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Abstract

In this article we obtain positive singular solutions of

—Au = |Vul? in Q, u=00n0d%Q, 1

where Q is a small C? perturbation of the unit ball in RN . For % < p < 2 we prove that if Q is a

sufficiently small C 2 perturbation of the unit ball there exists a singular positive weak solution u of (1). In
p=2 __
the case of p > 2 we prove a similar result but now the positive weak solution  is contained in C 0. 5= (2)
=2
and yet is not in O +8(Q) for any ¢ > 0.
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1. Introduction

In this work we are interested in obtaining positive solutions of

—Au = |Vul|P in Q,

{ u=20 on 0%2, &)
where p > 1 and  is a bounded domain in RY with a smooth boundary. We first note by the
maximum principle that the only classical solution is the trivial solution u = 0; to see this re-write
the equation as —Au — b(x) - Vu = 0 where b(x) := |Vu|P~2Vu and hence if b is sufficiently
regular we can apply the maximum principle. So the only hope of finding a positive solution is
to find some sort of singular weak solution. Exactly how singular will depend on the value of the
parameter p > 1; see Example 1 for details and more discussion on this.

1.1. Background

A well studied problem is the existence versus non-existence of positive solutions of the Lane—
Emden equation given by

—Au = u? in 2,
{ u=20 on 0%2, @)

where 1 < p and 2 is a bounded domain in R¥ (where N > 3) with smooth boundary. In the

subcritical case 1 < p < M the problem is Very well understood and H (£2) solutions are

classical solutions; see [24] In the case of p > 775 there are no classical positive solutions in
the case of the domain being star-shaped; see [36] In the case of non-star-shaped domains much

less is known; see for instance [11,16-18,35]. In the case of 1 < p < NN 5 ultra weak solutions

(non-H, I solutions) can be shown to be classical solutions. For NN s <p< N—+2 one cannot use

elliptic regularlty to show ultra weak solutions are classical. In particular i m [?1] for a general
bounded domain in R" they construct singular ultra weak solutions with a prescribed singular
set. We mention that the weighted Holder spaces we use in our current work were developed in
[31], see also [34].

We now return to (2). The first point is that it is a non-variational equation and hence various
standard tools are not available anymore. The case 0 < p < 1 has been studied in [5]. Some
relevant monographs for this work include [21,25,38]. Many people have studied boundary blow
up versions of (2) where one removes the minus sign in front of the Laplacian; see for instance
[28,39]. See [1-4,6-10,19,20,22,23,26,27,37,29,30,32,33] for more results on equations similar
to (2). In particular, the interested reader is referred to P.T. Nguyen [32] for recent developments
and a bibliography of significant earlier work, where the author studies isolated singularities at O
of nonnegative solutions of the more general quasilinear equation

Au = |x|%P +|xP|Vul? in Q\ {0},
where Q c RV (N >2)is a C? bounded domain containing the origin 0, o > —2, § > —1

and p,q > 1, and provides a full classification of positive solutions vanishing on 92 and the
removability of isolated singularities.
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1.2. Our approach

Before outlining our approach we mention that our work is motivated by [15,31,34,12—14].
Some of these works deal with a full space or exterior domains; but the linear analysis is still
quite similar as compared to what we perform.

We begin by looking at the unit ball for explicit positive radial solutions.

Example 1. Let B; denote the unit ball centered at the origin in RN for N > 3. Define
a = (p — 1)(N — 1). In each of the following cases, there is a continuum family of solutions
parameterized by C; in the case of p > % the solutions are distributional solutions on the full
ball.

e (p=1)Then

1 o
u(r):C/ﬁdy, C>0.
y

r

Note that the solution is singular at the origin.
e (I<p< %)In this case, @ < 1 and

1
d -1
wm=/ = RO iy
(Cy‘x — fTay)l/(P_l) l—«o

r

The solution is singular at the origin.
e (p= %) In this case, « = 1 and

1
d
u(r) =/ Y . C=o
(Cy = (p =Dyl y)l/>=D
.
The solution is singular at the origin.
° (% < p <2)In this case, « > 1 and
: d 1
u(r) :/ ; 4 , C > I .
(E=y + Cyxl/r=D a—1

r

Define T = (2 — p)/(p — 1). For the special case C =0,

oa—1 /(p—1 1
M(”)=< ) —(r " =1.
p—1 T

A computation then shows that u is a classical solution of (2) in the case of 2 = B1\{0} and

note that u is singular at the origin. Also note that u is a suitable weak solution on the full
ball; since p > %
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e (p =2) Here o > 1. The formula for the explicit solution is the same as above. For the
special case C = 0 we have

u(r)y=—(N —=2)Inr.

