
2010 Manitoba Mathematical Competition
SOLUTIONS

1. (a) If x2 − y2 = 39 and x+ y = 3, find x− y.

Solution: (x− y)(x+ y) = 29 = 3(x− y) = 39, so x− y = 13.

(b) Solve for x: x+
√
x = 20

Solution: (
√
x+ 5)(

√
x− 4) = 0,

√
x = 4, so x = 16.

2. (a) A performer asks the members of his audience to think of a number. They are to increase
this number by 3. The result is to be multiplied by 2. 10 is subtracted from the new
result. This latest result is divided by 2. When told the final result an audience member
obtains, he immediately tells them their original number. What one-step formula can
he use to convert the final result back into the original number?

Solution: Let x be the original number. In order, the results are x+ 3, 2x+ 6, 2x− 4, x− 2. Adding 2
to the final result, x− 2, will bring us back to the original number, x.

(b) A fair coin is tossed four times. What is the probability that it shows heads three times
and tails only once?

Solution: There are 24 = 16 possible outcomes, four of which show exactly three heads, so the required
probability is 4

16 = 1
4 .

3. (a) At what points does the circle with equation x2 + y2 = 3 intersect the parabola with
equation y = 2x2?

Solution: Eliminating y gives x2 + (2x2)2 = 3, or 4x4 + x2 − 3 = (x2 + 1)(4x2 − 3) = 0, so x2 = −1 or
3
4 , the first of which is ruled out for real x. So x = ±

√
3

2 , y = 3
2 , and the points are

(
±
√

3
2 ,

3
2

)
.

Alternate #1: Multiply the first equation by 2 and eliminate x: 2y2 + y − 6 = (2y − 3)(y + 2) = 0, so y = 3
2

or −2. Now y = 2x2 gives (x, y) =
(
±
√

3
2 ,

3
2

)
in the first case, and eliminates the second.

(b) The three lines whose equations are y = x− 7, x+ y = 3 and y = kx+ 8 pass through
a common point. Find the value of k.

Solution: The first two meet at (5,−2) (add to eliminate x, or subtract or substitute to eliminate y).
Substitute in the third: −2 = k(5) + 8. So k = −2.

Alternate #1: (Gaussian Elimination)

 1 −1 7
1 1 3
k −1 8

 ≡
 1 0 5

0 1 −2
0 0 −10− 5k

, so k = −2.



4. (a) Two semicircles, as shown, have centre O. Points A,B,O,C
and D are colinear with AB = CD = 1. The shaded area is
15π. Find the length of AD.

! " # $ %

Solution: Let r = AO. πr2 − π(r − 1)2 = 30π, so 2r − 1 = 30, so r = 31
2 , and AD = 2r = 31.

(b) Consider a circle and a square whose areas are equal and which have
the same centre of symmetry (see diagram). If the radius of the circle
is 2, find the length of AB. (Express your answer in terms of π.)

A B

Solution: If x is the side of the square, we obtain π(22) = x2, so x = 2
√
π. A vertical from the centre O

to the midpoint C of AB forms right triangle C with hypotenuse OB = 2, side OC =
√
π and

other side CB =
√

4− π. So AB = 2CB = 2
√

4− π.

5. (a) The number 64 is both a perfect square and a perfect cube. Find the next positive
integer with this property.

Solution: Since the number is both a perfect square and a perfect cube it must be a perfect 6th power;
conversely, any 6th power has this property. The first case after 26 = 64, then, is 36 = 729

(b) How many solutions of 2x+ 3y = 763 are there in positive integers x, y?

Solution: Count the odd values of y such that 3y does not exceed 763: b763
3 c = 254 There are exactly

127 odd numbers y ≤ 254, so there are 127 solutions of the required type.

6. In the diagram, AP = 1
3PC and CQ = 1

2BC. Prove that the
area of 4BPA is two-thirds times the area of 4CPQ.

!

