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a b s t r a c t

In this work we consider the existence of positive solutions to various equations of
the form {

−∆u(x) = (1 + g(|x|, u))u(x)p in BR,
u = 0 on ∂BR,

where BR is the open ball of radius R in RN centered at the origin and p = N+2
N−2 .

We will generally assume g is nonnegative. Our approach will be to utilize some
dynamical systems approaches.
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1. Introduction

In this article we are interested in examining the existence of positive solutions of{
−∆u(x) = (1 + g(x))u(x)p in BR,

u = 0 on ∂BR,
(1)

where BR is the open ball of radius R centered at the origin in RN (where N ≥ 3) and where p = N+2
N−2 .

In this work we will only consider the case of g radial and continuous. We first consider the subcritical case
1 < p < N+2

N−2 . In this case a standard variational approach easily yields a nonzero H1
0 (BR) solution and

then one can apply elliptic regularity theory to show that the solution is in fact as smooth as g allows. In
the case of p = N+2

N−2 the direct variational approach no longer works since one loses the compactness of the
needed imbedding.

1.0.1. The Hénon equation
If one replaces 1 + g(x) with |x|α in (1) then one obtains the well known and extensively studied Hénon

equation given by {
−∆u = |x|αup in Ω ,

u = 0 on ∂Ω .
(2)
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A classical Pohozaev argument shows that there is no positive classical solution of (2) provided that Ω is a
smooth bounded star shaped domain in RN with p ≥ N+2+2α

N−2 =: pα(N). This suggests that one may hope
to prove the existence of a positive classical solution of (2) in the case where 1 < p < pα(N), and indeed
one has the following result:

Theorem A (Ni [15]). Suppose N ≥ 3, 0 < α, Ω = B1 and 1 < p < pα(N). Then there exists a positive
classical radial solution of (2).

Proof. The idea of the proof is to show that H1
0,rad(B1) := {u ∈ H1

0 (B1) : u is radial} is compactly
imbedded in the weighted space Lp+1(B1, |x|αdx) for 1 < p < pα(N). One can then perform a standard
minimization argument to obtain a positive solution of (2). □

After the work of Ni [15] the Hénon equation did not receive much attention until [18], where they
examined (2) in the case of Ω = B1. They showed, among many results, that for 1 < p < N+2

N−2 the ground
state solution is non radial provided that α > 0 is sufficiently large. Since this work there have been many
related works, see [2–4,19], which show various results regarding properties of solutions to (2) in the case
where Ω = B1. Some of these works include certain ranges of p > N+2

N−2 . We now mention the recent work [10]
where they examine (2) for general bounded domains containing the origin. They show many interesting
results, one of which is the existence of positive solutions provided p = N+2+2α

N−2 − ε where ε > 0 is small.
In addition they have another recent work [11] where they examine (2) on RN and obtain many interesting
results. We also mention the very interesting related works [12,13].

1.0.2. A generalized hénon equation
Consider replacing 1 + g(x) with h(x) in (1) to get{

−∆u(x) = h(x)u(x)p in BR,
u = 0 on ∂BR,

(3)

where h ≥ 0 is radial. In the case of h(0) = 0 one can use approaches similar to those for the Hénon equation
to obtain positive solutions of (3). We mention one result here is that if h is radial and continuous with
h(0) = 0 and p = N+2

N−2 then there is a positive solution of (3); see [21].
In this work we consider (1) in the case that g ≥ 0 and radial. Note importantly that if h(x) = 1 + g(x)

then h(0) ≥ 1 and hence we need an alternate approach. The approach we will use is a dynamical systems
approach developed by the first author in a prior work [1].

Theorem 1. Let N ≥ 3, p = N+2
N−2 and assume g is nonnegative, radial and Hölder continuous.

1. Suppose β, b > 0 and g(r) = brβ. Then for all R > 0 there is a positive solution of (1).
2. Suppose g ≥ 0 is increasing. Then for sufficiently large R there is a positive solution of (1).

Remark 1. We make a few remarks about Theorem 1. For the case of large R we can prove part 1 using
a perturbation argument of the classical Hénon result. To prove the result for all R > 0 we use a dynamical
systems approach. For part 2 we use a standard variational approach and again we need a large parameter R.

We now mention some previous related results. In [5,9] the following{
−∆u(x) = u

N+2
N−2 + k(x)f(u) in BR,

u = 0 on ∂BR,
(4)

was examined under various assumptions on k and f . In [5] the existence and nonexistence in the case
k(r) = rβ with β > 0 and f(t) = t+ is completed. In [9] the case of k(r) = rβ and f(t) = tq is considered
for 1 < q < N+2+2β

N−1 .
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In the next theorem we generalize the equation we are considering and here the proofs will fully utilize
our dynamical systems approach.

Theorem 2. Let N ≥ 3, k = 1
2 (N − 2), and α ≥ 0 and β > 0 be constant that satisfy

0 < β − αk < 2k = N − 2. (5)

Assume that g = g(r, u) > 0 is C1 for r > 0 and u > 0 and satisfies{
g(rX, r−ku) = rβ−αkg(X, u) ∀ r > 0, 0 ≤ X ≤ 1, u > 0,
|gu(r, u)| ≤ M1u−α1 ∀ 0 < r ≤ 1, 0 < u ≤ 1,

(6)

where M1 > 0 and 0 < α1 < p are constant, and gu = ∂g
∂u . Then for every b > 0 there is a positive solution of{

−∆u(x) = (1 + bg(|x|, u)) u(x)p in B1,
u = 0 on ∂B1.

(7)

In particular, this result holds for g(r, u) = rβ−αk + drβuα where d ≥ 0 is constant.

Theorem 3. Let N ≥ 3, k = 1
2 (N − 2), and α ≥ 0 and β > 0 be constant that satisfy (5). Let

N0 := ( 1
2 k2(p + 1))1/(p−1) and assume that g = g(r, u) > 0 is C1 for r > 0 and u > 0 and satisfies⎧⎪⎪⎨⎪⎪⎩

d
dr g(r, r−ku) > 0, ∀ r > 0, 0 < u ≤ N0,
g(r, r−ku) ≤ M0rβ−kα ∀ r > 0, 0 < u ≤ N0,
|gu(r, u)| ≤ M1u−α1 ∀ 0 < r ≤ 1, 0 < u ≤ 1,
g(r, r−ku) → ∞ as r → ∞ uniformly ∀u ∈ [u0, N0] and ∀ u0 ∈ (0, N0),

(8)

where M0 > 0, M1 > 0 and 0 < α1 < p are constant. Fix any 0 < γ < p − 1 and ρ > 0 small such that
β − kα < 2(k − 2ρ). Then for any sufficiently small δ > 0, there is ε0 := ε0(δ) > 0 such that for any
0 < ε < ε0 and any R satisfying

ε−1/2(k−2ρ) < R < (εδγ)−1/(β−αk), (9)

there exists a positive solution of{
−∆u(x) = (1 + εg(|x|, u)) up in BR,

u = 0 on ∂BR.
(10)

Remark 2.

