

Eigenvalues and Eigenvectors

An eigenvector \vec{v} of a linear transformation T is a non-zero vector that either does not change direction or reverses direction under the action of the T. i.e.,

$$T(\vec{v}) = \lambda \vec{v}, \qquad \lambda \in \mathbb{R}.$$

Here,

- \vec{v} is the eigenvector.
- λ is the eigenvalue.

Every linear transformation can be represented with a square matrix, and we'll almost always use the matrix associated to the linear transformation when trying to solve for eigenvalues and eigenvectors, so remember

where A is the matrix representing T and v is a column matrix representing \vec{v} . When asked to find the eigenvalues and eigenvectors associated with a matrix or transformation, you are being asked to find which λ and v satisfy the above equation.

$$\begin{array}{rcl} Av = \lambda v & \Longleftrightarrow & Av = \lambda Iv \\ & \Longleftrightarrow & Av - \lambda Iv = 0 \\ & \Longleftrightarrow & (A - \lambda I)v = 0 \end{array}$$

Since A is a square matrix, this represents a homogeneous system of equations, which has nontrivial solutions when $|A - \lambda I| = 0$ – and this is how we find the eigenvalues! The eigenvalues of a linear transformation are the solutions to

$$|A - \lambda I| = 0$$

Steps for finding eigenvalues and eigenvectors:

Given a square matrix A,

- 1. Solve $|A \lambda I| = 0$, for λ
- 2. For each eigenvalue found above, solve $(A \lambda I)v = 0$ for v using elementary row operations on the associated augmented matrix.

Example. Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} 5 & -3 & -3 \\ -6 & 8 & 6 \\ 12 & -12 & -10 \end{bmatrix}$$

<u>Solution:</u>

First, we find the eigenvalues:

$$\begin{aligned} A - \lambda I &= \begin{bmatrix} 5 & -3 & -3 \\ -6 & 8 & 6 \\ 12 & -12 & -10 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 5 & -3 & -3 \\ -6 & 8 & 6 \\ 12 & -12 & -10 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \\ &= \begin{bmatrix} 5 - \lambda & -3 & -3 \\ -6 & 8 - \lambda & 6 \\ 12 & -12 & -10 - \lambda \end{bmatrix} \\ &\Rightarrow |A - \lambda I| = \begin{vmatrix} 5 - \lambda & -3 & -3 \\ -6 & 8 - \lambda & 6 \\ 12 & -12 & -10 - \lambda \end{bmatrix} \\ &= (5 - \lambda) [(8 - \lambda)(-10 - \lambda) + 72] - (-3) [(-6)(-10 - \lambda) - 72] + (-3) [72 - (8 - \lambda)(12)] \\ &= (5 - \lambda) [\lambda^2 + 2\lambda - 8] - (-3) [6\lambda - 12] + (-3) [12\lambda - 24] \\ &= (5 - \lambda) (\lambda + 4) (\lambda - 2) + 18 (\lambda - 2) - 36 (\lambda - 2) \\ &= (\lambda - 2)((5 - \lambda)(\lambda + 4) - 18) \\ &= (\lambda - 2)(-\lambda^2 + \lambda + 2) \\ &= -(\lambda - 2)(\lambda^2 - \lambda - 2) \\ &= -(\lambda - 2)(\lambda - 2)(\lambda + 1) \\ &= -(\lambda - 2)^2 (\lambda + 1) \end{aligned}$$

Setting $|A - \lambda I| = 0$, we find that $\lambda = 2$ is an eigenvalue of multiplicity 2, and $\lambda = -1$ is an eigenvalue of multiplicity 1.

Now that we have found the eigenvalues, we move on to the eigenvectors. Remember, we find the eigenvectors by solving $(A - \lambda I)v = 0$ for v for each of the eigenvalues found above.

For $\lambda = -1$:

$$A - \lambda I = \begin{bmatrix} 6 & -3 & -3 \\ -6 & 9 & 6 \\ 12 & -12 & -9 \end{bmatrix}$$

Let z = t. Then

$$y = -\frac{1}{2}t$$
$$x = \frac{1}{4}t,$$

so all eigenvectors corresponding to the eigenvalue $\lambda = -1$ are of the form $t\langle \frac{1}{4}, -\frac{1}{2}, 1 \rangle$. We apply the same process to find all eigenvectors associated to the other eigenvalue $\lambda = 2$.

For $\lambda = -1$:

$$A - \lambda I = \begin{bmatrix} 3 & -3 & -3 \\ -6 & 6 & 6 \\ 12 & -12 & -12 \end{bmatrix},$$

so we need to solve

$$\begin{bmatrix} 3 & -3 & -3 & 0 \\ -6 & 6 & 6 & 0 \\ 12 & -12 & -12 & 0 \end{bmatrix}$$

Applying Gauss-Jordan elimination, we find

$$\begin{bmatrix} 3 & -3 & -3 & | & 0 \\ -6 & 6 & 6 & | & 0 \\ 12 & -12 & -12 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix},$$

so letting $v_2 = s$. and $v_3 = t$, for $s, t \in \mathbb{R}$ we get

$$v_1 = s + t.$$

Hence, all eigenvalues associated to the eigenvalue $\lambda = 2$ are of the form $\langle s + t, s, t \rangle$, for any $s, t \in \mathbb{R}$.

Exercises

1. Find all eigenvalues and corresponding eigenvectors for the matrix

$$A = \begin{bmatrix} 7 & 4 & -16 \\ 2 & 5 & -8 \\ 2 & 2 & -5 \end{bmatrix}.$$

2. Show that if λ is an eigenvalue of A with eigenvector \vec{v} , then λ^n is an eigenvalue of A^n with eigenvector \vec{v} .

Hint: Use induction.

<u>Answers</u>

1. Eigenvalues: $\lambda = 1, 3$. Note that $\lambda = 3$ has multiplicity 2. Eigenvectors: For $\lambda = 1$: $\langle 2t, t, t \rangle$. For $\lambda = 3$: $t \langle -s + 4t, s, t \rangle$.