
Math7460 Homework 4

November 21, 2019

If you do question 1 you can skip question 2.

QUESTION 1. (Optional analysis question) Let H denote a real Hilbert space with inner product given
by (x, y). In this question we prove the Riezs representation theorem. Recall it says, for F ∈ H∗ there is a
unique x ∈ H such that

〈F, y〉 = (x, y) ∀y ∈ H.

You will need the following weak compactness result. Given {xn}n ⊂ H (bounded sequence) then there
is some subsequence {xnk

}k and x ∈ H such that xnk
⇀ x in H (this notation is weak convergence in H).

Set E(x) := ‖x‖2
2 − 〈F, x〉.

PARTt (i). Let {xn}n denote a minimizing sequence for E; ie. E(xn) → infH E. Show the sequence
is bounded and hence there is a subsequence xnk

and x such that xnk
⇀ x in H.

PARTt (ii). Show that a norm is weakly lower semi continuous on a Hilbert space; ie. show if xm ⇀ x
in H that ‖x‖ ≤ lim infm ‖xm‖ (you will need to use a duality proof). Show the same result holds if we
replace the norm with ‖ · ‖2.

PARTt (iii). Using the previous parts show that E obtains its infimum over H.

PART (iv). Show the minimzer from part (iii) is exactly the x from teh statement of Riesz Rep. The-
orem.

PART (v). The following result isn’t really needed for anything... but it might be useful. Suppose E is
as above and xm ⇀ x in H and E(xm)→ infv∈H E(v). Show that in fact one has xm → x in H.

PART (vi). Now we prove the result from part (v) but instead of the explicit E lets take T : H → R to
be a convex smooth mapping with the additional assumption that for all x ∈ H there is some εx > 0 such
that

T (y) ≥ T (x) + 〈T ′(x), y − x〉+ εx‖y − x‖,

for all y ∈ H. If you want you can replace the term 〈T ′(x), y − x〉 with (zx, y − x) where zx ∈ H and this is
the inner product. Show that if xm ⇀ x in H and T (xm)→ infH T then we have xm → x in H.
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QUESTION 2. Let f = f(x) denote a nice function on Ω and define

E(u) :=

∫
Ω

(∆u)2dx−
∫

Ω

fudx.

PART (i). Define
A := {u ∈ C4(Ω) : u = ∂νu = 0 on ∂Ω}.

Show if there is some u ∈ A such that E(u) = infv∈AE(v) then u solves some pde and find this pde.

PART (ii). Define
A := {u ∈ C4(Ω) : u = 0 on ∂Ω}.

Show if there is some u ∈ A such that E(u) = infv∈AE(v) then u solves some pde and find this pde.

For question 2 and 3. Usefull to use the Green’s indentity∫
Ω

{(w∆v)− v∆w)} dx =

∫
∂Ω

{w∂νv − v∂νw} dσ(x),

for w, v ∈ C2(Ω).

QUESTION 3. Let f, g be nice funtions defined on Ω and ∂Ω (respectively) and define

E(u) :=
1

2

∫
Ω

|∇u|2dx−
∫

Ω

fudx−
∫
∂Ω

gu.

Suppose there is some u ∈ A := C2(Ω) such that E(u) = infv∈AE(v). What pde does u satisfy?

Question 4. Suppose u is a smooth solution of ∆u = 0 in RN+ with ∂νu = 0 on ∂RN+ . Further assume there
is some 1 < σ < 2 and C > 0 such that |u(x)| ≤ C|x|σ on RN+ . Show u = 0.

Question 5. Let Ω denote a bounded domain in RN . Consider a solution u = u(x, t) of

ut −∆u = f(x) (x, t) ∈ Ω× (0,∞),
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with u(x, 0) = φ(x) in Ω (assume φ = 0 near ∂Ω and φ nice) with u = 0 on ∂Ω × (0,∞). Let −∆v(x) =
f(x) ≥ 0 in Ω with v = 0 on ∂Ω (with v > 0). Show u(x, t)→ v(x) in some sense as t→∞.