1. We comment that in this paper we are considering various perturbations of −∆u = u
N+2
N−2 in B1 ⊂ RN .

The main thing we need to utilize in our approach is to perturb off a homoclinic orbit of this unperturbed
equation. So we could have generalized our results in Theorems 2 and 3 to consider perturbations of

−∆u = |x|αupα(N) in B1 ⊂ RN , u = 0 on ∂B1.

2. We would like to point out that even though our results are new we hope that our dynamical systems
approach might apply to other elliptic problems where a more classical approach is not available.

Remark 3.

1. An alternate proof of Theorem A, using a change of variables, is available. This approach is taken
from [7] (and was also independently noticed in [11]) where it was used to analyze various numerically
observed phenomena related to the extremal solution associated with equations of the form{

−∆u = λ(1 + α
2 )2|x|αf(u) in B1,

u = 0 on ∂B1.

See the appendix for details regarding this change of variables.
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2. Crucial in the proof of Theorem A is the fact that |x|α is zero at the origin. If one considers
H1

0,rad(B1) ⊂ Lp+1(B1, h(x)dx) where h is bounded away from zero and radial, one does not gain
any improved imbeddings. It is precisely this case we consider in the current work.

Remark 4. After the completion of this work we were notified of the work of Naimen–Takahashi [14]. They
examine similar equations to (1) but they use a purely variational approach to obtain positive solutions and
they also consider nonexistence of positive solutions. Their results seem quite strong and generalize the
results from Theorem 1. They do not consider as general equations as we consider in Theorems 2 and 3.

2. The classical perturbation and variational approaches for Theorem 1

Proof of Theorem 1 part 1; for large R. Here we want to find a solution of (1) for large R in the case
of g(r) = 1 + brβ . For R > 0 define uR(r) = b

1
p−1 R

2+β
p−1 u(Rr) for r < 1. Then u is a positive solution of (1)

exactly when uR is a positive solution of{
−∆uR(r) = hR(r)uR(r)p in B1,

u = 0 on ∂B1,
(11)

where hR(r) = rβ + 1
bRβ . Note for large R that hR is a small perturbation of rβ in L∞(B1). Hence provided

the radial positive solution of the Hénon equation in the case of the above β, p is nondegenerate in the
space of radial functions, then one can use a perturbation argument to obtain the desired result. One does
in fact have this radial nondegenerate condition. To see this one notes that the positive radial solution of
−∆v = vp in B1 with v = 0 on ∂B1 is nondegenerate; see [16]. One can then use the change of variables in
Remark 3 to obtain the desired result; note one does not obtain directly the nondegeneracy of the solution
in the full space H1

0 (B1) but rather just in H1
0,rad(B1). One can use arguments developed in [8,17] to obtain

the nondegeneracy on the full space for a reduced range of p; see [6] for details. The dynamical systems
approach to prove the result for all R > 0 is given in the next section. □

Proof of Theorem 1 part 2; for large R. For the proof we change notation slightly so as to agree with
the more standard notation from the Concentration Compactness Lemma II, page 42 [20]. Set h(r) = 1+g(r)
and set q := 2∗ and so we are interested in finding positive solutions of{

−∆u(r) = h(r)u(r)q−1 in BR,
u = 0 on ∂BR,

(12)

for sufficiently large R. Consider the energy

E(u) =
∫

BR
|∇u|2dx

∥u∥2
Lq(BR;hdx)

for u ∈ H1
0,rad(BR) =: X, here the Lq space in the denominator is using the measure h(x)dx. Set

T := infv∈X E(v) and let um ∈ X (which we can assume is nonnegative) such that

E(um) = T + εm

where εm ↘ 0. Let SN denote the optimal constant in the critical Sobolev imbedding. We will show that if

T <
SN

(h(0))
2
q

, (13)

then there is a positive solution of (12). By normalizing we can assume ∥um∥Lq(BR;hdx) = 1. Since h is
bounded away from zero and bounded on BR we see that um is bounded in Lq(BR) with the Euclidean
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measure. By passing to a subsequence we can assume um ⇀ u in H1
0,rad(BR) and in C

0, 1
2

loc (BR\{0}). By the
concentration compactness lemma there are constants ν(1), µ(1) ≥ 0 such that µm := |∇um|2dx → µ and
νm := |um|qdx → ν in the sense of measures where

ν = |u|qdx + ν(1)δ0, µ ≥ |∇u|2dx + µ(1)δ0

in the sense of measures and where δ0 is the Dirac mass at the origin and

SN

(
ν(1)

) 2
q ≤ µ(1).

Now note that if we can show that ν(1) = 0 then we have
∫

BR
|um|qdx →

∫
BR

|u|qdx and hence we can prove
um → u in Lq(BR). From this we can show that ∥u∥Lq(BR;hdx) = 1 and from this one can see that u is a
nonnegative nonzero minimizer of E over X and hence is a nonzero nonnegative solution of (12) and one
can then argue that u is strictly positive.

So we now assume (13) holds and ν(1) > 0 and we hope to arrive at a contradiction. Then we have (after
passing to limits)

T ≥

∫
BR

|∇u|2dx + µ(1)(∫
BR

h|u|qdx + ν(1)h(0)
) 2

q

≥

∫
BR

|∇u|2dx + SN (ν(1))
2
q

∥u∥2
Lq(BR;hdx) + h(0)

2
q (ν(1))

2
q

and this inequality is strict in the case of u ̸= 0. In the case of u = 0 this contradicts (13) and so we can
now assume u ̸= 0. Let γ > 1 such that Tγ = SN

h(0)
2
q

and we write the above as

T >

∫
BR

|∇u|2dx + SN (ν(1))
2
q

∥u∥2
Lq(BR;hdx) + h(0)

2
q (ν(1))

2
q

=: a + b

c + d

and note a
c ≥ T and b

d = γT and hence
a + b

c + d
≥ Tc + Tγd

c + d
> T,

which gives us a contradiction. So we have shown if (13) holds then we must have ν(1) = 0 and from our
earlier arguments this implies we have the needed compactness of the minimizing sequence.

