
2018 Manitoba Mathematical Competition Solutions

1. (a) Find an integer greater than 1 that leaves remainder 1 when divided by each of
2, 3, 4, 5 and 6.

(b) If a2 − b2 = 42 and 2a + 2b = 14, find 3a− 3b.

Solution:

(a) The least common multiple of 2, 3, 4, 5 and 6 is 60. So one answer is 61.

(b) (a+ b)(a− b) = 42 and a+ b = 7, so a− b = 6 and 3a−3b = 3(a− b) = 3 ·6 = 18.

Comments:

• To solve(a), add one to any multiple of 60.



2. (a) Solve for x:
x
√
x + 5 + 5

√
x + 5 = 8

(b) Solve for a and b:

a + b = 53
√
a−
√
b = 5

Solution:

(a) (x + 5)
√
x + 5 = (x + 5)

3
2 = 8. So x + 5 = 8

2
3 = 4. Therefore x = −1.

(b)
√
b =
√
a− 5, so

a + (
√
a− 5)2 = 53

a + a− 10
√
a + 25 = 53

2a− 10
√
a− 28 = 0

a− 5
√
a− 14 = 0

(
√
a− 7)(

√
a + 2) = 0

We have
√
a > 0 so

√
a = 7 and a = 49. Now b = 53− 49 = 4 (and directly verify

that the second equation is satisfied). So (a, b) = (49, 4).

Comments:

• Alternative approach to (b): square the second equation to get a+b−2
√
ab = 25.

Subtracting from the first gives 2
√
ab = 28, so ab = 142 = 196. So a and b are

the roots of t2 − 53t + 196 = 0, which are (by factorization or the QF—the latter
being a non-trivial by-hand calculation!) 49 and 4. By the second equation a > b
so (a, b) = (49, 4).

• A number of inappropriate approaches to (b) happened to “work” insofar as
getting the answer. Most commonly many assumed incorrectly that the second
equation forces a and b to be perfect squares. Many used guess-and-check, stop-
ping when a solution is found. First, this is an inefficient approach (especially
considering that one cannot assume even that there are finitely many cases to
check!); second, there is nothing in the statement of the problem that precludes
multiple solutions, in which case this strategy would not solve the problem. In
general, a deductive approach is preferred; guess-and-check is more appropriate
for finding solutions than for presenting them. If progress can be made by ap-
proaching a problem deductively this is always preferred over guess-and-check or
dividing into cases; when the latter strategies turn out to be necessary, analytic
pre-processing generally reduces the work and increases the likelihood of success.

• Many wrong answers to (b) began with the fallacy some call the “universal
homomorphism”—in this case inferring from

√
a −
√
b = 5 that we must have

a−b = 25. The universal homomorphism falsely asserts that f(x∗y) = f(x)∗f(y)
where f is any function and ∗ is any operation. It is a serious, and common, error
that should be curtailed before it becomes a habit.



3. (a) What is the sum of the digits of 1050 − 55?

(b) Evaluate the sum f(1) + f(2) + f(3) + · · ·+ f(100), where f(k) =
1

4k2 − 1
.

Solution:

(a) The sum of the digits of 1050 − 3125 is, directly, 46(9) + 6 + 8 + 7 + 5 = 440.

(b) First write 1
4x2−1 as 1

2

î
1

2x−1 −
1

2x+1

ó
. Then the sum telescopes as:
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3
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Ç
1

199
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=

1
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ñ
1− 1

201

ô
=

100

201
.

Comments:

• Concerning (b): we don’t expect all students to instantly recognize a telescoping
series, though it is always advisable for students, when exploring, to consider
whether a prominent difference of squares contains some key. However, students
who bothered to replace 100 with 1, 2, 3 would have been rewarded with sums
1
3
, 2
5
, 3
7

which should suggest the formula f(1)+ · · ·+f(n) = n
2n+1

. Adding f(n+1)

would confirm this by yielding n+1
2n+3

. It is very common for contest problems with
large numbers to yield to exploration involving corresponding questions using
smaller numbers. Too many students tried to jump to a complete answer before
sufficient exploration to understand the behaviour of this sum.



4. (a) Determine the sum of all five-digit numbers whose digits consist only of 2s or 3s.

(b) Define a sequence of real numbers by x0 = 1 and xk+1 =
2xk − 4

xk + 2
for all k ≥ 0.

Determine the value of x2018.

Solution:

(a) There will be 25 = 32 such numbers. Consider the 10ks digits. Half will be 2s
and the other 16 will be 3s. So to add up the 10k digits column we will have
16(2 + 3) = 80. This occurs for each of the five digit columns. So the sum is equal
to 80 · 11111 = 888880.