N

e (p > 2) The formula for the explicit solution is the same as the case y—

o > 1. Define T = (p —2)/(p — 1). For the special case C =0,
a—1 1/(p— 1)1
u(r)= —(l—r ).
p—1

-2 __
A computation shows u is a weak solution of (2) and note also that u € C 05T (€2) but that
u does not belong in any better zero order Holder space.

< p < 2. Here

In this article we prove the existence of positive solutions of (2) on domains Q ¢ R" which
are small perturbations of By and which have the desired singular nature as suggested by the
above explicit radial examples.

We write the small perturbations of the domain as €2; where ¢ > 0 is small and where g = Bj.
So our goal is to obtain nontrivial weak solutions of

—Ayu(y) = |Vyu(y)l? in €, @
u=~0 on 982,
where €; is a perturbation of the unit ball in RY; Qo = B; and where N >3 and 7y <p<2

or p > 2. Before carrying on we state our main existence result.
Theorem 1. Suppose N > 3.

1. Suppose NN 7 < p < 2. Then for sufficiently small C 2 perturbations of the unit ball, say ;.
there exists a positive singular weak solution u of (4) whlch blows up at exactly one point x;

(near the origin) and behaves like u(x) ~ C|x — x;| = = near x;. The proof gives the exact
behavior near x;.
2. Suppose p > 2. Then for sufficiently small C? perturbations of the unit ball, say 2, there

p—2 ___
exists a positive weak solu_tion u of (4) with u € C*°(2:\{x;}) and with u € CO’;'TI (2¢). In
addition u is not in C%9(Q;) for any q > %.

We now return to the calculations before we stated our theorem. We now perform a change of
variables to reduce the problem on small perturbations of the unit ball to the unit ball; this was
taken from [15] where they examine the extremal solution of the Gelfand problem on perturba-
tions of the unit ball. Let ¢ : B — RY be a smooth map and for ¢ > 0 define

={x+ty¥(x):x € B}.

There is some small O < ¢y such that for all 0 < ¢ < fy one has tpat €2, is diffeomorphic to theNunit
ball B;. Let y =x + 1/ (x) for x € By and note there is some ¥ smooth such that x =y + ¢ (y)
for y € ;. Given u(y) defined on y € Q; or v(x) defined on x € B; we define the other via
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u(y) = v(x). A computation shows that to find positive singular (either singular in L sense in
the first range of p or singular in the Holder sense in the second range of p) solution u(y) of (4)
on €2, it is equivalent to finding a positive singular solution v(x) of

L
2

—Av — E[(U) = <Zl}?,],k=1 ijvxk [6” +t2’_1/;[,} { lk+t 3y; }) in Bl, (5)
v=20 on dBj,

where E; is the second order linear differential operator given by

Ei(v) =21 Z Ux; xy. Oy, &k +t Z Uxg By, yi ‘Z’k +1 Z Ui j xp dy, ijayz‘ &k’

i,k ik i,j.k

and 8;; =0if i # j and is 1 otherwise.
We now write the right hand side of (5) as (Ht)% and so

9 gk
Z Uy Uxy {8,/+t 81// }{Sik-l-t ali_ }
1

i,j,k=1

W)

We will be a little more precise about H; than before. Writing out H; gives (where a;; := =

N
H, = Z v%k (1 + 2tagr + 12 Zaizk)

k=1 i

N
+ Z Uy Uxy (ta]k+tak]+t Za,jalk)

J.k=1,j#k i

and note we can write H; as
Hy (v)(x) = Vo) ]? + (A1 (x) Vo)) - Vo(x) + 12 (A2(x) - Vo)) - Vo(x)

where A; (x) are some smooth bounded N x N matrices.
Assumption on range of p. For clarity of presentation we will now assume that % <p<?2.
So in particular we will be looking for a singular (in L°° sense) solution. We let w(x) denote the

=2=p)
explicit positive singular solution on the unit ball given above; so w(x) :=C), <|x| Tl — 1)

N—2-22¢
2-p p—1
=1

look for solutions of (5) of the form v(x) = w(x) 4+ ¢ (x) where ¢ is to be determined. Then note

that ¢ must satisfy

where C {,’ - = and for future reference we set 7 := %. So with this in mind we will

(H/(w+¢, %) = |Vw|? — p|[Vw|?2Vw -V + E;(w) + E;($) in By,
0 on 0By,
(6)

{ L(¢p) =
¢
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where

p—1X-Vo

L(¢) :=—A¢p + ptP~'C) )
|x|?