We now show that we do in fact have (13). To show the dependence on R we now write TR for T . Fix
ε > 0 sufficiently small such that

(1 + ε)
q
2 h(0) < h(1).

Then there is some δ > 0 small and 0 ≤ ϕ ∈ H1
0,rad(B1) smooth, compactly supported in B1\Bδ such that∫

B1
|∇ϕ(x)|2dx(∫

B1
|ϕ(x)|qdx

) 2
q

< (1 + ε)SN .

Set ϕR(x) = ϕ(R−1x) and then note we have

TR ≤ E(ϕR) =

∫
δ<|y|<1 |∇ϕ(y)|2dy(∫

δ<|y|<1 h(Ry)|ϕ(y)|qdy
) 2

q

≤

∫
δ<|y|<1 |∇ϕ(y)|2dy

(h(δR))
2
q

(∫
δ<|y|<1 |ϕ(y)|qdy

) 2
q

≤ (1 + ε)SN

(h(δR))
2
q

,

and note this quantity is strictly less than

SN

(h(0))
2
q

{
h(1)

h(δR)

} 2
q

,

and this is strictly less than SN

(h(0))
2
q

for R > 1
δ , which completes the proof. □
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3. Dynamical systems approach

We begin by looking for positive classical solutions of (10). A radial solution u(r) = u(|x|) of (10) satisfies

u′′(r) + n − 1
r

u′(r) + [1 + εg(r, u)]u(r)p = 0, 0 < r < R, u(R) = 0, (14)

note we are omitting the condition u′(0) = 0, which we get for free provided the solution is sufficiently
regular. We make the standard change of variables

t = ln r, v(t) := rku(r), k = 2
p − 1 = 1

2(N − 2),

and yields that v is the solution of

v′′(t) − k2v(t) + [1 + εg(et, e−ktv(t))]v(t)p = 0, −∞ < t ≤ T, v(T ) = 0,

where T = ln R. We shall prove the following result.

Theorem 4. Let N ≥ 3, k = 1
2 (N − 2), and α ≥ 0 and β > 0 be constant that satisfy (5). Let

N0 := ( 1
2 k2(p + 1))1/(p−1) and assume that g = g(r, u) > 0 is C1 for r > 0 and u > 0 and satisfies

(8). The following hold.
(i) For any sufficiently small δ > 0, there is ε0 = ε0(δ) such that if 0 < ε < ε0, then for every v0 ∈ (0, δ]

the equation
v′′ − k2v + [1 + εg(et, e−ktv)]vp = 0 (15)

has a solution v = vε,v0 defined on (−∞, T ] for some T := Tε(v0) ∈ (0, ∞) satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v(0) = v0,
(v, v′)(−∞) = (0, 0),
v(T ) = 0, v(t) > 0 ∀ t < T,
v′(T0) = 0 for some T0 ∈ (0, T ),
v′ > 0 on (−∞, T0) and v′ < 0 on (T0, T ],
v(T0) < N0.

(16)

Furthermore, hε(v0) := v′
ε,v0(0) and Tε(v0) are continuous functions of v0 ∈ (0, δ].

(ii) Let 0 < γ < p − 1 and let ρ > 0 be small such that β − kα < 2(k − 2ρ). Let δ > 0 be sufficiently small.
If ε > 0 is sufficiently small, then the range of Tε over (0, δ], namely, Tε((0, δ]) := {Tε(v0) : v0 ∈ (0, δ]},
satisfies

Tε((0, δ]) ⊇
[
− 1

2(k − 2ρ) ln ε, − 1
β − kα

ln(εδγ)
]
. (17)

We need a series of lemmas to prove this theorem. In the proofs of these lemmas the energy function E(t)
of (15) plays key roles. Along any positive solution v of (15), E(t) is defined as

E(t) := v′2(t) − k2v2(t) + 2
p + 1vp+1(t), E′(t) = −2εg(et, e−ktv(t))vp(t)v′(t).

When ε = 0, Eq. (15) reduces to a Hamilton’s equation v′′ − k2v + vp = 0 and E(t) is constant along any
positive solution of it; in particular, this equation has a homoclinic orbit Γ0 (see Fig. 1) in the (v, v′) phase
plane that connects the origin (the trivial equilibrium point) and has also a continuum of closed orbit inside
Γ0 that surround the other equilibrium point (k2/p−1, 0); we also have that E(t) < 0 when (v(t), v′(t)) lying
inside Γ0 and E(t) > 0 when (v(t), v′(t)) lies outside Γ0, and the maximum value of v along Γ0 is N0. When
ε > 0 we have E′(t) < 0 whenever v(t) > 0 and v′(t) > 0 and E′(t) > 0 whenever v(t) > 0 and v′(t) < 0,
and

v′(t) = ±
√

k2v2(t) − 2
p + 1vp+1(t) + E(t).
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Fig. 1. The homoclinic orbit Γ0 of v′ = w, w′ = k2v − vp.

Lemma 1. Let δ > 0 such that δp−1 < 1
2 (p + 1)k2. Then for sufficiently small ε > 0, if

0 < v(0) ≤ δ, v′(0) > 0, E(0) > 0,

then there is T ∈ (−∞, 0) such that T > − v(0)√
E(0)

and

{
v(T ) = 0, v(t) > 0 ∀t ∈ (T, 0],
v′(t) > 0 ∀t ∈ [T, 0].

Proof. Let T0 := − v(0)√
E(0)

and T = inf
{

t ∈ (T0, 0) : v(s) > 0, v′(s) > 0, ∀ s ∈ [t, 0]
}

. It follows that
T ≥ T0. Since v′(t) > 0 for t ∈ (T, 0], we have E′(t) < 0 and E(t) > E(0) on (T, 0), and

v′(t) =
√

k2v2(t) − 1
p + 1vp+1(t) + E(t) >

√
E(t) >

√
E(0) > 0,

where we used 0 < v(t) < v(0) and 1
p+1 vp+1(t) < 1

2 k2v2(t) by the choice of δ, from which we obtain
v(T ) < v(0) +

√
E(0)T and so T > −v(0)/

√
E(0) = T0. By the definition of T and v′(T ) > 0 we conclude

v(T ) = 0 as well as the rest of the assertions of the lemma. □

Lemma 2. Let δ > 0 be small and M2 := sup0<ξ≤1 g(1, ξ). Then for sufficiently small ε > 0, if

0 < v(0) ≤ δ, v′(0) > 0, E(0) < −2M2ε

p + 1 vp+1(0),

then there is T ∈ (−∞, 0) such that{
v′(T ) = 0, v′(t) > 0 ∀ t ∈ (T, 0],
v(t) > 0, E(t) < − 2M2ε

p+1 vp+1(t), ∀ t ∈ [T, 0].