(b) Simple experimentation gives xk+2 = −4
xk

and so xk+4 = xk. Thus x2016 = x0 = 1

and so x2018 = −4
x2016

= −4.

Comments:

• In (a) many students found the sum of all the digits. The problem did not ask for
this, and it seems likely they were pattern-matching the problem without read-
ing carefully, and assuming that it matched something else they’d done recently,
perhaps in preparation for competition. While there are commonalities among
contest-style problems it is also true that contest questions often contain slight
variants of classical problems. For this reason very careful reading of questions
before attempting them is essential.

• (b) is another illustration of the value in trying out small cases when faced with
daunting questions involving large numbers. Our analytic writeup here may ob-
scure this point. A student who does this will find that x2 = −4 and x4 = x0.
It follows (not by inductive reasoning, but deductively!) that xk+4 = xk for all k
and the result follows easily as in our solution.



5. (a) For how many positive integers n is n
3

a three-digit integer and 6n a four-digit
integer?

(b) Suppose a, b, c are nonzero numbers and ax + a = by + b = cz + c = a + b + c.

Use this information to find the numerical value of the expression xyz−(x+y+z).

Solution:

(a) 100 ≤ n
3
≤ 999 so n is a multiple of 3 in the range 300 ≤ n ≤ 2997. Further,

1000 ≤ 6n ≤ 9999 so 166 < n < 1667. The overlap between these sets is
300 ≤ n ≤ 1666. So the required number is equal to the number of multiples of 3
in this range which is 456.

(b) x = b+c
a
, y = a+c

b
and z = a+b

c
. So

xyz − (x + y + z) =
(b + c)(a + c)(a + b)− b2c− bc2 − a2c− ac2 − a2b− ab2

abc

=
a2b + ab2 + abc + b2c + a2c + abc + c2a + c2b− b2c− · · · − ab2

abc

=
2abc

abc
= 2 (since a, b, c 6= 0)

Comments:

• A significant number of students appeared to regard part (a) as two distinct
questions. Weak mathematical reading comprehension seems to be impairing an
increasing number of students. Once more this underscores the importance of
ensuring that you understand a question before attempting to solve it, and of not
making unwarranted assumptions.

• The most common mathematical error in (a) was to miscount by 1 or 2, probably
because of being unsure how to handle the boundary conditions or struggling with
the distinction between inclusive and exclusive counting.

• A few papers found the answer for (b) by simply substituting values for a, b, c.
For example a = b = c = 1 gives x = y = z = 2 so xyz − (x + y + z) = 8− 6 = 2.
This is a clever idea which might be considered correct given the sloppy choice
of words in the question implying that there is a unique numerical value that is
independent of the particular values of the variables. So any choices will lead to
the correct answer. However, this is not a “given”. It would be consistent with
this wording (but also sloppy) if, in fact, there were distinctly different answers
depending on, say, the sign of abc, and the answer required a statement of such
cases. It may even have been that the answer could be as some formula involving
a, b, c In any case, this numerical shortcut does not comprise a logically complete
solution. For full-solution contest questions markers are looking for solutions
that fully demonstrate one’s answer to be correct—even when a question doesn’t
explicitly ask for a proof—simply producing the correct answer is not generally
worth full credit.



6. (a) Prove that, in any set {a1, a2, a3, a4} of four integers, there are two elements that
differ by a multiple of 3.

(b) Prove that no positive integer has a square of the form 100k + 51.

Solution:

(a) Every integer is of the form 3k, 3k + 1 or 3k + 2. By the Pigeonhole Principle two
out of any four integers must have one of these forms. These will differ by a multiple
of 3.

(b) Even squares are of the form 4k2 and odd squares are of the form (2k + 1)2 =
4(k2 + k) + 1. Thus perfect squares are either divisible by 4 or leave remainder 1
when divided by 4. 100k + 51 = 4(25k + 12) + 3 leaves a remainder of 3 when
divided by 4, so it cannot be a perfect square.

Comments:

• Stating the solution for (a) in terms of modular arithmetic makes it less awkward,
but we do not assume students are familiar with this approach.

• Alternatively (b) can be solved a number of ways by explicitly handing digits of a
square, which is facilitated by the factor 100 in the first term of the form. Students
familiar with modular arithmetic can find a number of alternative pathways to the
solution, none of which are notably easier than the approach shown, but might
be articulated somewhat more elegantly.



7. The line 2x + y − 12 = 0 intersects the parabola y = x2 − 4x + 9 at points A and B.
If C is the vertex of the parabola, find the area of 4ABC.