To simplify the calculations we will assume that H;(v, x) = [Vv|2 4+ (A1 (x)Vv) - Vv but the
exact same procedure will work for the non-simplified H;. To find a solution of (6) we will apply
the Contraction Mapping Theorem due to Banach and so towards this we define the nonlinear
mapping J;(¢) = where i satisfies

L) = (H(w+¢, %)) — |Vw|? — p|Vw|P2Vw - Ve + E,(w) + E, () in By,
v =0 on d By,

)

of course at this point its not clear this nonlinear mapping J; is well defined.

We now introduce the weighted Holder spaces we will use for the fixed point argument; these
spaces were introduced in [31], see also the monograph [34].

FixO<a<landO0<s < % define A; :={x € By : s < |x| < 2s} and for 0 < k (an integer)
define

vk _ vk
[w]kas:_zsfsup|v1w|+sk+a sup VW) = Viwl

=0 Ag X,yEAs |X—)’|°‘
We now define the norm
”w”C“f = ”u”C’“"(Bl\Bl) + sup s V[w]ka 5
s€(0, 4)

The explicit norms we will use will be

[f(x)— f()
1Flloa =11Fllcoacs s, + sup s*7" sup|f+s* sup “————" .
4 0<s<% Ay X,yEAy |x — y|
ol c2a = ¢l c2ais\5, )
1
+ sup s~ {Sup|¢>|+ssup|V¢>|+s sup|DZ¢|

O<€<4 Ay

D2 _ D2
Lyt g 102900 = D0 }
X,YEAg |x - )’|“

We put Cf;%(B_l\{O}) to be the set of functions ¢ € C>%(B;\{0}) with ¢ =0 on 3 B;. In the
end we will end up showing that J; : B, — B, (B, the closed ball centered at the origin with
radius r in Ci’%(B_l\{O})) is a contraction mapping.

Of course we will need to understand the mapping properties of the linear mapping L on these
spaces; which is the topic of the next section. Towards this end we begin with a result regarding
the mapping properties of A on these weighted spaces.
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Theorem (/34], Corollary 2.3). Let 0 <a < 1, N > 3 and let —(N — 2) < v < 0. Then there

is some C > 0 such that for all f € CO ", there is some unique ¢ € C 'p such that —A¢ = f

in By and ¢ =0 on 0 By. Moreover we have ol 20 < Cllfll o - Infact A is an isomorphism
v V=2

between the spaces.

The specific parameter ranges. As mentioned above we concentrate on the case of % <p<?2
and hence, unless otherwise stated, we now will always assume

N >3,

N_l<p<2, T:Zﬁ’ Vvi=—T. (8)

In the last section of this article we consider the case of the other range of p. We remark that
much of the linear theory becomes easier if one can take v < 0 and with |v| small; but since we
need it for an explicit value we prefer to just cover that case. Note that under these assumptions
we have v € (—(N — 2),0).

1.3. The linear theory; % <p<?2

In this section we consider the solvability of the linear equation given by

"

In particular we would hope to be able to obtain the same theory for L as one has for A:
there is some C > 0 such that for all f € C 2 there is some ¢ € C D which satisfies (9) and
¢l 2« < Cllfl 0« . One approach to obtam these estimates would be to apply the standard

v,.D v—2

(J; in B1\{0}, ©)

on 0Bj.

continuation argument to connect L to —A via,

x-V
Ly(¢):=—A¢+ypr?~icy™! Mf’,
and note Lo = —A and L; = L. So to get estimates on L one needs to get estimates on L,

independent of y. We are unable to do that directly on these spaces; to fix the problem we will
remove the first two modes on the involved function spaces.

For k > 0 we let (O, A¢) denote the k'” eigenpair of the Laplace—Beltrami operator, — Ay
on SV~1. So we have —AgO(0) = A Or(0) for § € SV~ and we assume the eigenfunc-
tions are L>(S¥~!) normalized. Now recall 1o = 0 (multiplicity zero) and A; = N — 1 (mul-
tiplicity N) and then A, = 2N. So given a function ¢ defined on B; we can write ¢ as
¢(x) = Zk 0@k (r)Or(0) forr = |x| and 6 = | i for suitably chosen ay(r)’s.

