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Abstract
We are interested in nonnegative nontrivial solutions of
—Auy = uP in
U U in €, (1)
u = 0 on 0,

where 1 < p and Q a bounded smooth domain in RY with 3 < N <
9. We show that given a nonnegative integer M there is some large
p(M, Q) such that the only nonnegative solution u, of Morse index at
most M, is u = 0.
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1 Introduction and results

We are interested in the non-existence of positive classical solutions of

—Au = u? in 2,
{ u = 0 on 0, (2)



where p > 1 and ) is a bounded smooth domain in RY where N > 3.
Define the critical exponent p, = % and note that it is related to the

critical Sobolev imbedding exponent 2* := ]3—]_\72 =ps+ 1. For 1 < p < ps one

has that Hg () is compactly imbedded in LP**(€2) and hence one can show

the existence of a positive minimizer of

' Jo |VulPdx
min —.
ueHg (2)\{0} ([, |ulp+idz) 7

This positive minimizer is a positive solution of (2), see for instance the book
[18]. For p > p, H}(Q) is no longer compactly imbedded in LPT*(€2) and so to
find positive solutions of (2) one needs to take other approachs. For p > p, the
well known Pohozaev identity [15] shows there are no positive solutions of (2)
provided € is star shaped. For general domains in the critical /supercritical
case, p > ps, the existence versus nonexistence of positive solutions of (2) is
a very delicate question; see [2, 8, 7, 6, 5, 9, 14, 12, 13, 16, 17].

The question we address is a nonexistence result of positive solutions
whose Morse index satisfies a certain bound. Before we state our result we
define the Morse index of a smooth solution of (2).

Definition 1. Suppose u is a nonnegative smooth solution of (2). Define
the linear operator L,(¢) := —A¢ — puP~'¢ on H}(Q). We define the Morse
index of u, written M 1(u), to be the number of negative eigenvalues, counting
multiplicity, of L.,.

We will also need to discuss the Morse index of a solution defined on the
full space.

Definition 2. Given a solution v of —Av = f(v) in RY define the associated

energy
1

10)i=3 [ IVoP = Fepi.

We define the Morse index of v to be the supremum over the dimensions of
the subspaces X C C°(RYN) such that I(1)) < 0 for all ¢p € X\{0}.

These two notions are intimately connected and on a bounded domain
the definitions are equivalent. Before stating our result we mention two more
works. The first is [11]. In this work the author obtains many Liouville results
related to solutions which are stable outside a compact set. In particular, after



a blow up argument, the author obtains a regularity result for (2). In the
case of dimensions relevant to us (3 < N < 10) and % < p < o0 it is shown
that a sequence of smooth solutions {u,,}., of (2) is uniformly bounded if
and only if their Morse indices are uniformly bounded.

We now state our result.

Theorem 1. Let Q) denote any smooth bounded domain in RY with3 < N <
9. Suppose M 1is some positive integer. Then there is some large exponent
p = p(M,Q) such that the only nonnegative solution of (2) for p > p(M, )
with MI(u) < M isu=0.

Proof. Suppose the theorem is not true and hence there is some p,, — o
and positive smooth solutions u,, > 0 of (2) with p = p,, and we can
also suppose that the MI(u,,) is bounded by a uniform constant M. Let
0 < ty = maxqu, = un(x,) and set T,, = ;L;. Define r,, > 0 by
2 1

T = -1 .
m pmtfnm

We first show that r,, — 0. Towards a contradiction we suppose that
there is a subsequence such that r,, is bounded away from zero. Then there
is some C such that p,,t?»~! < C. Now we re-write (2) as

Ly (tum) = —=Aup(z) — e (z)um(z) =0 Q U, =0 o8,
where ¢,,(7) := u, ()P~ But note that
C
lemllzoe = llum | = the ™t < P

and since p,, — oo we see that for sufficiently large m that L,, satisfies the
maximum principle. Hence, for sufficiently large m, we have u,, = 0 which
gives us the desired contradiction and hence r,, — 0. For the convenience
of the reader we give a proof of the above claim regarding the maximum
principle. Define u(L,,) to be the first eigenvalue of L,, on H}(Q) and let
pu(—A) denote the first eigenvalue of —A on H}(Q). Let ¢ € H(Q)) with
||| L2(2) = 1. Then we have

C
[ Ent@ods = [ (u-2) = n)dn = (ut-0)- ).
Q Q Pm
and hence we see that p(L,,) is positive for sufficiently large m and hence

L,, satisfies a maximum principle.