Solution: y = (x − 2)2 + 5 has vertex C(2, 5). Solving y = x2 − 4x + 9 and y = −2x + 12 gives
x = 3 or x = −1, with respectively, y = 6 or 14, so the intersection points are A(−1, 14)
and B(3, 6).
Method 1: the dotted rectangle has area (14 − 5)(3 − (−1)) = 36 and the three right
triangles have total area 1

2
(2 + 1)(14− 5) + 1

2
(3 + 1)(14− 6) + 1

2
(3− 2)(6− 5) = 30 so

4ABC has area 36− 30 = 6

Method 2: The perpendicular distance from C to line AB is (standard formula)
|2(2)+5−12|√

4+1
= 3√

5
and AB =

»
(3 + 1)2 + (6 + 4)2 =

√
80 = 4

√
5 and the required

area is 1
2
· 4
√

5 · 3√
5

= 6.

Method 3: 4ABC = 1
2

∣∣∣∣∣∣∣
2 5 1
3 6 1
−1 14 1

∣∣∣∣∣∣∣ = 6 (classical formula not often taught anymore)

Comments:

• Method 3 is for those familiar with determinants. Yet another way to use determi-
nants: a 2×2 determinant gives the area of a parallelogram determined by its row
vectors. So a fast solution that doesn’t require knowledge of the old 3×3 formula
but does require first-year linear algebra (which some HS students will know)

would be to use ~AB and ~AC to give area 1
2
abs

Ç∣∣∣∣∣4 −8
3 −9

∣∣∣∣∣
å

= abs
Ä
−36+24

2

ä
= 6.

• Heron’s formula and the distance formula between points on the plane gives an-
other possible, though ugly, solution. Yes, it can be simplified all the way by
hand.

• A few papers used the following simple device to find the area of the triangle: cut
with a vertical line through C (which meets AB at D(2, 8)). With CD as a base
find (and add) the areas of the two resulting triangles, whose altitudes at A and
B are immediate.

• The original hand-drawn diagram here will eventually be replaced with a proper
vector-graphic diagram.



8. A circle with radius 1 has centre at (0, 0). A second circle with radius 8 has centre at
(25, 0). A line lies above both circles and is tangent to both, as illustrated. Find an
equation for this line.

81

(25, 0)

(0, 0)
x

y

(diagram not to scale)

Solution:

(Sketch) Draw OT⊥BP . OP = 25, TP = 8 − 1 = 7, so by Pythagoras’ Theorem,
OT = 24. 4SAO is similar to 4SBP and to 4OTP . Therefore,

SO

AO
=

OP

TP
=

25

7
.

Thus,

SO =
25

7
AO =

25

7
.

S is the point
Ä
−25
7
, 0
ä
. The slope of AB is tan∠BSP = tan∠TOP = 7

24
. So the

equation of AB is y = 7
24

Ä
x + 25

7

ä
or 7x− 24y + 25 = 0.

Alternate #1: Another approach without the Ahaaa!: Enlarging by factor of 8 around S maps the
small circle to the large one. Thus SO/(SO + 25) = 1/8 which gives SO = 25/7
and S is the point

Ä
−25
7
, 0
ä
. Thus SA =

√
SO2 − 1 = 24/7 and the slope of the line

is tan(BSP ) = tan(ASO) = 1/SA = 7/24 and the result follows by the point-slope
formula.

Comments:

• Another approach sets SO = x then from similar triangles (x+ 1)/1 = (x+ 26)/8
yielding x = 18/7, with x-intercept of the line, x = −25/7.

• Again, when we have a chance the hand-drawn diagram in the solution will be
replaced with a proper graphic.



9. If p and q are consecutive prime numbers, both greater than 3, prove that p + q has
at least 6 distinct positive divisors. (For example, 31 + 37 = 68 which is divisible by
1, 2, 4, 17, 34 and 68.)

Solution: Since p and q are both odd, their average, p+q
2

= t is an integer. Since t is strictly between
two consecutive primes, it is composite.
So t either has 2 or more distinct prime powers or t is a power of a prime.

Case 1: Suppose t has at least two distinct prime divisors r1 and r2. If these are both odd,
then the divisors of 2t = p + q include the distinct numbers 1, 2, r1, r2, 2r1, 2r2. If,
on the other hand, one of them, say r1, is equal to 2, then the divisors include the
distinct numbers 1, 2, 4, r2, 2r2, 4r2.

Case 2: If t = rn where r is prime and n ≥ 2, r > 2, then the divisors of p + q = 2t include
1, 2, r, r2, 2r, 2r2.