Definition 1. Let N, p, 7, v be as in (8) and define

Y =Y%, _{feCO“Z(Bl\{O}) fhasnok =0, lmodes}

X=X )= {d) € Cf:%(B_l\{O}) c¢hasnok =0, 1 modes} ,
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where by no k£ = 0, 1 modes we mean the function can be represented as Z/fiz ay(r)®r(0); note
we are abusing notation a bit here since the multiplicity of the k = 1 mode is N. Each subspace
inherits the full space’s norm.

We now come to one of our main linear results.

Proposition 1. Suppose N, p, t, v satisfy (8). Then there is some C > 0 such that for all f € Y
there is some ¢ € X which satisfies (9) and ||¢||lx < C| fly-

Lemma 1. Let N, p,t,v be asin (8)

1. Then X and Y are closed subspaces in their respective spaces.
2. A: X — Y is one to one and onto, continuous with continuous inverse.

Proof. 1. This holds under pointwise convergence.
2. Look at Corollary 2.5 [34]. Under this assumption on v and N we have A : Ci’o[‘) — CSfZ is

an isomorphism. We just need to check that that there is no interference between k = 0, 1 modes
and other modes; which is clear. O

We now consider the kernel of L, in X.

Lemma 2 (Kernel of L,, in X). Suppose N, p, T, v satisfy (8) and suppose y € [0, 1]. Suppose
¢ € X with L, (¢) =0in B1\{0}. Then ¢ =0.

Proof. Let ¢ € X with L, (¢) =01in B;\{0}. We write ¢ (x) = Z/fiz ar(r)®;(0) and then note
we have
(N—1—yp(N-2-1)) ,

" )Lk
a(r)+ p ak(r)—r—zak(r)zo O<r<l,

with a; (1) = 0 for k > 2. Since the equations are Euler we know there are solutions of the form
ai(r) = r% where « satisfies

@+ (N=2—yp(N—=2—1))a —A; =0. (10)

We now define the parameter b := b, := N —2 — yp(N — 2 — 7). Note the solutions are given
by

b VP tan y b VP

o

2 L) 2

and hence a;(r) = Ck(r"‘k+ — r% ) where we have used a(1) = 0. Note that oz,;F > 0 for k > 2.
Now note that if we have o < v = —t then we must have a; = 0 otherwise a; ¢ Cf*“. So we
need to check when one has o < —7. Note that o < —7 is equivalent to b + Vb*+8N > 2t
where we have used the fact that A, = 2/N. Assume this is not true then for some y € [0, 1] we
have /b2 + 8N < 2t — b. This gives b2+ 8N < 2t — b)z, implies b <17 — ZTN In particular
we must have
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2N
min b(y)=b(1)=N-2—-—p(N—-2—-1)<7— —.
yelo,1] T

This leads us to
2 —p
Pp—-DE+2)<Np-1--)=N@p-1)—<0,
T 2—p

a contradiction. Since Ay is increasing in k we get the desired result for all £ > 2 and hence we
see ay =0 forallk >2and hence p =0. O

We now investigate the kernel of L,, on the full space.
Lemma 3. Suppose N, p, T, v satisfy (8) and y € [0, 1]. Suppose ¥ € C*RN\{0}) satisfies

—1p,~p—1
Ay + P CTx|2x YV _o rM\j0).

We further assume that there is some C > 0 such that |y (x)| < C|x|" and ¥ has no k =0, 1
modes. Then ¥ = 0.

Proof. As before we write v (x) = Z,‘:iz ay (r)@k(e) and then ay satisfies (10) and so for each
k > 2 there is some Cy, Dy such that a;(r) = Ckr"‘k + Dyr% T0 satisfy the decay condition
we see, since a,j > 0, we must have Cy = 0. So a;(r) = Dyr% . But recall from the proof of

Lemma 2 we have o < —7 = v and hence we must have D; = 0 otherwise the solution is too
singular at the origin to belong to the required space. Hence we have ¥ =0. O

Proof of Proposition 1. Suppose N, p, t,v satisfy (8) and then recall we have A : X — Y
is an isomorphism. We would now like to show that (y,¢) — L, (¢) is a continuous lin-

ear mapping from [0, 1] x CfOD‘(Bl\{O}) — Cv 2(31\{0}) To see this we need really only

examine the gradient term and for these purposes we set L(qb)(x) = %. Note we have

\xlz ech 2l ¥ and by Lemma 6 (see section 2) V¢ € C | = Cgf‘z, and again using this lemma

Ly(¢) E ‘2 V¢ e C1 % C0 , (continuously) and

Iy @, <N |2||Cm||V¢||C1a < Cllgll e

so we have the desired continuity of the gradient term.