Proof. Let

T = inf
{

t < 0 : v(s) > 0, v′(s) > 0, E(s) < −2M2ε

p + 1 vp+1(s), ∀ t ≤ s < 0
}

.

W have −∞ ≤ T < 0. We claim that T > −∞. If this is not true, then we would have T = −∞, v′ > 0,
and v > 0 on (−∞, 0], and so 0 ≤ v(−∞) < δ. Since E′(t) < 0 for t < 0, it follows that E(−∞) exists with
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E(0) ≤ E(−∞) ≤ − M2ε
p+1 vp+1(−∞) and so v′(−∞) exists from the definition of E, which together with the

finiteness of v(−∞) gives v′(−∞) = 0. On the other hand, for t ∈ (T, 0),

E(t) = E(0) + 2ε

∫ 0

t

g(es, e−ksv(s))vp(s)v′(s) ds ≤ E(0) + 2M2ε

∫ 0

t

vp(s)v′(s) ds

= E(0) + 2M2ε

p + 1 [vp+1(0) − vp+1(t)] < E(0) + 2M2ε

p + 1 vp+1(0), (18)

where we used the first assumption on g in (8) to get g(es, e−ksv(s)) ≤ g(1, v(s)) ≤ M2, then sending
t → −∞ gives

E(−∞) ≤ E(0) + 2M2ε

p + 1 vp+1(0) < 0,

which together with the definition of E(−∞) < 0 and v′(−∞) = 0 yields v(−∞) > 0. Now it follows
from Eq. (15) and the smallness of δ that for t ∈ (−∞, 0), v′′(t) ≥ v(t)[k2 − (1 + εM2)vp−1(t)] >

v(−∞)[k2 − (1 + εM2)δp−1] > 0, implying v′(−∞) = −∞, a contradiction. Therefore we have T > −∞.
Note that (18) still holds for t ∈ (T, 0) and letting t → T − in (18) yields

E(T ) ≤ E(0) + 2M2ε

p + 1 [vp+1(0) − vp+1(T )] < −2M2ε

p + 1 vp+1(T ).

Thus, by the definition of T we have either v(T ) = 0 or v′(T ) = 0. Since E(T ) < 0, it follows from the
definition of E again that v′(T ) = 0 and v(T ) > 0. The rest of the assertion of the lemma follows from the
definition of T . □

Lemma 3. Let δ > 0 be sufficiently small. Then for sufficiently small ε > 0 and any v0 ∈ (0, δ], there is a
unique solution v(t) := vε,v0(t) of (15) satisfying⎧⎪⎪⎨⎪⎪⎩

v(0) = v0,

− 2M2ε
p+1 vp+1

0 ≤ E(0) < 0,

(v, v′)(−∞) = (0, 0),
v′ > 0 on (−∞, 0].

(19)

Furthermore, hε(v0) := v′
ε,v0(0) is a continuous functions of v0 ∈ (0, δ].

Proof. Fix v0 ∈ (0, δ]. For each v′
0 > 0, let v(t, v0, v′

0) be the solution of (15) with v(0, v0, v′
0) = v0 and

v′(0, v0, v′
0) = v′

0 with the left maximal interval of existence (tv′
0
, 0] where v(t, v0, v′

0) ≥ 0. Let

A(v0) =

⎧⎨⎩v′
0 > 0 : ∃ T ∈ (tv′

0
, 0) such that

⎧⎨⎩ v′(t, v0, v′
0) > 0 on [T, 0],

v(t, v0, v′
0) > 0 on (T, 0],

v(T, v0, v′
0) = 0,

⎫⎬⎭
and

B(v0) =

⎧⎨⎩v′
0 > 0 : ∃ T ∈ (tv′

0
, 0) such that

⎧⎨⎩ v(t, v0, v′
0) > 0 on [T, 0],

v′(t, v0, v′
0) > 0 on (T, 0],

v′(T, v0, v′
0) = 0.

⎫⎬⎭
It follows from Lemmas 1 and 2 that both sets A(v0) and B(v0) are not empty. Since any solution v of (15)
with v(t0) = v′(t0) = 0 implies v ≡ 0, we see that A(v0) and B(v0) are disjoint. By the connectedness of
(0, ∞), it follows that

C(v0) := (0, ∞) \ (A(v0) ∪ B(v0)) ̸= ∅

and for any v′
0 ∈ C(v0), the solution v(t, v0, v′

0) satisfies (19).
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Next we show that C(v0) is a singleton set and hε(v0) is continuous on v0 ∈ (0, δ]. Let v′
0 ∈ C(v0) and

v(t) = v(t, v0, v′
0). Since v is bounded on (−∞, 0], it satisfies the integral equation for t ≤ 0:

v(t) =
(

v0 − 1
2k

∫ 0

−∞
eksf(s, v(s))vp(s) ds

)
ekt + 1

2k

∫ 0

t

ek(t−s)f(s, v(s))vp(s) ds

+ 1
2k

∫ t

−∞
e−k(t−s)f(s, v(s))vp(s) ds, (20)

where f(t, v) := 1 + εg(et, e−ktv), and it holds

v′(0) = kv0 −
∫ 0

−∞
eksf(s, v(s))vp(s) ds. (21)

We show that
v(t) ≤ 3v0ekt ∀ t ≤ 0. (22)

To do so, we let w(t̃) := sup{v(t) : t ≤ t̃} for t̃ ≤ 0. Taking the supremum of (20) over (−∞, t̃] we have

w(t̃) ≤ v0ekt̃ + 1
2k

sup
−∞<t≤t̃

(∫ t̃

t

ek(t−s)f(s, v(s))vp(s) ds +
∫ 0

t̃

ek(t−s)f(s, v(s))vp(s) ds

)

+ 1
2k

sup
−∞<t≤t̃

∫ t

−∞
e−k(t−s)f(s, v(s))vp(s) ds.

