Definition of the Derivative

Recall the formula for finding the slope of a line joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Suppose these two points are points on a curve $y=f(x)$:

Note that $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. Let's change our notation slightly: instead of x_{1} and x_{2}, we use x and $x+h$. Also, instead of y_{1} and y_{2}, we use $f(x)$ and $f(x+h)$ as shown below.

Notice that the formula for the slope of the line joining the two points has now become

$$
\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+h)-f(x)}{h}
$$

Now, suppose we move those two points closer together (we do this by taking a smaller number for h):

The closer we push the second point towards $(x, f(x))$, the closer the above formula comes to giving us the slope of the tangent line to the curve at that point.

The expression is not defined for $h=0$, but this is where limits come in handy - we can approximate the slope of the tangent line by taking the limit of the above expression as h approaches 0 (if this limit exists). We call this the derivative of the function $f(x)$, and denote it $f^{\prime}(x)$ or $\frac{d}{d x}(f(x))$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We now have a function describing the slope of the tangent line to the curve!
Example 1. Using the definition of the derivative, find $f^{\prime}(x)$ for the function

$$
f(x)=2 x^{2}
$$

$$
f(x)=2 x^{2} \quad \Longrightarrow \quad f(x+h)=2(x+h)^{2}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2\left(x^{2}+2 x h+h^{2}\right)-2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(4 x+2 h)}{h} \\
& =\lim _{h \rightarrow 0} 4 x+2 h \\
& =4 x+2(0)=4 x
\end{aligned}
$$

Example 2. Using the definition of the derivative, find $f^{\prime}(x)$ for the function

$$
f(x)=\sqrt{x+2}
$$

Solution:

$$
\begin{aligned}
& f(x)=\sqrt{x+2} \Longrightarrow f(x+h)=\sqrt{x+h+2} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \\
&=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \cdot \frac{\sqrt{x+h+2}+\sqrt{x+2}}{\sqrt{x+h+2}+\sqrt{x+2}} \\
&=\lim _{h \rightarrow 0} \frac{x+h+2-(x+2)}{h(\sqrt{x+h+2}+\sqrt{x+2})} \\
&=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+2}+\sqrt{x+2})} \\
&=\lim _{h \rightarrow 0} \frac{1}{(\sqrt{x+h+2}+\sqrt{x+2})} \\
&=\frac{1}{\sqrt{x+0+2}+\sqrt{x+2}} \\
&=\frac{1}{2 \sqrt{x+2}}
\end{aligned}
$$

Example 3. Using the definition of the derivative, find $f^{\prime}(x)$ for the function

$$
f(x)=\frac{1}{x}
$$

Solution:

$$
\begin{aligned}
f(x)=\frac{1}{x} & \Longrightarrow f(x+h)=\frac{1}{x+h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h} \cdot \frac{x}{x}-\frac{1}{x} \cdot \frac{x+h}{x+h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x}{x(x+h)}-\frac{x+h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x-x-h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{x(x+h)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{x(x+h)} \cdot \frac{1}{K} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =\frac{-1}{x(x+0)} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

Exercises

For each of the following functions, find $f^{\prime}(x)$ using the definition of the derivative.

1. $f(x)=x^{2}+6 x-3$
2. $f(x)=\sqrt{x-4}$
3. $f(x)=\frac{2}{x^{2}}$
4. $f(x)=\frac{1}{\sqrt{x+1}}$