We now show that we can replace Cf %, (Ol 0. » with X, Y. We really only need to check that

given ¢ € X we have x‘xV|2¢ €Y.Sofix ¢ e X;so qb(x) = 72, ak(r)Or(9) and so Vo (x) - x =
r leiz a,’( (r)©x(0) and hence we have L, (¢) € Y. So we have (y, ¢) — L, (¢) is a continuous
linear operator from [0, 1] x X to Y. Also note that Lo = —A is an isomorphism. So if we can
show the appropriate bounds on L, then we’d have L : X — Y is onto with continuous inverse.

So we suppose we don’t have the required result and so there is y,, € [0, 1], f;, € ¥ and
¢m € X such that
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Ly () = Lym(¢n1)=fm in By, ¢n =00ndB
with || finlly == ”fm”COftz — 0and [[¢n | x := ll$m|l 2« = 1. So we have
_ [f(x)— f(»I
I fmllcoa =1l fmllcoa(p\p,)+ sup s27" (sup | ful + 5% sup —w | 0.
V=2 7 0<s<i Ay X,yEA; |x — y]
Also we have

1= lgmll c2e = l¢mllcracp\5,)
7

+ sup s”{sup|¢m|+ssup|V¢m|+s2sup|Dz¢m|
; As Ay

0<s<% Ay

L5 gup |D* ¢ (x) = D¢ ()] }
X,yEA; lx — y|*

We now try and obtain a contradiction and to do this we consider a few separate cases:
Case L. || ¢y, lc2eB\B,) is bounded away from zero.
i

Case IL || |l c2.4(p, \B,) —> 0 but there is some s, < zlt bounded away from zero such that
i

_ | D% (x) — D> ()]
sm”{sup|¢m|+smsup|V¢m|+s,isup|Dz¢m|+s,%,+“ sup = Y

X,yEA;, |x - )’|°‘

Ag, Ag, Ag,

is bounded away from zero.
Case III. There is some s, \ 0 such that

D2¢,,(x) — D?
s, 3 sup |dm| + sm sup [V | + S,%, sup |D2¢m| + 5,2n+°‘ sup D" fm (x) - Pm ()] — 1.
Axm Axm Axm X,yEA;m |x - yl

We begin with a result we will use numerous times. Suppose v € R and & € (0, 1) is such that
Gm,p e C g,a with ¢, € Yg‘ (recall this is the subspace of functions with no k£ =0, 1 modes in
C2%) and ¢y, — ¢ in Croc(B\{0}). Then ¢ € YE.

Case I. Let 0 < B < « (but close) and suppose we have D < v but close. Then, see [34], we have

CS’% cC Cg”g; and so we have X9 CC Xg. From this we see there is some ¢ € Xf such that

(after passing to a subsequence) ¢,, — ¢ in X f . Note that we can pass to the limit in the equation
for ¢y, to see that ¢ satisfies Ly, (¢) =0 in B\{0} with ¢ =0 on dB; here y,, — y.

Checking the details of the proof of Lemma 2 one sees that for 8, ¥ as above and close enough
to o, v we can apply the result of the lemma for the new parameters to see that ¢ = 0. From this
we see that ¢, - 0in C f’g We now again consider the equation for ¢, and note that

B = fn = ympe ™ O} s Vo BINO)

with ¢, =0 on 9 B;.
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Claim 1. We claim that for b and B chosen as above (but close enough) we have that

10X
ymprl’—lc,’; 1—2-V¢m—>0 inYs ,.

x|

Assuming this claim for now; we can then apply the linear theory for — A to see that ¢, — 0 in
Cg’%. In particular we have ¢,, — 0 in ca (Bq \B%); a contradiction.

Proof of Claim 1. First note that since ¢,, — 0 in Cg’g and so g, = # - V¢ — 0 in
CO""(B1 \B}T). Also note that for 0 < s, < 3—1 we have

s27Vsup g < Cs' "V sup |V | < C1 [l

m 2,8 —> 0.

