lambda-2)+18(\lambda-2)-36(\lambda-2) \\
& =(5-\lambda)(\lambda+4)(\lambda-2)-18(\lambda-2) \\
& =(\lambda-2)((5-\lambda)(\lambda+4)-18) \\
& =(\lambda-2)\left(-\lambda^{2}+\lambda+2\right) \\
& =-(\lambda-2)\left(\lambda^{2}-\lambda-2\right) \\
& =-(\lambda-2)(\lambda-2)(\lambda+1) \\
& =-(\lambda-2)^{2}(\lambda+1)
\end{aligned}
$$

Setting $|A-\lambda I|=0$, we find that $\lambda=2$ is an eigenvalue of multiplicity 2 , and $\lambda=-1$ is an eigenvalue of multiplicity 1 .

Now that we have found the eigenvalues, we move on to the eigenvectors. Remember, we find the eigenvectors by solving $(A-\lambda I) v=0$ for v for each of the eigenvalues found above.

For $\lambda=-1$:

$$
A-\lambda I=\left[\begin{array}{ccc}
6 & -3 & -3 \\
-6 & 9 & 6 \\
12 & -12 & -9
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
6 & -3 & -3 & 0 \\
-6 & 9 & 6 & 0 \\
12 & -12 & -9 & 0
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{1}+R_{2}}\left[\begin{array}{ccc|c}
6 & -3 & -3 & 0 \\
0 & 6 & 3 & 0 \\
12 & -12 & -9 & 0
\end{array}\right]} \\
& \xrightarrow{R_{3} \rightarrow-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
6 & -3 & -3 & 0 \\
0 & 6 & 3 & 0 \\
0 & -6 & -3 & 0
\end{array}\right] \\
& \xrightarrow{R_{3} \rightarrow R_{2}+R_{3}}\left[\begin{array}{ccc|c}
6 & -3 & -3 & 0 \\
0 & 6 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow \frac{1}{6} R_{1}}\left[\begin{array}{ccc|c}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 6 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{R_{2} \rightarrow \frac{1}{6} R_{2}}\left[\begin{array}{ccc|c}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow \frac{1}{2} R_{2}+R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & -\frac{1}{4} & 0 \\
0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Let $z=t$. Then

$$
\begin{aligned}
& y=-\frac{1}{2} t \\
& x=\frac{1}{4} t,
\end{aligned}
$$

so all eigenvectors corresponding to the eigenvalue $\lambda=-1$ are of the form $t\left\langle\frac{1}{4},-\frac{1}{2}, 1\right\rangle$. We apply the same process to find all eigenvectors associated to the other eigenvalue $\lambda=2$.

For $\lambda=-1$:

$$
A-\lambda I=\left[\begin{array}{ccc}
3 & -3 & -3 \\
-6 & 6 & 6 \\
12 & -12 & -12
\end{array}\right]
$$

so we need to solve

$$
\left[\begin{array}{ccc|c}
3 & -3 & -3 & 0 \\
-6 & 6 & 6 & 0 \\
12 & -12 & -12 & 0
\end{array}\right]
$$

Applying Gauss-Jordan elimination, we find

$$
\left[\begin{array}{ccc|c}
3 & -3 & -3 & 0 \\
-6 & 6 & 6 & 0 \\
12 & -12 & -12 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so letting $v_{2}=s$. and $v_{3}=t$, for $s, t \in \mathbb{R}$ we get

$$
v_{1}=s+t .
$$

Hence, all eigenvalues associated to the eigenvalue $\lambda=2$ are of the form $\langle s+t, s, t\rangle$, for any $s, t \in \mathbb{R}$.

Exercises

1. Find all eigenvalues and corresponding eigenvectors for the matrix

$$
A=\left[\begin{array}{ccc}
7 & 4 & -16 \\
2 & 5 & -8 \\
2 & 2 & -5
\end{array}\right]
$$

2. Show that if λ is an eigenvalue of A with eigenvector \vec{v}, then λ^{n} is an eigenvalue of A^{n} with eigenvector \vec{v}.
Hint: Use induction.

Answers

1. Eigenvalues: $\lambda=1,3$. Note that $\lambda=3$ has multiplicity 2 .

Eigenvectors: For $\lambda=1:\langle 2 t, t, t\rangle$. For $\lambda=3: t\langle-s+4 t, s, t\rangle$.

