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Abstract

We are interested in nonnegative nontrivial solutions of{
−∆u = up in Ω,

u = 0 on ∂Ω,
(1)

where 1 < p and Ω a bounded smooth domain in RN with 3 ≤ N ≤
9. We show that given a nonnegative integer M there is some large
p(M,Ω) such that the only nonnegative solution u, of Morse index at
most M , is u = 0.
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1 Introduction and results

We are interested in the non-existence of positive classical solutions of{
−∆u = up in Ω,

u = 0 on ∂Ω,
(2)
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where p > 1 and Ω is a bounded smooth domain in RN where N ≥ 3.
Define the critical exponent ps = N+2

N−2
and note that it is related to the

critical Sobolev imbedding exponent 2∗ := 2N
N−2

= ps + 1. For 1 < p < ps one
has that H1

0 (Ω) is compactly imbedded in Lp+1(Ω) and hence one can show
the existence of a positive minimizer of

min
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|p+1dx

) 2
p+1

.

This positive minimizer is a positive solution of (2), see for instance the book
[18]. For p ≥ ps H

1
0 (Ω) is no longer compactly imbedded in Lp+1(Ω) and so to

find positive solutions of (2) one needs to take other approachs. For p ≥ ps the
well known Pohozaev identity [15] shows there are no positive solutions of (2)
provided Ω is star shaped. For general domains in the critical/supercritical
case, p ≥ ps, the existence versus nonexistence of positive solutions of (2) is
a very delicate question; see [2, 8, 7, 6, 5, 9, 14, 12, 13, 16, 17].

The question we address is a nonexistence result of positive solutions
whose Morse index satisfies a certain bound. Before we state our result we
define the Morse index of a smooth solution of (2).

Definition 1. Suppose u is a nonnegative smooth solution of (2). Define
the linear operator Lu(φ) := −∆φ− pup−1φ on H1

0 (Ω). We define the Morse
index of u, written MI(u), to be the number of negative eigenvalues, counting
multiplicity, of Lu.

We will also need to discuss the Morse index of a solution defined on the
full space.

Definition 2. Given a solution v of −∆v = f(v) in RN define the associated
energy

I(ψ) :=
1

2

∫
RN

|∇ψ|2 − f ′(v)ψ2dx.

We define the Morse index of v to be the supremum over the dimensions of
the subspaces X ⊂ C∞c (RN) such that I(ψ) < 0 for all ψ ∈ X\{0}.

These two notions are intimately connected and on a bounded domain
the definitions are equivalent. Before stating our result we mention two more
works. The first is [11]. In this work the author obtains many Liouville results
related to solutions which are stable outside a compact set. In particular, after
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a blow up argument, the author obtains a regularity result for (2). In the
case of dimensions relevant to us (3 ≤ N ≤ 10) and N+2

N−2
< p <∞ it is shown

that a sequence of smooth solutions {um}m of (2) is uniformly bounded if
and only if their Morse indices are uniformly bounded.

We now state our result.

Theorem 1. Let Ω denote any smooth bounded domain in RN with 3 ≤ N ≤
9. Suppose M is some positive integer. Then there is some large exponent
p = p(M,Ω) such that the only nonnegative solution of (2) for p ≥ p(M,Ω)
with MI(u) ≤M is u = 0.

Proof. Suppose the theorem is not true and hence there is some pm → ∞
and positive smooth solutions um > 0 of (2) with p = pm and we can
also suppose that the MI(um) is bounded by a uniform constant M . Let
0 < tm := maxΩ um = um(xm) and set Tm := tm

pm
. Define rm > 0 by

r2
m := 1

pmt
pm−1
m

.

We first show that rm → 0. Towards a contradiction we suppose that
there is a subsequence such that rm is bounded away from zero. Then there
is some C such that pmt

pm−1
m ≤ C. Now we re-write (2) as

Lm(um) := −∆um(x)− cm(x)um(x) = 0 Ω um = 0 ∂Ω,

where cm(x) := um(x)pm−1. But note that

‖cm‖L∞ = ‖um‖pm−1
L∞ = tpm−1

m ≤ C

pm
,

and since pm → ∞ we see that for sufficiently large m that Lm satisfies the
maximum principle. Hence, for sufficiently large m, we have um = 0 which
gives us the desired contradiction and hence rm → 0. For the convenience
of the reader we give a proof of the above claim regarding the maximum
principle. Define µ(Lm) to be the first eigenvalue of Lm on H1

0 (Ω) and let
µ(−∆) denote the first eigenvalue of −∆ on H1

0 (Ω). Let φ ∈ H1
0 (Ω) with

‖φ‖L2(Ω) = 1. Then we have∫
Ω

Lm(φ)φdx ≥
∫

Ω

φ2 (µ(−∆)− cm(x)) dx ≥
(
µ(−∆)− C

pm

)
,

and hence we see that µ(Lm) is positive for sufficiently large m and hence
Lm satisfies a maximum principle.
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We now define the quantity δm := δ(xm) := dist(xm, ∂Ω) > 0. By passing
to a subsequence we can assume that one of the following holds:

1. δm
rm
→ γ ∈ [0,∞), or

2. δm
rm
→∞.