[
Cﬁ,D

A Sm AA'm

‘We now consider the final term in the norm. First we note a scaling argument shows there is some
C=>0

Vo (x) = Vo (y)] < "l s
= m mll 2. -

x,y€Aq, lx — ¥
LetO<s, < % and x, y € A;,,. Then we have

Vo (xX) = V| | [Vén(Wlx —y|
|x] |x]2

Vo WI(yl + 1xDIy — x|
|x12[y]

lgm (X)) — gm(Y)| <

+

’

and using this we see

2-ital8n @) = gn O _ Csim™ [V () = Von Wl | Coi ™ IVgn () Ix = yI'™
" =yl T e — y|e S

Cs2 74|V, (y)]|x — y|' 7@
+ 2

m

m

N

and from this we obtain some Cy > 0 such that

2— V4 [8m (x) — gm(¥)]
Sm

= Cillgmll 26 — O,
=yl "G

which completes the proof of the Claim 1. O

Case II. There is some g > 0and 0 < C < % and some s, € [C, JT]

_ | D% (x) — D> ()]
Spa” 1 SUP | | + S SUP | V| + 57 sup | D>y | + 557 sup ’”|x G " > g
X,yE€A;, -

Sm Asm Asm

(1)



2876 A. Aghajani et al. / J. Differential Equations 264 (2018) 2865-2896

We argue exactly as in Case I to see that ¢,, — 0 in c* D But since s,, is bounded away from
zero we see the weight v does not play a role in the quantlty (11). From this we see that this
quantity in (11) goes to zero as m — oo; a contradiction.
Case III. We now consider four subcases. We assume there is some g9 > 0, s,, — O and x,,, € A,
such that one of the following holds:

Case 1. 5,,"|pm (xm)| > €0,

Case 2. Syln_v|v¢m (xm)| = o,

Case 3. 527"| D*¢pp (xm)| > &0.

Case 4. some y,, € A, such that s27V+ D2 ¢’”(‘f{”’) Dld"”(y'")l > 9.
We now consider each of these four cases. Note in all these cases we have the supremum over
Ay, is bounded above.

Case 1. Define

1
Y (x) :=Sn_1v¢m(smx)a lx| < s_v

m

and note there is some 1 < |z,,| < 2 such that |, (zm)| > €0. Set Ej := {x e RV : % < |x| <k}
for k > 2 an integer. Note that v, satisfies

p=lch=ly .y !
YmPT p X Y (x) :Siﬁvfm(smx) x| < —. (12)

Ly, (wm) = _Awm(x) + P
|x] Sm

Note that on Ej we have the right hand side of this equation converge uniformly to zero.

Using the assumption that ||¢,, || c2e =1 we get

sup s sup || <1,
O<s<% As

that gives
— 1
s dm(x) <1, 0<s < YRR |x| < 2s.
Changing the variables x — ¢x and s — §¢ in the above we get
7V pm(tx)| <8, 0<8<— " , 8 < x| <28.

Now taking ¢ = s,,, in the above inequality and using §" < ( %)” we get, forall 0 < § < ﬁ

|x|”

Wm0l = 5

for § < |x| < 26.

In particular we have this bound on E} for each fixed k for large enough m. Note also that for
each fixed k and all large m with s, < %, Y 1s uniformly bounded in c2e (Er). To see this note
that from the definition of v, we have
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IV ll oo gy = 807" SUP [V (smx)| =557 sup [V (»)].

xeEy yesmEx

Now assume sup ¢, £, [VOm (V)| =supycq , [Vén(y)l for a subset Ay C sy Ey then (note we

must have 3 < k) we have
m

Sy " sup |V¢m<y)|—< >1 Y(sp)' T sup IV <K Vgl 2w =K'
YESm Ey )’GA /

where in the last inequality we used the assumption that 1 = ||¢, || -2.«. Similarly we can obtain

| Dzwm lLoo(E) < k27" and also find a uniform bound for the Holder norm of th/fm on Ej. Now
since Ex € Ex41 and U7 Ex = RN \ {0} then by the above estimates 1/, is locally uniformly
bounded in C>%(RM \ {0}). Hence by the Arzela—Ascoli theorem and a standard diagonal argu-
ment, up to a subsequence, v, converges at least in ChYRN \ {0}) to a function ¥ which is a
solution of

loc

o pflcp_l .V
Lyt ==y + BEE ST —0 i mNO), (13

with lim|y|- 00 [ (x)| =0and [ (x)] <27"|x|". Here we have y,, — ¥ € [0, 1]. Note also that
since each ¢, had no k = 0, 1 modes we see that ¢ has no k =0, 1 modes. Then by Lemma 3
we have = 0, but recalling ¥,, > ¥ =01in CL(E}) for each k > 2 we see that Y (zZm) — 0;
a contradiction.