" # $

%

Solution: Take PA as a base for 4BPA and PC as a base for 4CPQ. Dropping altitudes BB′ to PA
from B and QQ′ to PC from Q, we see that triangles 4BB′C and 4QQ′C are similar because
of opposite angles at C and because B′Q′ crosses parallel lines BB′ and QQ′. It follows that
BB′ = 2QQ′. So the area of 4BPA is 1

2(PA)(BB′) = 1
2(1

3PC)(2QQ′) = (2
3)(1

2(PC)(QQ′)),
or two-thirds the area of 4CPQ, as required.

Alternate #1: AP = 1
3PC, which implies |4BAP | = 1

3 |4BPC|. CQ = 1
2BC, which implies |4CPQ| =

1
2 |4BPC|. Combining these we obtain |4BAP | = 2

3 |4CPQ|.
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7. Five distinct integers are added in pairs, giving the ten sums

7, 11, 12, 13, 14, 18, 21, 22, 26, 28.

Find the numbers, justifying your answer with a series of deductions clearly demonstrating
that there is no other possibility.

Solution: Let the original numbers be ordered as follows: a < b < c < d < e. Each number can be paired
with 4 others. Therefore 4a+4b+4c+4d+4e = 7+11+· · ·+28 = 172, so a+b+c+d+e = 43.
The largest and smallest sums are d + e = 28 and a + b = 7 so 7 + c + 28 = 43, and c = 8.
The second largest sum is c + e = 26 so e = 26 − 8 = 18. Thus d = 28 − e = 28 − 18 = 10.
Similarly the second smallest sum is a+ c = 11, so a = 11− c = 3, and b = 7− a = 7− 3 = 4.
The numbers are (a, b, c, d, e) = (3, 4, 8, 10, 18).

Alternate #1: [first obtain as before] a = 11− c, b = c− 4, d = c+ 2, e = 26− c. [Then one of:]

(a) a+ d = 13, which is fourth on the list of sums. The third sum 12 is too small to be x+ d
or x+ e, so the only way to get this sum is b+ c = 12.

(b) The only odd sums are 7 = a+ b, 11 = a+ c, 13 = a+ d and 21. But a+ e = 37− 2c is
odd, so this must be 21.

(c) d = c + 2. The only sums that differ by 2 are (11, 13) and (12, 14) and (26, 28), which
must be (x+ c, x+ d) for x = a, b, e. So b+ c = 12.

Alternate #2: Let m of the original numbers be odd, n even. Then m+ n = 5. A sum of two integers is odd
if and only if one summand is even the other odd, so mn = 4, the number of odd sums. Solving
gives (m,n) = (1, 4) or (4, 1). Let a < b < c < d be the four numbers of common parity, and x
be the remaining one. The odd sums give (a, b, c, d) = (7−x, 11−x, 13−x, 21−x). Further, ten
sums add to 4(x+a+b+c+d) = 172, so x+(7−x)+(11−x)+(13−x)+(21−x) = 52−3x = 43.
So x = 3 and the original numbers are 4, 8, 9, 10, 18.

8. A line with slope 1 meets the parabola y = x2 at A and B. If the length of segment AB is 3
what is the equation of that line?

Solution: Let the points of intersection be (a, a2), (b, b2), a < b. The slope of the line is therefore
b2−a2

b−a = a+ b = 1. The square of the distance between the points is

(b− a)2 + (b2 − a2)2 = (b− a)2 + ((a+ b)(b− a))2 = (b− a)2 + 1 · (b− a)2 = 2(b− a)2 = 9,

so b − a = ± 3√
2

. Since a < b, b − a = 3√
2

. Adding a + b = 1 we obtain b = 1
2 + 3

2
√

2
. So

b2 = 11
8 + 3

2
√

2
. In point-slope form the line is y − b2 = (1)(x − b), or y −

(
11
8 + 3

2
√

2

)
=

x−
(

1
2 + 3

2
√

2

)
, which simplifies to y = x+ 7

8 .

