2008 MANITOBA MATHEMATICAL COMPETITION QUESTIONS

1. (a) Solve the equation $x+\frac{6}{x+1}=4$.
(b) Solve the equation $x^{5}+36 x=13 x^{3}$.
2. (a) Find the real numbers a and b if 2 and 3 are roots of $x^{3}+a x^{2}+b x+6=0$.
(b) In this problem A and B are the two points at which the graph of the equation $x^{2}+y^{2}=8$ meets the graph of the equation $y=|x|$. What is the length of the segment $A B$?
3. (a) Find an equation of the circle passing through the origin and the points with coordinates $(10,0)$ and $(0,8)$.
(b) Find an equation of the line tangent to the circle with equation $(x-2)^{2}+(y+1)^{2}=25$ at the point with coordinates $(5,3)$.
4. (a) In this problem c and d are real numbers. The point on the graph of the equation $y=$ $x^{2}+c x+d$ which is nearest to the x-axis is $(-2,5)$. find the values of c and d.
(b) Car A is travelling due west at a constant speed of $50 \mathrm{~km} / \mathrm{hr}$. Car B is travelling due east at a constant speed of $60 \mathrm{~km} / \mathrm{hr}$. At 1:00 p.m. car A is 40 km due north of car B. At 2:00 p.m. what is the distance between the two cars (as the crow flies)?
5. A fenced property has the shape of a rhombus, as in the figure. The length of each side of the rhombus is 20 m . A dog outside the property is tethered to one corner of the rhombus as shown in the diagram. If the dog's leash is 30 m long, how large an area can the dog cover?

6. A race track is built with two straight parallel sides and semicircles at the ends (as in the figure). The parallel sides are 100 m long and $\frac{100}{\pi} \mathrm{~m}$ apart. Runner Alpha at position A starts running
clockwise around the track at $2 \mathrm{~m} / \mathrm{sec}$. At this precise moment a second runner Beta enters the track at position B which is 100 m from position A, running at $5 \mathrm{~m} / \mathrm{sec}$. If Beta wants to meet Alpha as soon as possible, should he run clockwise or counterclockwise around the track to achieve his goal?

7. For what values of x does $\frac{1}{x+1}+\frac{1}{2 x}>1$ hold?
8. In this problem x, y and z are real numbers. Find all possible values of a if:

$$
a=\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|} .
$$

9. Prove that, if $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$.
10. In the diagram $\triangle A B C$ is isosceles with $A B=A C$. Prove that if $L P=P M$, then $L B=C M$.