We now define the quantity 6,, := §(z,,) := dist(x,,, 02) > 0. By passing
to a subsequence we can assume that one of the following holds:

1. &= 5y €[0,00), or

Tm

2. Im _y

Tm

Case 1. Note here that p,, 02t — 72 € [0,00) and so §2,tPm~1 — 0.
Define the rescaled functions

U (T A+ O @) — U (T4,
a PnTn

W (T) r€Q, = {reRY 2, +6,.0 € Q}.

Then w,,, satisfies

(3)

—Aw,, = 4 (14 w,)™ inQ,,
W, = -—1 on 08,

and -1 < w,, < 0 in Q,, with w,,(0) = 0. We are now interested in
the limiting behaviour of €2,,. Firstly note that since {2 is smooth that €2,
converges to some shifted half space (which is not the case if Q is only,
say, a Lipschitz domain). After a rotation of coordinates one sees that
QO — H = {z € RY : 2y > —1}. Passing to the limit in (3) we ob-
tain some w with —1 <w <0 in H with Aw=01in H and w = —1 on 0H
and w(0) = 0. This contradicts the strong maximum principle. See [10] and
3].

Case 2. Define the rescaled functions

U (T T ®) — U (T4
— T

U () r€Q, = {reRY 2, +r,zcQ}.

Note that v,, satisfies
A — (14 wm@) . 0
V() + = Dgm(x)  In Qp, ()
Um = —Pm on 0f),,.

Note that v,,(0) = 0 and —p,, < v, <0 in Q,,. Note that the bounds on v,,
show that 0 < g,,(z) < 1 for z € Q,,. In addition note that Q,, — RY and
by passing to a subsequence we can assume (), are nested. We now define
Wy := =V, > 0in Q,, and so —Aw,, = —g,, in Q,,, with w,,,(0) = 0. For any

4



0 < R < oo consider kg to be the smallest integer such that B CC (2.
Then consider w,, for m > kg restricted to €,. Then by the Harnack
inequality there is some C' = C(R, dist(Bgr, 0€%,)) (but independent of m)
such that

SUD W < Clélwam + Cllgmllzy @y, = Cllgmllyay,),

since w,,(0) = 0. Noting that g,, is bounded by 1 we see that for all 0 < R <
oo there is some Cr such that SUpg, Wn < Cgr for m > kg. Returning to
v, we see that for all m > kr we have infg, (v,,) > —Cpg. Using this bound
and a diagonal argument we can pass to the limit to find some v < 0 with
v(0) = 0 and

—Av =¢’ in RY. (5)

We now discuss the Morse index of v, and v. Suppose the Morse index
of v,, is n. Then there exists n strictly negative eigenvalues, A1, Ag, ..., A,
and associated eigenfunctions (), associated with the linearized operator
associated with (4), ie. (Yr(z), \g) satisfy

_A¢k(x) == (1 + %;Sc)>pm_1 1/1k($) + Ak¢k(x) in Qm, (6)
v, = 0 on 0Q,,.

Now define ¢y (x) = ¢ (*2=) for z € Q. Then ¢y(z) satisfies

{—A@(m) = Pt (@) 0 (2) + 2 op(x) im0,

or = 0 on 01, (M)

for 1 <k < n. Hence we can conclude that the Morse index of u,, is at least
n and by hypothesis we have n < M. So we have the Morse index of v,, is
bounded by M.

Now we suppose that X C C°(R") a n dimensional linear subspace such
that I(¢) < 0 for all ¢» € X\{0} where

10)= [ 1Vef - e,

and we suppose that {¢; : 1 <k < n} forms a basis for X. Denote I(¢}) :=
—op < 0. Let mq be sufficiently large such that the support of every element



of X is contained in €2, for all m > my. Let 1 < k <n and m > mgy. Then
we have

L) = / IVl — e midda
= [ v - et
Qmyg
- / Vf? — eP2da
Qmyg
+/ (" —e’™) ¢,§dx
Qmg

= —o+ / (eV — e ) apid.
Qmyg

Using the convergence of v,, — v we see that for sufficiently large m that
I, (¢Yx) < 0 for all 1 < k < n. From this we can conclude the Morse index
of v, is at least n and hence n < M. This shows that the Morse index of
v, which satisfies (5), is at most M. But in [4] it was shown there are no
solutions of —Av = ¢¥ in R¥ which are stable outside a compact provided
3 < N < 9. In particular this shows there are no solutions of finite Morse
index, and hence we have the desired contradiction.

O
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