Since f(s, v) ≤ 1 + M2ε ≤ 2 for s ≤ 0 and small ε > 0, w(t̃) is non-decreasing, v(t) ≤ w(t̃) for t ≤ t̃,∫ t̃

t

ek(t−s)f(s, v(s))vp(s) ds ≤ 2
k

δp−1w(t̃),
∫ t

−∞
e−k(t−s)f(s, v(s))vp(s) ds ≤ 2

k
δp−1w(t̃),

and ∫ 0

t̃

ek(t−s)f(s, v(s))vp(s) ds ≤ 2δp−1
∫ 0

t̃

ek(t̃−s)w(s) ds,

it follows that for t̃ ≤ 0,

w(t̃) ≤ (1 − 2
k2 δp−1)−1v0ekt̃ + (1 − 2

k2 δp−1)−1 1
k

δp−1
∫ 0

t̃

ek(t̃−s)w(s) ds

≤ 2v0ekt̃ + 2
k

δp−1
∫ 0

t̃

ek(t̃−s)w(s) ds (by taking δ small),

yielding that w(t̃)e−kt̃ ≤ 2v0 + 2
k δp−1 ∫ 0

t̃
e−ksw(s) ds, and applying the Gronwall’s inequality gives that

w(t̃)e−kt̃ ≤ 2v0e− 2
k

δp−1 t̃, hence v(t) ≤ w(t) ≤ 2v0e(k− 2
k

δp−1)t for t ≤ 0. Using this estimate and (20) we get,
for t < 0,

v(t) ≤ v0ekt + 1
k

∫ 0

t

ek(t−s)vp(s) ds + 1
k

∫ t

−∞
vp(s) ds

≤ v0ekt + (2v0)p

k
ekt

∫ 0

t

e[p(k− 2
k

δp−1)−k]s ds + (2v0)p

k

∫ t

−∞
ep(k− 2

k
δp−1)s ds

≤ v0ekt + (2v0)p

k[p(k − 2
k δp−1) − k]

ekt + (2v0)p

kp(k − 2
k δp−1)

ep(k− 2
k

δp−1)t

≤ 3v0ekt (by taking δ > 0 further smaller if needed),

which shows (22).
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Next we first prove the following: If v1 and v2 are solutions of (15) with v1(0) = v1
0 and v2(0) = v2

0 and
v′

1(0) ∈ C(v1
0) and v′

2(0) ∈ C(v2
0), then

|v1 − v2|0 := sup
t≤0

|v1(t) − v2(t)| ≤ 2|v1
0 − v2

0 |. (23)

To this end, subtracting the Eqs. (20) for v1 and v2 we have

v1(t) − v2(t) = v1
0 − v2

0 − 1
2k

∫ 0

−∞
eks[f(s, v1(s))vp

1(s) − f(s, v2(s))vp
2(s)] ds ekt

+ 1
2k

∫ 0

t

ek(t−s)[f(s, v1(s))vp
1(s) − f(s, v2(s))vp

2(s)] ds

+ 1
2k

∫ t

−∞
e−k(t−s)[f(s, v1(s))vp

1(s) − f(s, v2(s))vp
2(s)] ds. (24)

Note that, for s ≤ 0,

f(s, v1(s))vp
1(s) − f(s, v2(s))vp

2(s)

= [f(s, v1(s)) − f(s, v2(s))]vp
1(s) + f(s, v2(s))[vp

1(s) − vp
2(s)]

= ε[g(es, e−ksv1(s)) − g(es, e−ksv2(s))]vp
1(s) + f(s, v2(s))[vp

1(s) − vp
2(s)];

use the mean value theorem, v0
i ≤ δ, vi(t) ≤ 3δekt (i = 1, 2), and the third condition in (8) with p − α1 > 0

to get
|vp

1(s) − vp
2(s)| ≤ p(3δ)p−1e(p−1)ks|v1(s) − v2(s)| ≤ p(3δ)p−1e(p−1)ks|v1 − v2|0,

and

|g(es, e−ksv1(s)) − g(es, e−ksv2(s))|vp
1(s) ≤ M1[e−ksv1(s)]−α1e−ks|v1(s) − v2(s)|vp

1(s)

≤ M1e(α1−1)ks[v1(s)]p−α1 |v1(s) − v2(s)| ≤ M1(3δ)p−α1e(p−1)ks|v1 − v2|0.

Hence, for s ≤ 0,

|f(s, v1(s))vp
1(s) − f(s, v2(s))vp

2(s)|

≤ M1(3δ)p−α1εe(p−1)ks|v1 − v2|0 + 2p(3δ)p−1e(p−1)ks|v1 − v2|0
≤ p3pδp−1e(p−1)ks|v1 − v2|0 (by taking ε small),

and hence, ∫ 0

−∞
eks|f(s, v1(s))vp

1(s) − f(s, v2(s))vp
2(s)| ds

≤ p3pδp−1|v1 − v2|0
∫ 0

−∞
epks ds ≤ 3p

k
δp−1|v1 − v2|0, (25)

∫ 0

t

ek(t−s)|f(s, v1(s))vp
1(s) − f(s, v2(s))vp

2(s)| ds

≤ p3pδp−1|v1 − v2|0
∫ 0

t

ek(t−s)e(p−1)ks ds ≤ p3p

k
δp−1|v1 − v2|0,
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and ∫ t

−∞
e−k(t−s)|f(s, v1(s))vp

1(s) − f(s, v2(s))vp
2(s)| ds

≤ p3pδp−1|v1 − v2|0
∫ t

−∞
e−k(t−s)e(p−1)ks ds ≤ p3p

k
δp−1|v1 − v2|0.

Therefore, from (24)

|v1 − v2|0 ≤ |v1
0 − v2

0 | + p3p+1

2k2 δp−1|v1 − v2|0 ≤ |v1
0 − v2

0 | + 1
2 |v1 − v2|0

by taking δ small which yields (23).
Now it readily follows from (23) that for any v0 ∈ (0, δ], if v1

0 = v2
0 = v0 then |v1 − v2|0 = 0, showing that

C(v0) is a singleton set. Hence we denote the solution of (15) with v(0) = v0 and v′(0) ∈ C(v0) by vε,v0(t),
and hε(v0) := v′

ε,v0(0) is a well defined function of v0 ∈ (0, δ].
Next we show that hε(v0) is Lipschitz continuous on v0. To see this, let v1

0 , v2
0 ∈ (0, δ], then use (21) for

v1 and v2 to get the equations for v′
1(0) and v′

2(0), then subtract these equations to give

v′
1(0) − v′

2(0) = k(v1
0 − v2

0) −
∫ 0

−∞
eks[f(s, v1(s))vp

1(s) − f(s, v2(s))vp
2(s)] ds,

and then use (25) and (23) to get

|hε(v1
0) − hε(v2

0)| = |v′
1(0) − v′

2(0)| ≤
(

k + 2 · 3p

k
δp−1

)
|v1

0 − v2
0 |,

which shows that hε(v0) is Lipschitz continuous on v0. This completes the proof of the lemma. □

Lemma 4. Let δ > 0 be sufficiently small. If ε > 0 is sufficiently small, then for every v0 ∈ (0, δ], the
solution vε,v0 of (15) given in Lemma 3 has the following properties:

(i) There is tε,v0
1 ∈ (0, ∞) such that v′

ε,v0(tε,v0
1 ) = 0, v′′

ε,v0(tε,v0
1 ) < 0, and v′

ε,v0(t) > 0 for t ∈ [0, tε,v0
1 );

(ii) There is tε,v0
2 ∈ (tε,v0

1 , ∞) such that vε,v0(tε,v0
2 ) = 0 and v′

ε,v0(t) < 0 for t ∈ (tε,v0
1 , tε,v0

2 ]. Furthermore,
tε,v0
2 is continuous on v0.

