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Integer and Fractional Parts

For a real =, we denote by |x] the largest integer not exceeding x (floor function, or integer
part). Note that |—0.3] = —1. Also, let (z) = z — |z| be the fractional part of z. We always
have (x) € [0,1).

Problems from NCS/MAA team competition:

1. (2010-1) An integer n is drawn at random from the first 2010 positive integers. What is the
probability that |logsn] is a multiple of 37
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4. (2001-4) Find a positive number r such that (r) + <7> =1.
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5. (2007-4) Evaluate / (x% 4 22 — 3)dx.
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6. (2002-6) Find all integers n such that [v1]| + [V2] + | V3] 4+ --- 4+ |¢/n] = 2n.
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7. (2000-7) Find a closed form expression for f(n Z
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8. (2011-7) For each positive integer n, let a, = |(n + v19)? 4+ 2n + +/99]. Show that a,, is
never the square of an integer.
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9. (2011-9) Let n be a positive integer which is not a perfect square. Prove that (v/n)+ o < 1.
n

10. (2004-9) Let n be an integer, n > 3, and let z be a real number such that (z) = (z%) = (z").
Prove that = is an integer.

Problems from PUTNAM:

11. (2005-B1) Find a nonzero polynomial P(z,y) such that P(|a|,[2a|) = 0 for all real
numbers a.

12. (2001-B3) For any positive integer n, let {n} denote the closest integer to /n. Evaluate
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13. (1998-B4) Find necessary and sufficient conditions on positive integers m and n so that
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14. (1997-B1) Let {z} denote the distance between the real number = and the nearest integer.
For each positive integer n, evaluate
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(Here min(a, b) denotes the minimum of a and b.)



