2010 Manitoba Mathematical Competition SOLUTIONS

1. (a) If $x^{2}-y^{2}=39$ and $x+y=3$, find $x-y$.

Solution: $(x-y)(x+y)=29=3(x-y)=39$, so $x-y=13$.
(b) Solve for $x: x+\sqrt{x}=20$

Solution: $\quad(\sqrt{x}+5)(\sqrt{x}-4)=0, \sqrt{x}=4$, so $x=16$.
2. (a) A performer asks the members of his audience to think of a number. They are to increase this number by 3 . The result is to be multiplied by 2.10 is subtracted from the new result. This latest result is divided by 2 . When told the final result an audience member obtains, he immediately tells them their original number. What one-step formula can he use to convert the final result back into the original number?
Solution: Let x be the original number. In order, the results are $x+3,2 x+6,2 x-4, x-2$. Adding 2 to the final result, $x-2$, will bring us back to the original number, x.
(b) A fair coin is tossed four times. What is the probability that it shows heads three times and tails only once?

Solution: There are $2^{4}=16$ possible outcomes, four of which show exactly three heads, so the required probability is $\frac{4}{16}=\frac{1}{4}$.
3. (a) At what points does the circle with equation $x^{2}+y^{2}=3$ intersect the parabola with equation $y=2 x^{2}$?
Solution: Eliminating y gives $x^{2}+\left(2 x^{2}\right)^{2}=3$, or $4 x^{4}+x^{2}-3=\left(x^{2}+1\right)\left(4 x^{2}-3\right)=0$, so $x^{2}=-1$ or $\frac{3}{4}$, the first of which is ruled out for real x. So $x= \pm \frac{\sqrt{3}}{2}, y=\frac{3}{2}$, and the points are $\left(\pm \frac{\sqrt{3}}{2}, \frac{3}{2}\right)$.
Alternate \#1: Multiply the first equation by 2 and eliminate $x: 2 y^{2}+y-6=(2 y-3)(y+2)=0$, so $y=\frac{3}{2}$ or -2 . Now $y=2 x^{2}$ gives $(x, y)=\left(\pm \frac{\sqrt{3}}{2}, \frac{3}{2}\right)$ in the first case, and eliminates the second.
(b) The three lines whose equations are $y=x-7, x+y=3$ and $y=k x+8$ pass through a common point. Find the value of k.
Solution: The first two meet at $(5,-2)$ (add to eliminate x, or subtract or substitute to eliminate y). Substitute in the third: $-2=k(5)+8$. So $k=-2$.
Alternate \#1: (Gaussian Elimination) $\left(\begin{array}{cc|c}1 & -1 & 7 \\ 1 & 1 & 3 \\ k & -1 & 8\end{array}\right) \equiv\left(\begin{array}{cc|c}1 & 0 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & -10-5 k\end{array}\right)$, so $k=-2$.
4. (a) Two semicircles, as shown, have centre O. Points A, B, O, C and D are colinear with $A B=C D=1$. The shaded area is 15π. Find the length of $A D$.

Solution: Let $r=A O . \pi r^{2}-\pi(r-1)^{2}=30 \pi$, so $2 r-1=30$, so $r=\frac{31}{2}$, and $A D=2 r=31$.
(b) Consider a circle and a square whose areas are equal and which have the same centre of symmetry (see diagram). If the radius of the circle is 2 , find the length of $A B$. (Express your answer in terms of π.)

Solution: If x is the side of the square, we obtain $\pi\left(2^{2}\right)=x^{2}$, so $x=2 \sqrt{\pi}$. A vertical from the centre O to the midpoint C of $A B$ forms right triangle C with hypotenuse $O B=2$, side $O C=\sqrt{\pi}$ and other side $C B=\sqrt{4-\pi}$. So $A B=2 C B=2 \sqrt{4-\pi}$.
5. (a) The number 64 is both a perfect square and a perfect cube. Find the next positive integer with this property.
Solution: Since the number is both a perfect square and a perfect cube it must be a perfect 6th power; conversely, any 6 th power has this property. The first case after $2^{6}=64$, then, is $3^{6}=729$
(b) How many solutions of $2 x+3 y=763$ are there in positive integers x, y ?

Solution: Count the odd values of y such that $3 y$ does not exceed 763 : $\left\lfloor\frac{763}{3}\right\rfloor=254$ There are exactly 127 odd numbers $y \leq 254$, so there are 127 solutions of the required type.
6. In the diagram, $A P=\frac{1}{3} P C$ and $C Q=\frac{1}{2} B C$. Prove that the area of $\triangle B P A$ is two-thirds times the area of $\triangle C P Q$.