(iii) For all t ∈ (−∞, tε,v0
2 ], vε,v0(t) ≤ vε,v0(tε,v0

1 ) < N0.

Proof. Let v(t) := vε,v0(t) with the maximal interval of existence (−∞, ω+). Let t1 = sup{t ∈ (0, ω+) :
v′ > 0}. For t ∈ (0, t1), since E′(t) = −2εgvp(t)v′(t) < 0, we have E(t) < E(0) < 0, so (v(t), v′(t)) lies
inside the homoclinic orbit Γ0, so v(t) is bounded. We claim that t1 < ∞. Suppose this is not true. We have
v(t) ↗ v∞ as t ↗ ∞; Now taking T > 0 sufficiently large such that for t > T , using v(t) > v(0) > 0 for
t > T , the first and fourth assumptions in (8) give

εg(et, r−ktv(t))vp(t) ≥ εg(eT , r−kT v(t))vp(0) ≥ 2k2v∞.

Hence, for t > T ,
v′′(t) = k2v(t) − vp(t) − εg(et, e−ktv(t))vp(t) < −k2v∞,

yielding v′(t) < v′(T ) − k2v∞(t − T ) < 0 for sufficiently large t, a contradiction. Hence we have t1 < ∞, and
from the definition of t1, v′(t1) = 0, and furthermore, v′′(t1) < 0, for if it is false, then we have v′′(t1) = 0
and so

v′′′(t1) =
[
−ε

d

dr
g(r, r−kv(t1))|r=et1 + εgu(et1 , e−kt1v(t1))e−kt1v′(t1)

]
vp(t1)

= −ε
d

dr
g(r, r−kv(t1))|r=et1 vp(t1) < 0,
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yielding that v′(t1) = 0 is a local maximum of v′ and v′(t) < 0 for t < t1, which is a contradiction. This
shows v′′(t1) < 0. Letting tε,v0

1 := t1 completes the proof of (i).
Next we show (ii). Let t2 := sup{t > t1 : v′(t) < 0, v(t) > 0}. We claim that t2 < ∞. If not, then we have

v(t) ↘ v∞ as t ↗ ∞ for some v∞ ≥ 0. If v∞ > 0, then taking T > t1 sufficiently large and using the similar
reasoning as above with v(t) > v∞ > 0 for t > T we have for t > T ,

εg(et, r−ktv(t))vp(t) ≥ εg(eT , r−kT v(t))vp
∞ ≥ 2k2v(t1),

so v′′(t) < k2v(t1) − 2k2v(t1) = −k2v(t1), so v′(t) < v′(T ), and so v(t) < v(T ) + V ′(T )(t − T ) → −∞ as
t → ∞, a contradiction. Hence, t2 < ∞.

By the definition of t2, we have either v′(t2) = 0 or v(t2) = 0. Assume that v′(t2) = 0. Let t0 < t1 be the
time where v(t0) = v(t2). Then we have

E(t2) − E(t0) = −2ε

∫ t2

t0

g(et, e−ktv(t))vp(t)v′(t) dt

= −2ε

∫ t1

t0

g(et, e−ktv(t))vp(t)v′(t) dt − 2ε

∫ t2

t1

g(et, e−ktv(t))vp(t)v′(t) dt

= −2ε

∫ v(t1)

v(t0)
g(et−(v), e−kt−(v)v)vp dv + 2ε

∫ v(t1)

v(t2)
g(et+(v), e−kt+(v)v)vp dv

= 2ε

∫ v(t1)

v(t0)

[
g(et+(v), e−kt+(v)v) − g(et−(v), e−kt−(v)v)

]
vp dv > 0,

which contradict to the fact that E(t2) − E(t0) = −v′(t0)2 < 0. Hence v′(t2) < 0 and v(t2) = 0. Let
tε,v0
2 := t2. Since v′

ε,v0(0) is continuous on v0 from Lemma 3 and v′
ε,v0(tε,v0

2 ) ̸= 0, it follows from the
continuous dependence of solution on initial data that tε,v0

2 is continuous on v0 ∈ (0, δ]. This shows (ii).
Finally, since E(t1) < E(−∞) = 0 and v′(t1) = 0, it follows from the definition of E that v(t1) < N0.

Since v(t1) is the unique maximum of v(t) for t < t2, (iii) follows. □

In the next two important lemmas we estimate tε,v0
2 and tε,δ

2 where v0 is defined in Lemma 5.

Lemma 5. Let δ > 0 be sufficiently small, 0 < γ < p − 1, and v0 := δ(εδγ)
k

β−αk . If ε > 0 is sufficiently
small, then tε,v0

2 for the solution vε,v0 of (15) given in Lemma 3 satisfies

tε,v0
2 > − 1

β − kα
ln(εδγ). (26)

Proof. Let v(t) := vε,v0(t) and t0 := 1
k ln δ

v0
= − 1

β−kα ln(εδγ), and T = sup{t ∈ (0, t0) : v′ > 0 on [0, t]}.
We show that T = t0. First for t ∈ [0, T ], v′(t) =

√
k2v2(t) − 2

p+1 vp+1(t) + E(t), and since E(t) < E(0) < 0,
we have v′(t) < kv(t) and so v(t) < v0ekt ≤ v0ekt0 = δ. Using the second assumption in (8) we have
εg(et, e−ktv(t)) ≤ M0εe(β−kα)t0 = M0δ−γ for t ∈ [0, T ], which together with the fact that − 2M2ε

p+1 vp+1
0 ≤

E(0) < 0 gives

0 > E(T ) = E(0) − 2ε

∫ T

0
g(es, e−ksv(s))vp(s)v′(s) ds

≥ −2M2ε

p + 1 vp+1
0 − M0δ−γ

p + 1 (vp+1(T ) − vp+1
0 )

≥ −M0δ−γ

p + 1 vp+1(T ) = −M0δ−γ

p + 1 vp−1(T )v2(T ) ≥ −M0δp+1−γv2(T ),
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hence,

v′(T ) =
√

k2v2(T ) − 2
p + 1vp+1(T ) + O(δp−1−γ)v2(T )

= v(T )
√

k2 + O(δp−1) + O(δp−1−γ) > 0,

and hence by the definition of T we have T = t0 and v(t0) < δ. By the definition of tε,v0
1 , we have

tε,v0
1 > t0 = − 1

β−kα ln(εδγ), which implies (26). This completes the proof of the lemma. □

In the following lemma we estimate tε,δ
2 . To this end, we need to study the properties of the solution vε,δ.