Case 1. Note here that pmδ
2
mt

pm−1
m → γ2 ∈ [0,∞) and so δ2

mt
pm−1
m → 0.

Define the rescaled functions

wm(x) :=
um(xm + δmx)− um(xm)

pmTm
x ∈ Ωm := {x ∈ RN : xm+δmx ∈ Ω}.

Then wm satisfies{
−∆wm = δ2

mt
pm−1
m (1 + wm)pm in Ωm,

wm = −1 on ∂Ωm,
(3)

and −1 ≤ wm ≤ 0 in Ωm with wm(0) = 0. We are now interested in
the limiting behaviour of Ωm. Firstly note that since Ω is smooth that Ωm

converges to some shifted half space (which is not the case if Ω is only,
say, a Lipschitz domain). After a rotation of coordinates one sees that
Ωm → H := {x ∈ RN : xN > −1}. Passing to the limit in (3) we ob-
tain some w with −1 ≤ w ≤ 0 in H with ∆w = 0 in H and w = −1 on ∂H
and w(0) = 0. This contradicts the strong maximum principle. See [10] and
[3].

Case 2. Define the rescaled functions

vm(x) :=
um(xm + rmx)− um(xm)

Tm
x ∈ Ωm := {x ∈ RN : xm+rmx ∈ Ω}.

Note that vm satisfies{
−∆vm(x) =

(
1 + vm(x)

pm

)pm
=: gm(x) in Ωm,

vm = −pm on ∂Ωm.
(4)

Note that vm(0) = 0 and −pm ≤ vm ≤ 0 in Ωm. Note that the bounds on vm
show that 0 ≤ gm(x) ≤ 1 for x ∈ Ωm. In addition note that Ωm → RN and
by passing to a subsequence we can assume Ωm are nested. We now define
wm := −vm ≥ 0 in Ωm and so −∆wm = −gm in Ωm with wm(0) = 0. For any
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0 < R < ∞ consider kR to be the smallest integer such that BR ⊂⊂ ΩkR .
Then consider wm for m ≥ kR restricted to ΩkR . Then by the Harnack
inequality there is some C = C(R, dist(BR, ∂ΩkR)) (but independent of m)
such that

sup
BR

wm ≤ C inf
BR

wm + C‖gm‖LN (ΩkR
) = C‖gm‖LN (ΩkR

),

since wm(0) = 0. Noting that gm is bounded by 1 we see that for all 0 < R <
∞ there is some CR such that supBR

wm ≤ CR for m ≥ kR. Returning to
vm we see that for all m ≥ kR we have infBR

(vm) ≥ −CR. Using this bound
and a diagonal argument we can pass to the limit to find some v ≤ 0 with
v(0) = 0 and

−∆v = ev in RN . (5)

We now discuss the Morse index of vm and v. Suppose the Morse index
of vm is n. Then there exists n strictly negative eigenvalues, λ1, λ2, ..., λn
and associated eigenfunctions ψk(x), associated with the linearized operator
associated with (4), ie. (ψk(x), λk) satisfy

{
−∆ψk(x) =

(
1 + vm(x)

pm

)pm−1

ψk(x) + λkψk(x) in Ωm,

ψk = 0 on ∂Ωm.
(6)

Now define φk(x) = ψk(
x−xm
rm

) for x ∈ Ω. Then φk(x) satisfies{
−∆φk(x) = pmum(x)pm−1φk(x) + λk

r2m
φk(x) in Ω,

φk = 0 on ∂Ω,
(7)

for 1 ≤ k ≤ n. Hence we can conclude that the Morse index of um is at least
n and by hypothesis we have n ≤ M . So we have the Morse index of vm is
bounded by M .

Now we suppose that X ⊂ C∞c (RN) a n dimensional linear subspace such
that I(ψ) < 0 for all ψ ∈ X\{0} where

I(ψ) :=

∫
RN

|∇ψ|2 − evψ2dx,

and we suppose that {ψk : 1 ≤ k ≤ n} forms a basis for X. Denote I(ψk) :=
−σk < 0. Let m0 be sufficiently large such that the support of every element
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of X is contained in Ωm for all m ≥ m0. Let 1 ≤ k ≤ n and m ≥ m0. Then
we have

Im(ψk) :=

∫
Ωm

|∇ψk|2 − evmψ2
kdx

=

∫
Ωm0

|∇ψk|2 − evmψ2
kdx

=

∫
Ωm0

|∇ψk|2 − evψ2
kdx

+

∫
Ωm0

(ev − evm)ψ2
kdx

= −σk +

∫
Ωm0

(ev − evm)ψ2
kdx.

Using the convergence of vm → v we see that for sufficiently large m that
Im(ψk) < 0 for all 1 ≤ k ≤ n. From this we can conclude the Morse index
of vm is at least n and hence n ≤ M . This shows that the Morse index of
v, which satisfies (5), is at most M . But in [4] it was shown there are no
solutions of −∆v = ev in RN which are stable outside a compact provided
3 ≤ N ≤ 9. In particular this shows there are no solutions of finite Morse
index, and hence we have the desired contradiction.
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