Manitoba Mathematical Competition QUESTIONS

1. (a) The average of x and y is 3 . What is the value of z if $3 x-z=z-3 y$?
(b) If real numbers a and b satisfy both $a-b=3$ and $a b=2$, what is the value of $\frac{1}{a}-\frac{1}{b}$?
2. (a) Find the area bounded by the x-axis, the y-axis and the line $5 x+4 y=20$.
(b) A circle has diameter $A B$, where A is the point $(3,5)$ and B is the point $(5,9)$. A line through the origin divides this circle into two regions of equal area. Find the slope of that line.
3. (a) Solve for x : $\sqrt{3 \sqrt{3}}=3^{x}$.
(b) Solve the equation $x^{5}-5 x^{3}+4 x=0$.
4. (a) An isosceles trapezoid has parallel sides of length 4 and 10, as in the diagram. Find its area.

(b) In $\triangle A B C, D$ is the midpoint of $A B$ and E is the midpoint of $A C$. If $\triangle A D E$ has an area of 4 , what is the area of trapezoid DECB?

5. (a) Given that numbers x, y and z satisfy the equations

$$
x+2 y+3 z=2008 \text { and } 3 x+2 y+z=8002,
$$

what is the value of $x+y+z$?
(b) Solve the equation $\left(x^{2}-3 x+2\right)^{2}+\left(x^{2}-4 x+3\right)^{2}+\left(x^{2}-5 x+4\right)^{2}=0$.
6. Find the sum of the digits of the number $10^{100}-10^{8}-3$.
7. A traveller at A wishes to reach B. To get there he must walk six blocks, travelling only on the streets shown in the diagram. How many possible routes are there?

8. Solve for x, y and z :

$$
\begin{aligned}
x+y+z & =4 \\
x-y+z & =0 \\
x^{2}+y^{2}+z^{2} & =14
\end{aligned}
$$

9. A, B and C are points on a circle of radius 1 such that $A B=\sqrt{2}$ and $\angle A B C=60^{\circ}$. Find $A C$.
10. 2009 points are chosen on the line $A B$ all lying outside the segment $A B$. Prove that the sum of the distances from these points to the point A is not equal to the sum of their distances to point B.