We show that for sufficiently small ε > 0, in the (v, v′) phase plane, (vε,δ, v′
ε,δ) lies in an ε neighborhood

of the homoclinic solution (V (t), V ′(t)) of (15) when ε = 0 with V (0) = δ and V ′(0) > 0. Note that the
following properties of V (t) are useful in the proof of Lemma 6: V (t) is defined for all t ∈ (−∞, ∞), V (t)
has a unique maximum value reached at some T1 > 0 with V ′(t) > 0 for t < T1, V ′(t) < 0 for t > T1,
V ′′(T1) < 0), and V (T1) = N0; the graph of V (t) is symmetric about t = T1 and the graph of V ′(t) is
anti-symmetric about T1; V (2T1) = V (0) = δ; E(t) ≡ 0 along V (t), and

V ′(t) =

⎧⎨⎩
√

k2V 2(t) − 2
p+1 V p+1(t) if t ≤ T1,

−
√

k2V 2(t) − 2
p+1 V p+1(t) if t > T1.

Also note that T1 → ∞ as δ → 0.

Lemma 6. Let ρ > 0 be small such that β − kα < 2(k − 2ρ) and let δ > 0 be sufficiently small. If ε > 0 is
sufficiently small, then

tε,δ
2 ≤ − 1

2(k − 2ρ) ln ε.

Proof. Let (v(t), v′(t)) := (vε,δ(t), v′
ε,δ(t)), t1 := tε,δ

1 , and t2 := tε,δ
2 , and let E(t) be evaluated along

(v(t), v′(t)) for t ∈ (−∞, t2). We proceed the proof in two steps.

Step 1. We first show: If ε > 0 is sufficiently small, then there is a constant M > 0 independent of ε such
that

|v(t) − V (t)| + |v′(t) − V ′(t)| ≤ Mε ∀ t ∈ [0, 2T1 + 1], (27)

and furthermore, letting t3 ∈ (t1, t2) such that v(t3) = v(0) = δ we have

t1 = T1 + O(ε), t3 = 2T1 + O(ε).

Now we start to prove the above claim. Since − 2M2ε
p+1 δp+1 ≤ E(0) < 0 from Lemma 3 and V ′(0) =√

k2δ2 − 2
p+1 δp+1, we have

v′(0) =
√

k2δ2 − 2
p + 1δp+1 + E(0) = V ′(0)

√
1 + E(0)

k2δ2 − 2
p+1 δp+1

= V ′(0)
√

1 + O(δp−1)ε = V ′(0)
[
1 + O(δp−1)ε

]
= V ′(0) + O(δp)ε.

It follows from the continuous dependence of solutions with respect to the initial data and parameters that,
for sufficiently small ε > 0,

|v(t) − V (t)| + |v′(t) − V ′(t)| ≤ 1 ∀ t ∈ [0, 2T1 + 1].



110 S. Ai and C. Cowan / Nonlinear Analysis 182 (2019) 97–112

Integrating Eq. (15) for both v and V over [0, t] ⊂ [0, 2T1 + 1] and then subtracting the resulting integral
equations gives

|v(t) − V (t)| + |v′(t) − V ′(t)|

≤ |v′(0) − V ′(0)| +
∫ t

0

[
|v′(s) − V ′(s)| + k2|v(s) − V (s)| + |vp(s) − V p(s)|

]
ds

+ ε

∫ t

0
|g(es, e−ksv(s))||vp(s)| ds

≤ M3ε + M4

∫ t

0

[
|v′(s) − V ′(s)| + |v(s) − V (s)|

]
ds,

where M3 = (2T1 + 1) max(s,v)∈[0,2T1+1]×[0,N0] g(es, e−ksv)Np
0 + O(δp) where we used v(t) < N0 for

t ∈ [0, 2T1+1], and M4 = k2+pNp−1
0 . Applying the Gronwall’s inequality gives (27) with M = M3eM4(2T1+1).

Next we use t1 = T1 + o(1) to show that t1 = T1 + O(ε). Since v′(t1) = 0, it follows from (27)
that Mε ≥ |v′(t1) − V ′(t1)| = |V ′(t1)| = |V ′(t1) − V ′(T1)| = |V ′′(T1) + o(1)||t1 − T1|. This shows that
t1 = T1 + O(ε).

Similarly we use t3 = 2T1 + o(1) to show that t3 = 2T1 + O(ε). Since v(t3) = δ, it follows from (27)
that Mε ≥ |v(t3) − V (t3)| = |δ − V (t3)| = |V (2T1) − V (t3)| = |V ′(2T1) + o(1)||t3 − 2T1| for some θ ∈ (0, 1).
This shows that t3 = 2T1 + O(ε). This shows the Step 1.

Step 2. Since v(t) is strictly increasing on (0, t1) and decreasing on (t1, t3), let t =: t−(v) be the inverse
function of v = v(t) for t ∈ [0, t1] and t =: t+(v) be the inverse function of v = v(t) for t ∈ [t1, t3]. It follows
that t−(v) is strictly increasing for v ∈ [δ, v̄] and t+(v) is strictly decreasing for v ∈ [δ, v(t1)], and we can
write

E(t3) − E(0) = 2ε

∫ v(t1)

δ

[
g(et+(v), e−kt+(v)v) − g(et−(v), e−kt−(v)v)

]
vp dv. (28)

We fix a number ν ∈ (0, V (T1)) such that V (T1) − ν is very small. Since v(t1) < V (T1), for sufficiently small
ε we may assume that v(t1) > ν from (27). By the mean value theorem, for given v ∈ [δ, ν],

g(et+(v), e−kt+(v)v) − g(et−(v), e−kt−(v)v) =
( d

dr
g(r, r−kv)

⏐⏐⏐
r=r̃

)
et̃
(

t+(v) − t−(v)
)

,

where for some θ1, θ2 ∈ (0, 1),

r̃ := θ1et+(v) + (1 − θ1)et−(v) ∈ [1, e2T1+1], t̃ := θ2t−(v) + (1 − θ2)t+(v) ∈ [0, 2T1 + 1],

there is also m0 > 0 such that for sufficiently small ε > 0, t+(v) − t−(v) ≥ m0 for v ∈ [δ, ν], and hence (with
et̃ > 1)

g(et+(v), e−kt+(v)v) − g(et−(v), e−kt−(v)v) ≥ m1,

where m1 :=
(

max(r,v)∈[1,e2T1+1]×∈[δ,ν]
d

dr g(r, r−kv)
)

m0. Hence from (28) we have

E(t3) − E(0) ≥ 2m1ε

∫ ν

δ

vp dv = 2m1ε

p + 1

[
νp+1 − δp+1

]
.

