

Mathematical Modeling of the Effects of Mutation on the Immune System

Troy P.T. Teo

umteop@cc.umanitoba.ca

Dept. of Mathematics. University of Manitoba. Canada

Advisors: Julien Arino & Stéphanie Portet

1. Introduction

Goal : develop a mathematical model to study the interactions b/w immune system, a target population (cancer cells or virus infection) & a mutative target

Process :

2. Immune System Model Hypotheses

Populations:

- Target cells (T): infected (or tumor) cells surrounded by antigens
- Effector cells (E): immune system generates cells for fighting cells with specific antigen.
- Mutant cells (M): infected cells that have undergone genetic changes (mutations)

Assumptions:

- cell population modeling
- E cells - saturated growth, T & M cells -exponential growth
- non specific response of immune system
- different antigenity for target & mutant
 - different stimulation of immune system by target & mutant
 - different immune response on target & mutant
- predator-prey type interactions b/w target-mutant & immune system

3. Mathematical Model

3D ODE Model for target-effector-mutant interactions

$$\begin{aligned} \frac{dT}{dt} &= r_T T - k_T ET & \text{target cells} & \text{proliferation} & \text{immune killing} \\ \frac{dM}{dt} &= r_M M + \gamma T - k_M EM & \text{mutant cells} & \text{proliferation} & \text{mutation} & \text{immune killing} \\ \frac{dE}{dt} &= \frac{\beta E}{\sigma_E + E} - dE + \frac{\rho ME}{\sigma_E + E} + \frac{\alpha TE}{k_T} & \text{effector cells} & \text{proliferation} & \text{death} & \text{stimulation by mutant M} & \text{stimulation by target T} \end{aligned}$$

r_T, r_M = reproduction rate for target T & mutant M respectively

k_T = contact rate between target T & effector E

k_M = contact rate between mutant M & effector E

γ = mutation rate

β, d = self generation & death rate of effector E respectively

α = stimulation of effector E by target / tumor T

ρ = stimulation of effector E by mutant M

σ = critical threshold for cooperative & autocatalytic process

5. Computational Analysis

(I) Verification of Equilibrium Stability Conditions

(II) Effect of Difference b/w Target & Mutant Fitnesses

Fitness factor of immune E cells : $\frac{\beta - d\sigma_E}{d}$

Fitness factor of target T cells : $\frac{r_T}{k_T}$

Fitness factor of mutant M cells : $\frac{r_M}{k_M}$

	$\frac{r_T}{k_T}$	$\frac{r_M}{k_M}$	$\frac{\beta - d\sigma_E}{d}$	$\frac{\beta - d\sigma_E - r_M}{d - k_M}$	$\frac{r_M - r_T}{k_M - k_T}$	$(k_M \sigma_E + r_M) - (k_T \sigma_E + r_T)$
$\frac{r_M}{k_M} > \frac{r_T}{k_T}$	1	4	-3	-7 (< 0)	3 (> 0)	(met existence cond. of (T_3, M_3, E_3))
$\frac{r_M}{k_M} < \frac{r_T}{k_T}$	4	1	-3	-4 (< 0)	-3 (< 0)	(met stability cond. of (T_4, M_4, E_4))

Case1: mutant 'fitter' than target

- mutant pop. higher than target
- target pop. \rightarrow zero eventually (i.e. target-free eventually)

Case2: target 'fitter' than mutant

- target pop. higher than mutant
- approaches equilibrium 4 (i.e. target & mutant both exist)

6. Applications & Biological Implications

(I) Treatment and Strength of Infection

To study the effect of treatment and/or different strengths of infection

- Treatment yields a set of parameter values for T, M & E populations
- Model can be used to predict the response of the populations to the treatment

- Different strength/stages of infection yields different initial conditions for T & M
- Model can be used to predict the response of the populations

- Two trajectories correspond to infections of different strength started with initial conditions $(T, E) = (T_1, 0.1)$ and $(T_2, 0.1)$. Strength of $T_2 > T_1$.
- As T increases, E increases correspondingly to combat infection.

- Complete extermination of T & M is impossible. Targets, mutants & effector cells coexist.

Example of diseases with mutation: **HIV**

(II) Immune Memory of Effector Cell

To study the effect of immunological memory (acquired immune or vaccination)

- Vaccination induces a higher initial immune response

- Immune response has less variations when fighting infection

- Correspondingly, fluctuation of infection is better controlled.

(III) Mutative retrovirus therapy for cancer treatment

To study the effect of introducing an engineered mutant cell (retrovirus) for treatment (eg. Retrovirus gene therapy to combat cancer cells)

Future Work

- Validation of model with clinical data