Alternate #1: Let the line be y = x+ k. The points of intersection, A and B, will have x-coordinates which
are solutions to x2 = x + k. Rewrite this as x2 − x − k = 0. From the quadratic formula

we see that the two roots of ax2 + bx + c differ by

√
b2 − 4ac
a

. Applying this result to our

quadratic, we see that the x-coordinates of A and B differ by
√

1 + 4k. Since AB has slope 1,
the y-coordinates differ by the same amount. Since AB = 3, we can apply Pythagoras to get(√

1 + 4k
)2 +

(√
1 + 4k

)2 = 2(1 + 4k) = 9. Solve to get k = 7
8 , so the line is y = x+ 7

8 .
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9. Solve for x and y:

x+ y + xy + 2 = 0

x2 + y2 + x2y2 − 16 = 0

Solution: x+ y = −(xy + 2), so x2 + 2xy + y2 = x2y2 + 4xy + 4. Use the second equation to eliminate
x2 + y2:

(16− x2y2) + 2xy = x2y2 + 4xy + 4

2x2y2 + 2xy − 12 = 0

x2y2 + xy − 6 = 0
(xy + 3)(xy − 2) = 0

So xy = −3 or xy = 2.

If xy = −3 the first equation gives 0 = x+y−1 = x− 3
x −1, so x2−x−3 = 0, so x = 1±

√
13

2 ,

and y = 1 − x = 1∓
√

13
2 . If xy = 2, We similarly obtain x + y + 4 = 0 = x + 2

x + 4 = 0, so

x2 + 4x+ 2 = 0, x = −2±
√

2 while y = −4− x = −2∓
√

2.

There are, therefore, four solutions:
(

1±
√

13
2 , 1∓

√
13

2

)
,
(
−2±

√
2,−2∓

√
2
)

Alternate #1: Let s = x + y, p = xy. Then x2 + y2 = s2 − 2p, and the equations become s + p + 2 = 0,
s2−2p+p2−16 = 0. Eliminate p to obtain 2s2 +6s+9 = 17; x2 +3s−4 = (s+4)(s−1) = 0,
so (s, p) = (1,−3) or (−4, 2). Then x and y are roots of t2 − t − 3 = 0 or t2 + 4t − 2 = 0,
yielding the same solutions.

Alternate #2: The first relation can be written y(1 + x) = −x− 2. Squaring gives y2(1 + x)2 = x2 + 4x+ 4.
Multiplying the second relation by (1 + x)2 and substituting gives

x2(x2 + 2x+ 1) + (x2 + 4x+ 4) + x2(x2 + 4x+ 4) = 16(x2 + 2x+ 1),

which simplifies to x4 + 3x3 − 5x2 − 14x − 6 = (x2 − x − 3)(x2 + 4x − 2) = 0. Immediately
we obtain the four values of x, and the corresponding values of y are obtained by substitution.

10. All three sides of a right triangle are integers. Prove that the area of the triangle:

(a) is also an integer;
(b) is divisible by 3;
(c) is even.

Solution: Let the three sides be a, b and c, with a2 + b2 = c2. The area is 1
2ab. (a) This will be an integer

if one of a, b is even. Suppose a, b are both odd. Then a = 2h+ 1, b = 2k+ 1, where h, k ∈ Z.
Thus a2 + b2 = (2h+ 1)2 + (2k + 1)2 = 4(h2 + k2 + h+ k) + 2 = c2. But this is impossible,
since the square of any integer leaves a remainder of either 0 or 1 when divided by 4.
(b) Each integer is of one of the three forms 3k, 3k+ 1 and 3k+ 2, so the square of an integer
is one of the forms 9k2, 9k2 + 6k+ 1, and 9k2 + 12k+ 3 + 1. Thus, if neither a nor b is divisible
by 3, then a2 and b2 both leave remainder 1 when divided by 3; so a2 + b2 leaves a remainder
of 2. But a2 + b2 = c2, which can only leave a remainder of 0 or 1. So at least one of a or b is
divisible by 3. By part (a) one of them is even. It follows that A = 1

2ab is a multiple of 3.
(c) If a and b are both even then we are done. So let (WLOG) a = 2h+1. From (a), b cannot also
be odd, so a2+b2 = c2 is odd, so c is odd, say c = 2k+1. Then b2 = c2−a2 = 4(k−h)(k+h+1).
Now, k+h+ 1 and k−h differ by 2h+ 1, so one of them is even and the other odd. Therefore,
8 divides b2. So b is a multiple of 4, and the result follows.
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