Using E(0) = O(δp+1)ε we have, by taking δ > 0 sufficiently small if necessary,

E(t3) ≥ ε

{
O(δp+1) + 2m1

p + 1

[
νp+1 − δp+1

]}
> mε, where m := m1

p+1 .

Finally, for t ∈ (t3, t2), since v′(t) < 0, E(t) is increasing in this interval and so E(t) ≥ E(t3) > mε and
so by choosing δ > 0 small enough and using v(t) < v(t3) = δ gives

v′(t) = −
√

k2v2(t) − 2
p + 1vp+1(t) + E(t) ≤ −

√
(k − ρ)2v2(t) + mε,
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and so

t2 − t3 =
∫ t2

t3

−v′(t)
−v′(t) dt ≤

∫ t2

t3

−v′(t)√
(k − ρ)2v2(t) + mε

dt =
∫ δ

0

dv√
(k − ρ)2v2 + mε

= 1
k − ρ

ln
(k − ρ)δ +

√
(k − ρ)2δ2 + mε√
mε

≤ 1
k − ρ

ln 3kδ√
mε

,

and so by taking ε > 0 sufficiently small

t2 ≤ t3 + 1
k − ρ

ln 3kδ√
mε

≤ 2T1 + 1 + 1
k − ρ

ln 3kδ√
mε

≤ − 1
2(k − 2ρ) ln ε.

This completes the proof of Lemma 6. □

Proof of Theorem 4. Let Tε(v0) = tε,v0
2 . The first part of Theorem 4 follows from Lemmas 3 and 4. We

now show (ii).
Since tε,v0

2 is continuous on v0 ∈ (0, δ] from Lemma 4, it follows that Tε((0, δ]) is a connected set in R
and hence an interval. Since from Lemma 5 we have Tε(v0) ≥ − 1

β−kα ln(εδγ) for v0 = (εδγ)
k

β−kα δ and from
Lemma 6 we have Tε(δ) ≤ − 1

2(k−2ρ) ln ε, it follows that (17) holds. This shows (ii) and whence Theorem 4. □

Proof of Theorem 3. It follows from Theorem 4 that for sufficiently small ε and v0 ∈ (0, δ], the solution
of vε,v0 of (15) satisfying (16) and (17). In particular, from (17) we obtain

eTε((0,δ]) ⊇
[
ε−1/2(k−2ρ), (εδγ)−1/(β−αk)

]
.

Hence, for any given any R satisfying (9), there is v0 ∈ (0, δ] such that eTε(v0) = R. Then u(x) :=
|x|−k

vε,v0(ln |x|) solves the problem

−∆u(x) = (1 + εg(|x|, u))u(x)p, |x| < R, u(x) = 0 on |x| = R.

This completes the proof of Theorem 3. □

Proof of Theorem 2. Note that g satisfies (6) implies that g satisfies (8). Let u be a solution of (10) given
in Theorem 3. Then w(x) := Rku(Rx) solves the problem

− ∆w(x) =
(

1 + εg(R|x|, R−kw(x))
)

w(x)p =
(

1 + εRβ−kαg(|x|, w(x))
)

w(x)p, |x| < 1,

w(x) = 0 on |x| = 1.

Since from (9) the range of R is [ε−1/2(k−2ρ), (εδγ)−1/(β−αk)], it follows that the range of εRβ−kα is the
interval [ε1−(β−kα)/2(k−2ρ), δ−γ ]. Note by (5) that ε1−(β−kα)/2(k−2ρ) → 0 and δ−γ → ∞ as ε → 0 and δ → 0.
Hence, for any given b > 0, we can take ε and δ sufficiently small such that εRβ−kα = b and w(x) = Rku(Rx)
is the solution of (7). This shows Theorem 2. □

Appendix

Given a radial function we define the m dimensional Laplacian by

∆mv(r) = v′′(r) + m − 1
r

v′(r).

Note this is well defined for fractional dimensions. The following theorem gives the precise change of variables
result, which has been modified for our particular nonlinearity. We remark this change of variables was
independently noticed in [11].
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Theorem B. ([7]). For any α > −2, the change of variable u(r) = (1 + α
2 )

2
p−1 ũ(r1+ α

2 ) gives a
correspondence between the radially symmetric solutions of the equation{

−∆N u = |x|αup in B,
u = 0 on ∂B,

(29)

in dimension N and those of the equation{
−∆N(α)ũ = ũp in B̃,

ũ = 0 on ∂B̃,
(30)

in – the potentially fractional – dimension N(α) = 2(N+α)
2+α .

Proof. A computation shows that

∆N u(r) + rαu(r)p = (1 + α

2 )
2p

p−1 rα
(
∆N(α)ũ(s)

⏐⏐
s=r

α
2 +1 + ũ(r α

2 +1)p
)

,

and the desired result easily follows. □
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[12] F. Gladiali, M. M. Grossi, F. Pacella, P.N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic

equations in an annulus, Calc. Var. Partial Differential Equations 40 (2011) 295–317.
[13] F. Gladiali, F. Pacella, Bifurcation and asymptotic analysis for a class of supercritical elliptic problems in an exterior

domain, Nonlinearity 24 (2011) 1575–1594.
[14] D. Naimen, F. Takahashi, A note on radial solutions to the critical Lane-Emden equation with a variable coefficient, 2018,

arxiv:180904875.
[15] W.M. Ni, A nonlinear dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J. 31 (1982) 801–807.
[16] F. Pacella, Uniqueness of positive solutions of semilinear elliptic equations and related eigenvalue problems, Milan J.

Math. 73 (2005) 221–236.
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