Hint. Consider w(x, t) := u(x, t) − v(x) and see what equation w satisfies. Then try and find a subso-
lution and supersolution of the equation that w satisfies (and where both the subsolution and supersolution
converge to zero as t→∞.) Then you can conclude that w does the same.

There are a couple of ways you can try and build a sub/supersolution. You could try something with
−∆φ1(x) = λ1φ1(x) in Ω with φ1 = 0 on ∂Ω and where φ1 > 0 (and maybe normalize such that supΩ φ1 = 1.
Or maybe you can try and build it up from ψ(x) where −∆ψ(x) = 1 in Ω with ψ = 0 on ∂Ω. (note for both
φ1, ψ as defined above you might need to make assumptions on their behaviour near ∂Ω. Similarly you might
need to make assumptions on v(x) near ∂Ω. Note all of them satisfy Hopf’s lemma; ie. minx∈∂Ω ∂νH(x) < 0
(here H is any of φ1, ψ, v).

Lax-Milgrim Theorem...not a question. here we prove a generalization of the Riesz rep theorem; namely
the ‘Lax-Milgrim Theorem’. Let H denote a real Hilbert space with norm and inner product ‖ · ‖ and (·, ·).
Let B denote a bilinear functional on H such that:
(i) there is some β > 0 such that |B(x, y)| ≤ β‖x‖‖y‖ for all x, y ∈ H, (continuity)
(ii) there is some α > 0 such that α‖x‖2 ≤ B(x, x) for all x ∈ H, (co-erviceness).

Then give F ∈ H∗ there is a unique x ∈ H such that

B(x, y) = 〈F, y〉 ∀y ∈ H.

If B is an inner product on H then this is just Riesz Representation theorem. So you can view this theorem
as a form of Riesz for problems without the needed symmetry. The proof we will use will be a ’continuation
argument’ (this is probably not the standard proof). The idea is to connect something we know about to
something we don’t.
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Linear algebra version. You don’t need to do anything here; this is just to give the idea of the proof
with a simpler case. Let A ∈ RN×N such that there is some α > 0 such that (Ax) · x ≥ α|x|2 for all x.
Goal. Our goal is to solve Ax = b; of course the above condition implies A is invertible and hence there is no
issue; but lets pretend we don’t know this theory. Lets decompose A into a symmetric and skew symmetric
piece

A =
A+AT

2
+
A−AT

2
=: D + E.

Note that (Dx) · x ≥ α|x|2. Recall in class we can solve Dx = b by minimizing

x 7→ (Dx) · x
2

− b · x,

and with the above conditiions on D we can easily minimize this function. So we now want to connect the
symmetric problem with the original; so to do this define

At := D + tE,

and set
A := {t ∈ [0, 1] : ∀b ∈ RN∃x ∈ RN s.t. Atx = b}.

We know 0 ∈ A and we want to show that A is open and closed and hence A = [0, 1] (here we don’t need
to use the topological result...we can prove directly with last point argument.)

A is closed. let tm ∈ A and tm → t. Let b ∈ RN so there is some xm such that Atmxm = b. Now get
bounds on xm and then pass to a limit.

A is open. Let t0 ∈ A and we want to show that for ε (of the correct sign if t0 is an endpoint) that
t = t0 + ε ∈ A. Let b ∈ RN and let At0x0 = b. Now look for a solution of At0+εx = b of the form x = x0 + z
(so z is the unkown now). Then we see x is a solution exactly when

At0z = −εEx0 − εEz.

To solve this (using a method that extends easily to the infinite dimensinal case) we solve this using a fixed
point argument. Given z let ẑ solve

At0 ẑ = −εEx0 − εEz.

This defines a mapping T : RN → RN by T (z) = ẑ. So to solve the problem we want to show that T has a
fixed point; to do this one can apply the Banach Fixed point theorem.

PART (i) Try and prove the Lax Milgrim theorem using the above outlined approach.
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