2008 MANITOBA MATHEMATICAL COMPETITION
 SOLUTIONS

1. (a) Solve the equation $x+\frac{6}{x+1}=4$.
(b) Solve the equation $x^{5}+36 x=13 x^{3}$.

Solution: (a) Multiply both sides by $x+1$:

$$
\begin{aligned}
x(x+1)+6 & =4(x+1), \quad x \neq-1 \\
x^{2}-3 x+2 & =(x-1)(x-2)=0 .
\end{aligned}
$$

Thus $x=1,2$ (both validated by substituting into original equation).
(b) Gather terms on left, simplify and factor:

$$
x^{5}-13 x^{3}+36 x=x\left(x^{4}-13 x^{2}+36\right)=x\left(x^{2}-4\right)\left(x^{2}-9\right)=0
$$

Thus $x=0, \pm 2, \pm 3$ (solutions validated by substituting into original equation)
Note: In both parts the validation step is unnecessary because the solution is extracted from a relation clearly equivalent to the original. ($\ln (\mathrm{a}), x=-1$ is not a possible solution.)
2. (a) Find the real numbers a and b if 2 and 3 are roots of $x^{3}+a x^{2}+b x+6=0$.
(b) In this problem A and B are the two points at which the graph of the equation $x^{2}+y^{2}=8$ meets the graph of the equation $y=|x|$. What is the length of the segment $A B$?

Solution: (a) Substitute 2 and 3 into the equation:

$$
\begin{aligned}
8+4 a+2 b+6 & =0 \\
27+9 a+3 b+6 & =0 .
\end{aligned}
$$

Simplify:

$$
\begin{array}{r}
2 a+b=-7 \\
3 a+b=-11 . \tag{2}
\end{array}
$$

Subtract (2)-(1) to obtain $a=-4$. Substituting into (1) gives $(a, b)=(-4,1)$.
Alternate: (a) The product of the roots is -6 so the third root is -1 . Thus the polynomial is $(x-2)(x-3)(x+1)=x^{3}-4 x^{2}+x+6$, and $(a, b)=(-4,1)$.
(b) By the second condition $y^{2}=x^{2}$, so $2 x^{2}=8 ; x= \pm 2, y=2$. The points A and B are $(-2,2)$ and $(2,2)$, so the length of segment $A B$ is $2-(-2)=4$.
3. (a) Find an equation of the circle passing through the origin and the points with coordinates $(10,0)$ and $(0,8)$.
(b) Find an equation of the line tangent to the circle with equation $(x-2)^{2}+(y+1)^{2}=25$ at the point with coordinates $(5,3)$.

Solution: (a) Since $A(0,0), B(10,0)$ and $C(0,8)$ are vertices of a right triangle the center of the circle is the midpoint, $D(5,4)$, of the hypotenuse $B C$ and its radius is $|D C|=\sqrt{41}$. The required equation is therefore $(x-5)^{2}+(y-4)^{2}=41$.
(b) The slope of the radius from the center $(2,-1)$ to the point of tangency $(5,3)$ is $\frac{3+1}{5-2}=\frac{4}{3}$; the slope of the tangent line is thus $-\left(\frac{4}{3}\right)^{-1}=-\frac{3}{4}$. The required equation, in point-slope form, is therefore $y-3=-\frac{3}{4}(x-5)$.

Alternate answers: (b) Slope-intercept form: $y=-\frac{3}{4} x+\frac{27}{4}$ Standard form: $3 x+4 y=27$.
4. (a) In this problem c and d are real numbers. The point on the graph of the equation $y=$ $x^{2}+c x+d$ which is nearest to the x-axis is $(-2,5)$. find the values of c and d.
(b) Car A is travelling due west at a constant speed of $50 \mathrm{~km} / \mathrm{hr}$. Car B is travelling due east at a constant speed of $60 \mathrm{~km} / \mathrm{hr}$. At 1:00 p.m. car A is 40 km due north of car B. At 2:00 p.m. what is the distance between the two cars (as the crow flies)?

Solution: (a) The equation is that of a vertically oriented parabola, and may be rewritten

$$
y=\left(x+\frac{c}{2}\right)^{2}+d-\frac{c^{2}}{4}
$$

The point nearest the axis is clearly the vertex, so $\left(-\frac{c}{2}, d-\frac{c^{2}}{4}\right)=(-2,5)$. The two corresponding equations immediately yield $(c, d)=(4,9)$.
(b) In a standard coordinate system with the usual orientation, miles for units and B at the origin at 1:00 p.m, the coordinates of the cars at 2:00 p.m. are $A(-50,40)$ and $B(60,0)$. From the distance formula (or Pythagoras: hypotenuse of a right triangle with sides 40 and 110) the required distance is $\sqrt{40^{2}+(50+60)^{2}}=10 \sqrt{137} \mathrm{~km}$.
(Approximate value $\approx 117.047 \mathrm{~km}$. - not required.)
5. A fenced property has the shape of a rhombus, as in the figure. The length of each side of the rhombus is 20 m . A dog outside the property is tethered to one corner of the rhombus as shown in the diagram. If the dog's leash is 30 m long, how large an area can the dog cover?

