

2021 MANITOBA MATHEMATICAL CONTEST

Manitoba Association of
Mathematics Teachers

UNIVERSITY
OF MANITOBA

For students in grade 12
9:00 AM – 11:00 AM
Tuesday, February 23, 2021

Sponsored by:

The Winnipeg Actuaries' Club

The Manitoba Association of Mathematics Teachers

The Canadian Mathematical Society

The University of Manitoba

Canadian
Mathematical
Society

Questions are found on both sides of this sheet. Answer as many as possible, but you are not expected to answer them all. **CALCULATORS ARE NOT PERMITTED**. Numerical answers by themselves, without explanation, will not receive full credit.

1. (a) What is the probability that a randomly chosen number between 1 and 50 inclusive will have a 4 as a digit?
(b) Let $X = |(-100) \cdot (-99) \cdots (99) \cdot (100)|$ (the absolute value of the product of all the integers from -100 to 100), and let $Y = (-100)^2 + (-99)^2 + \cdots + 99^2 + 100^2$. Which number is larger, X or Y ? (mention a reason).
2. Find the area enclosed by the graph of
 - $x^2 + y^2 = 9$
 - $|x| + |y| = 3$
3. (a) If y is 2 more than x , and
$$z = \frac{\frac{y}{x} + \frac{x}{y} + 2}{\frac{y}{x} - \frac{x}{y}}$$
then how much more than x is z ?
(b) Solve for x :
$$\frac{x^3 + x - 2}{x - 1} = 5$$
4. (a) Apollo runs in a race with 10 runners where 5 distinct trophies (1st place, 2nd place etc.) are given to the top 5 winners, in how many different ways can the prizes be given if there are no ties, and Apollo must be one of the top 3 winners?
(b) If n is a positive integer and $2n + 1$ is a perfect square, show that $n + 1$ is the sum of two consecutive perfect squares.

5. Solve the equation

$$\sqrt{x} + 3\sqrt[6]{x} = 4\sqrt[3]{x}.$$

6. Consider the set of numbers x satisfying $0 \leq x \leq 1$. Two numbers are randomly chosen from this interval. What is the probability that they differ by less than 0.2?

7. A wheel with radius 2 meters rolls around the outside of a regular convex heptagon* of side length 3 meters. Determine the length of the path traced out by the centre of the wheel.

***regular heptagon**: a 7-sided polygon with equal sides and angles.

8. $\square ABCD$ is a square with sides of length 2. At each vertex a quarter circle of radius 2 is drawn as shown. Find the area of the intersection, X , of the four semicircles.

9. On each side of a convex* quadrilateral with area Q a square is constructed. Segments are added between near vertices of neighbouring squares, creating a figure consisting of Q , surrounded by four squares, alternating in cyclic order with four triangles of areas A , B , C and D (see diagram). Prove that $A + C = B + D = Q$.

***convex**: R is a convex region if any line segment whose endpoints are contained in R is entirely contained in R .

10. Find all ordered triples of polynomials $p(x), q(x), r(x)$ so that the following conditions hold:

- $p(x)q(x)r(x) = (1 + x + x^2 + x^3 + x^4 + x^5)^3$

- $p(1) = q(1) = r(1)$

- $\deg(p) \leq \deg(q) \leq \deg(r)$

($\deg(f)$ denotes the degree of polynomial $f(x)$)