Solution: Take $P A$ as a base for $\triangle B P A$ and $P C$ as a base for $\triangle C P Q$. Dropping altitudes $B B^{\prime}$ to $P A$ from B and $Q Q^{\prime}$ to $P C$ from Q, we see that triangles $\triangle B B^{\prime} C$ and $\triangle Q Q^{\prime} C$ are similar because of opposite angles at C and because $B^{\prime} Q^{\prime}$ crosses parallel lines $B B^{\prime}$ and $Q Q^{\prime}$. It follows that $B B^{\prime}=2 Q Q^{\prime}$. So the area of $\triangle B P A$ is $\frac{1}{2}(P A)\left(B B^{\prime}\right)=\frac{1}{2}\left(\frac{1}{3} P C\right)\left(2 Q Q^{\prime}\right)=\left(\frac{2}{3}\right)\left(\frac{1}{2}(P C)\left(Q Q^{\prime}\right)\right)$, or two-thirds the area of $\triangle C P Q$, as required.

Alternate \#1: $\quad A P=\frac{1}{3} P C$, which implies $|\triangle B A P|=\frac{1}{3}|\triangle B P C| . C Q=\frac{1}{2} B C$, which implies $|\triangle C P Q|=$ $\frac{1}{2}|\triangle B P C|$. Combining these we obtain $|\triangle B A P|=\frac{2}{3}|\triangle C P Q|$.
7. Five distinct integers are added in pairs, giving the ten sums

$$
7,11,12,13,14,18,21,22,26,28 .
$$

Find the numbers, justifying your answer with a series of deductions clearly demonstrating that there is no other possibility.

Solution: Let the original numbers be ordered as follows: $a<b<c<d<e$. Each number can be paired with 4 others. Therefore $4 a+4 b+4 c+4 d+4 e=7+11+\cdots+28=172$, so $a+b+c+d+e=43$. The largest and smallest sums are $d+e=28$ and $a+b=7$ so $7+c+28=43$, and $c=8$. The second largest sum is $c+e=26$ so $e=26-8=18$. Thus $d=28-e=28-18=10$. Similarly the second smallest sum is $a+c=11$, so $a=11-c=3$, and $b=7-a=7-3=4$. The numbers are $(a, b, c, d, e)=(3,4,8,10,18)$.

Alternate \#1: [first obtain as before] $a=11-c, b=c-4, d=c+2, e=26-c$. [Then one of:]
(a) $a+d=13$, which is fourth on the list of sums. The third sum 12 is too small to be $x+d$ or $x+e$, so the only way to get this sum is $b+c=12$.
(b) The only odd sums are $7=a+b, 11=a+c, 13=a+d$ and 21 . But $a+e=37-2 c$ is odd, so this must be 21 .
(c) $d=c+2$. The only sums that differ by 2 are $(11,13)$ and $(12,14)$ and $(26,28)$, which must be $(x+c, x+d)$ for $x=a, b, e$. So $b+c=12$.

Alternate \#2:

Let m of the original numbers be odd, n even. Then $m+n=5$. A sum of two integers is odd if and only if one summand is even the other odd, so $m n=4$, the number of odd sums. Solving gives $(m, n)=(1,4)$ or $(4,1)$. Let $a<b<c<d$ be the four numbers of common parity, and x be the remaining one. The odd sums give $(a, b, c, d)=(7-x, 11-x, 13-x, 21-x)$. Further, ten sums add to $4(x+a+b+c+d)=172$, so $x+(7-x)+(11-x)+(13-x)+(21-x)=52-3 x=43$. So $x=3$ and the original numbers are $4,8,9,10,18$.
8. A line with slope 1 meets the parabola $y=x^{2}$ at A and B. If the length of segment $A B$ is 3 what is the equation of that line?

Solution: Let the points of intersection be $\left(a, a^{2}\right),\left(b, b^{2}\right), a<b$. The slope of the line is therefore $\frac{b^{2}-a^{2}}{b-a}=a+b=1$. The square of the distance between the points is
$(b-a)^{2}+\left(b^{2}-a^{2}\right)^{2}=(b-a)^{2}+((a+b)(b-a))^{2}=(b-a)^{2}+1 \cdot(b-a)^{2}=2(b-a)^{2}=9$, so $b-a= \pm \frac{3}{\sqrt{2}}$. Since $a<b, b-a=\frac{3}{\sqrt{2}}$. Adding $a+b=1$ we obtain $b=\frac{1}{2}+\frac{3}{2 \sqrt{2}}$. So $b^{2}=\frac{11}{8}+\frac{3}{2 \sqrt{2}}$. In point-slope form the line is $y-b^{2}=(1)(x-b)$, or $y-\left(\frac{11}{8}+\frac{3}{2 \sqrt{2}}\right)=$ $x-\left(\frac{1}{2}+\frac{3}{2 \sqrt{2}}\right)$, which simplifies to $y=x+\frac{7}{8}$.