Solution: Sketching the boundary one obtains that the region described consists of $\frac{2}{3}$ of a circle of radius $30 m$ and $\frac{2}{3}$ of another circle radius $10 m$ (in two sectors each subtending 120°). Thus the total area is $\frac{2 \pi \cdot 30^{2}}{3}+\frac{2 \pi \cdot 10^{2}}{3}=\frac{2000 \pi}{3} \mathrm{~m}^{2}$.
6. A race track is built with two straight parallel sides and semicircles at the ends (as in the figure). The parallel sides are 100 m long and $\frac{100}{\pi} \mathrm{~m}$ apart. Runner Alpha at position A starts running clockwise around the track at $2 \mathrm{~m} / \mathrm{sec}$. At this precise moment a second runner Beta enters the track at position B which is 100 m from position A, running at $5 \mathrm{~m} / \mathrm{sec}$. If Beta wants to meet Alpha as soon as possible, should he run clockwise or counterclockwise around the track to achieve his goal?

Solution: The semicircles together equal the circumference of a circle of radius $\frac{50}{\pi}$, or 100 m . Running clockwise: the distance to cover is 100 m at an effective speed of $5-2=3 \mathrm{~m} / \mathrm{sec}$, which will take $\frac{100}{3}=\frac{200}{6}$ sec. Running counterclockwise: the distance to cover is $100+100=200$ m at an effective speed of $5+2=7 \mathrm{~m} / \mathrm{sec}$, which will take $\frac{200}{7}<\frac{200}{6}$ sec. Beta should run counterclockwise to achieve his goal.
7. For what values of x does $\frac{1}{x+1}+\frac{1}{2 x}>1$ hold?

Solution: Let $f(x)=\frac{1}{x+1}+\frac{1}{2 x}-1=\frac{-2 x^{2}+x+1}{2 x(x+1)}=\frac{(2 x+1)(1-x)}{2 x(x+1)}$. Sign analysis:

interval:	$(-\infty,-1)$	$\left(-1,-\frac{1}{2}\right)$	$\left(-\frac{1}{2}, 0\right)$	$(0,1)$	$(1, \infty)$
$2 x+1$	-	-	+	+	+
$1-x$	+	+	+	+	-
$2 x$	-	-	-	+	+
$x+1$	-	+	+	+	+
$f(x)$	-	+	-	+	-

The inequality holds where $f(x)>0$-that is, for $-1<x<-\frac{1}{2}$ and $0<x<1$.
Alternate analysis: $f(-2)<0$ and the value of f changes sign at $-1,-\frac{1}{2}, 0,1$ (because these are poles/roots of odd degree); the solution is immediate.
8. In this problem x, y and z are real numbers. Find all possible values of a if:

$$
a=\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|} .
$$

Solution: Each term is ± 1, according as the variable involved is >0 or <0. Since the variables are independent, the possible sums are any number of the form $a=p+q+r$, where $p, q, r \in\{ \pm 1\}$. That is, $a \in\{-3,-1,1,3\}$.
9. Prove that, if $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$.

Solution: Form the polynomial with roots $a, b, c: p(x)=x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c$. Directly, we have

$$
\begin{aligned}
p(a)+p(b)+p(c) & =a^{3}+b^{3}+c^{3}-(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+(a b+a c+b c)(a+b+c)-3 a b c \\
& =a^{3}+b^{3}+c^{3}-3 a b c=0+0+0=0
\end{aligned}
$$

and the conclusion follows immediately.

Alternate \#1: Cube $a+b+c$:

$$
\begin{aligned}
0 & =(a+b+c)^{3} \\
& =a^{3}+b^{3}+c^{3}+3 b a^{2}+3 c a^{2}+3 a b^{2}+3 c b^{2}+3 a c^{2}+3 b c^{2}+6 a b c \\
& =a^{3}+b^{3}+c^{3}+3 a b(a+b)+3 a c(a+c)+3 b c(b+c)+6 a b c \\
& =a^{3}+b^{3}+c^{3}-3 a b(c)-3 a c(b)-3 b c(a)+6 a b c=a^{3}+b^{3}+c^{3}-3 a b c,
\end{aligned}
$$

and the result follows immediately.

Alternate \#2: $c=-(a+b)$, so

$$
\begin{aligned}
a^{3}+b^{3}+c^{3} & =a^{3}+b^{3}-(a+b)^{3} \\
& =(a+b)\left(a^{2}-a b+b^{2}-(a+b)^{2}\right) \\
& =-c(-3 a b)=3 a b c
\end{aligned}
$$

and the result follows immediately.
10. In the diagram $\triangle A B C$ is isosceles with $A B=A C$. Prove that if $L P=P M$, then $L B=C M$.

Solution: Add point D on $B C$ so that $L D \| A C$. Then $\angle B D L=\angle P C A, \angle L D P=180-\angle B D L=$ $180-\angle P C A=\angle P C M$, and $\angle C P M=\angle D P L$, so $\triangle D L P \cong \triangle C M P$, by SAA. Further, $\triangle B D L$ is isosceles with base $B D$, so $L B=L D=C M$, as required.

Alternate solution: As in the first solution, $\angle B P L=\angle C P M$, while $\angle P B A$ and $\angle P C M$ are supplementary. Since supplementary angles have the same sine, by the sine law we have

$$
\frac{|L B|}{\sin \angle B P L}=\frac{|L P|}{\sin \angle P B A}=\frac{|P M|}{\sin \angle P C A}=\frac{|P M|}{\sin \angle P C M}=\frac{|C M|}{\angle C P M}=\frac{|C M|}{\sin \angle B P L},
$$

and the result follows immediately.