If t = 2n then p + q = 2t is itself a power of 2. The first few pairs of consecutive
primes give p + q = 5 + 7 = 12, 7 + 11 = 18, 11 + 13 = 24, . . . and so we cannot
have p + q = 4, 8 or 16. It follows that the divisors of such p + q = 2t = 2n+1

include the distinct numbers 1, 2, 4, 8, 16, 32.

In every case, we see, p + q has at least 6 distinct positive divisors.

Comments:

• Some of the casework is unnecessary in this solution. Incorporating r1 < r2 in case
1 then the distinct divisors are given by 1, 2, 2r1, r2, 2r2, 2r1r2 without isolating
the case r1 = 2.

More significantly, in Case 2 if t = rn where r is prime, immediately r = 3 since
p, 2t, q form an arithmetic progression, so one of them must be divisible by 3, and
the desired divisors are 1, 2, 3, 6, 9, 18.

• Many students misread the question or made fatal unwarranted assumptions.
Commonly students didn’t use the property of p and q being consecutive any-
where. One or two took this to mean that q = p+1 (i.e., that they are consecutive
integers—obviously wrong). Others assumed incorrectly that there are (exactly)
two cases, namely q = p + 2 and q = p + 4.



10. A secret society meets once per year in the middle of a circle of 101 equally spaced
lanterns. In year 0 one lantern is lit. In year 1 they lit the adjacent lantern. After each
year k, proceeding clockwise, they skip (leave untouched) 2k lanterns and change the
state of the next lantern (so in year 2 they skip two lanterns, in year 3 they skip four
lanterns, etc.—see diagram): If that lantern is lit, it would be extinguished; if unlit, it
would be lit.

Determine, with proof, how many lanterns remain lit after they meet in year 2018.

Year 0
Year 1

Year 2 Year 3

skip 0

skip 2
skip 4

skip 6

Solution: Experimentation with the positions of the first few lanterns will show that, if we number
them consecutively so the first-lit lantern is 0 and the second is 1 and so on, the candle
visited in year n is numbered n2 (and when n is large enough, it will be the remainder
when n2 is divided by 101).
We can show this by noting that the lantern affected is in position obtained by adding
2n−1 to the position of the previous year’s lantern. If in year n the n2 position is visited,
in year n + 1 the lantern in position n2 + 2(n + 1)− 1 = (n + 1)2 is visited.
Now in years 101k± n the position visited is the same as year n, since (101± n)2 differs
from n2 by a multiple of 101.
When is the same position visited in two years, say m and n? Equivalently, when does
101|(m2− n2)? We see that 101 is prime and m2− n2 = (m+ n)(m− n) so this occurs
when 101 divides one of m + n or m− n. That is, m = 101k ± n for some k.
So position 0 is visited in years that are a multiple of 101. Since 2018 = 19 · 101 + 99,
that lantern is visited 19 times after it is lit in year 0, so it will be unlit after the 2017
gathering.
All other positions are either unvisited, or visited twice during each group of 101 years—
once in years 101k + 1, 101k + 2, . . . , 101k + 50 and then again in subsequent years
101k + 51, . . . , 101k + 100.
Thus each visited lantern other than the one in position 0 is visited 38 times (and so left
unlit) prior to the final 99 years. Then 50 lanterns will be lit, then 49 extinguished, leaving
exactly 1 lantern lit.

Comments:

• The the underlying machinery here is quadratic residues in modular arithmetic,
but no knowledge of this is assumed

• Some messy details can be avoided with a slightly different approach. Let l(y) be
the lantern number that is changed in year y. After you get l(y) = y2 (mod 101),
note that l(y) = l(y + 101). So those two changes cancel each other. Similarly,
all the changes in years 0–201 will cancel out, and same for 202–403, 404–605, ...,



1818–2019. So after year 2019, all lanterns are unlit. The only lantern lit after
year 2018 is l(2019). Final answer: one lantern.

• The main difficulty many students appeared to have is with reading comprehen-
sion. This is a relatively complex story problem in imprecise language and it
includes a few distracting details. Students are expected to be prepared to cope
with such complexity from time to time, and in this case we have a problem
deliberately designed to separate top students from the pack. Careful reading
and a strategy for verifying (say, from the examples shown in the diagram) that
comprehension is correct should benefit students in this problem.

• Unfortunately, few students mounted more than a trivial attempt at this problem,
and nobody solved it completely. One student came close, deriving that in every
202-year period every lantern will be put out once for every time it is lit, but
failed to correctly account for what happens during the final 99 years.