Alternate \#1: Let the line be $y=x+k$. The points of intersection, A and B, will have x-coordinates which are solutions to $x^{2}=x+k$. Rewrite this as $x^{2}-x-k=0$. From the quadratic formula we see that the two roots of $a x^{2}+b x+c$ differ by $\frac{\sqrt{b^{2}-4 a c}}{a}$. Applying this result to our quadratic, we see that the x-coordinates of A and B differ by $\sqrt{1+4 k}$. Since $A B$ has slope 1 , the y-coordinates differ by the same amount. Since $A B=3$, we can apply Pythagoras to get $(\sqrt{1+4 k})^{2}+(\sqrt{1+4 k})^{2}=2(1+4 k)=9$. Solve to get $k=\frac{7}{8}$, so the line is $y=x+\frac{7}{8}$.
9. Solve for x and y :

$$
\begin{array}{r}
x+y+x y+2=0 \\
x^{2}+y^{2}+x^{2} y^{2}-16=0
\end{array}
$$

Solution: $x+y=-(x y+2)$, so $x^{2}+2 x y+y^{2}=x^{2} y^{2}+4 x y+4$. Use the second equation to eliminate $x^{2}+y^{2}$:

$$
\begin{aligned}
\left(16-x^{2} y^{2}\right)+2 x y & =x^{2} y^{2}+4 x y+4 \\
2 x^{2} y^{2}+2 x y-12 & =0 \\
x^{2} y^{2}+x y-6 & =0 \\
(x y+3)(x y-2) & =0
\end{aligned}
$$

So $x y=-3$ or $x y=2$.
If $x y=-3$ the first equation gives $0=x+y-1=x-\frac{3}{x}-1$, so $x^{2}-x-3=0$, so $x=\frac{1 \pm \sqrt{13}}{2}$, and $y=1-x=\frac{1 \mp \sqrt{13}}{2}$. If $x y=2$, We similarly obtain $x+y+4=0=x+\frac{2}{x}+4=0$, so $x^{2}+4 x+2=0, x=-2 \pm \sqrt{2}$ while $y=-4-x=-2 \mp \sqrt{2}$.
There are, therefore, four solutions: $\left(\frac{1 \pm \sqrt{13}}{2}, \frac{1 \mp \sqrt{13}}{2}\right),(-2 \pm \sqrt{2},-2 \mp \sqrt{2})$
Alternate \#1: Let $s=x+y, p=x y$. Then $x^{2}+y^{2}=s^{2}-2 p$, and the equations become $s+p+2=0$, $s^{2}-2 p+p^{2}-16=0$. Eliminate p to obtain $2 s^{2}+6 s+9=17 ; x^{2}+3 s-4=(s+4)(s-1)=0$, so $(s, p)=(1,-3)$ or $(-4,2)$. Then x and y are roots of $t^{2}-t-3=0$ or $t^{2}+4 t-2=0$, yielding the same solutions.

Alternate \#2: The first relation can be written $y(1+x)=-x-2$. Squaring gives $y^{2}(1+x)^{2}=x^{2}+4 x+4$. Multiplying the second relation by $(1+x)^{2}$ and substituting gives

$$
x^{2}\left(x^{2}+2 x+1\right)+\left(x^{2}+4 x+4\right)+x^{2}\left(x^{2}+4 x+4\right)=16\left(x^{2}+2 x+1\right)
$$

which simplifies to $x^{4}+3 x^{3}-5 x^{2}-14 x-6=\left(x^{2}-x-3\right)\left(x^{2}+4 x-2\right)=0$. Immediately we obtain the four values of x, and the corresponding values of y are obtained by substitution.
10. All three sides of a right triangle are integers. Prove that the area of the triangle:
(a) is also an integer;
(b) is divisible by 3 ;
(c) is even.

Solution: Let the three sides be a, b and c, with $a^{2}+b^{2}=c^{2}$. The area is $\frac{1}{2} a b$. (a) This will be an integer if one of a, b is even. Suppose a, b are both odd. Then $a=2 h+1, b=2 k+1$, where $h, k \in \mathbb{Z}$. Thus $a^{2}+b^{2}=(2 h+1)^{2}+(2 k+1)^{2}=4\left(h^{2}+k^{2}+h+k\right)+2=c^{2}$. But this is impossible, since the square of any integer leaves a remainder of either 0 or 1 when divided by 4 .
(b) Each integer is of one of the three forms $3 k, 3 k+1$ and $3 k+2$, so the square of an integer is one of the forms $9 k^{2}, 9 k^{2}+6 k+1$, and $9 k^{2}+12 k+3+1$. Thus, if neither a nor b is divisible by 3 , then a^{2} and b^{2} both leave remainder 1 when divided by 3 ; so $a^{2}+b^{2}$ leaves a remainder of 2 . But $a^{2}+b^{2}=c^{2}$, which can only leave a remainder of 0 or 1 . So at least one of a or b is divisible by 3. By part (a) one of them is even. It follows that $A=\frac{1}{2} a b$ is a multiple of 3 .
(c) If a and b are both even then we are done. So let (WLOG) $a=2 h+1$. From (a), b cannot also be odd, so $a^{2}+b^{2}=c^{2}$ is odd, so c is odd, say $c=2 k+1$. Then $b^{2}=c^{2}-a^{2}=4(k-h)(k+h+1)$. Now, $k+h+1$ and $k-h$ differ by $2 h+1$, so one of them is even and the other odd. Therefore, 8 divides b^{2}. So b is a multiple of 4 , and the result follows.