Case 2. Define v, (x) :=s,,,” @ (smx). From our assumption on ¢, there is some |z,,| € (1,2)
such that |V, (z,,)| = €9. Now note that v, solves (12) and we can pass to the limit as in
case 1. So as in case 1 we have ¥, — ¥ =0 in C"¥ (Ey) for each k > 2. In particular we have
IV (zm)| — 0; a contradiction.

Case 3. Again we set ¥, (x) 1= s,," ¢m (s, x). We now suppose the result does not hold and so
there is some &y > 0 and some 1 < |z,,| < 2 such that |D21/fm (zm)| = &o. As before we have v,
satisfies (12) on Ey. Set g, (x) := s,%l_"fm (smx) denote the right hand side of (12). As before we
have g, — 0 in L°°(E}) for each fixed k. We now check the Holder portion of the norm. Note
for x, y € Ey (k fixed and m large) we have

lgm(x) — gm (Y| S2 U+a|fm(smx)_fm(sm)’)|
lx — yl |Smx — Spmy| ’

Then note we have the existence of some Cj such that

lgm (x) — gm(¥)I _ S2_v+a [ fin (SmX) — fin (Sm )]
lx — y| " |SmX — Smy|*

< Cell full o,
e

and hence we have g,, — 0 in C%*(Ey) for all 2 < k. We now claim that v, — 0 in C>%(Ey)
for all k£ > 2 and in particular we have the result for k = 2; which gives

s’ sup  [D g (x)| = sup [D*Y(x)| — 0, and

m
W <|x|<2m xeEy
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2—v+a
s}’l‘l

| D?Gm (smx) = D’ (sm )| DY (x) — D*Ym ()]
sup - = su - — 0,
x,yeE, [SmX — Sm Y x,yeE, |x — y]
which rules out case 3 and case 4.

We now prove the needed claim. We first fix 0 < B < « but close and note by a compactness
argument (and a diagonal argument) there is some i such that v, — ¢ in C 2B (Ey) for all
k > 2. So as above ¥ satisfies the limiting equation and we can use the previous results to see
that ¥ =0 in Ej. We now rewrite (12) as

richx v 1
YmPT p X V() x| < —, (14)

— AP (X) = 557" fon (%) — 5
|x] Sm

r=ich~lyy .
Ym DT II)’C‘ZX Y (x) —~0in CO’“(Ezk)

and hence we can use interior estimates to obtain the desired convergence to result on Ex. 0O

and note that since v, — 0 in Cczp (E»r) we must have

We now examine the linear operator L on modes k =0 and k = 1.

Lemma 4 (k =0, 1 modes). Let N, p, t,v be as in (8). There is some C > 0 such that for all
functions by, by (with finite norm defined below) defined on (0, 1] there is some ay defined on
(0, 1] with ar (1) = 0 and which satisfies

o)+ &1 _p(rN_z_t))a,g(r)— %ak(r)zbk(r), O<r<l.

Moreover one has the estimate ||ay ||C2,oz <C||bx ||C0,a .
v v—2

Proof. Asbefore weset3:=(N—1—p(N—-2—1))andb:=8—1.
Mode k = 0. Using the integrating factor technique we have

d
d—(rﬂa{)(r)) =rPbo(r) 0<r<l,
,

and integrating this from r to 1 and taking a;,(1) =0 as a free parameter we get

1

rPalr) = —/rﬁbo(z)dt,

r

and using the bound on by we see

L S
] < — =2 [ 19

r

Checking the parameter ranges one sees that 8 — 2 4+ v < —1 and hence there is some C > 0
such that
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ol oo
lag(r)] < C——=
0 - pl=v 7’

which is the desired weighted L°° estimate on a,. Integrating this estimate gives r~"|ag(r)| <
ClIb|| co.« - To obtain estimates for the other terms in the C 3"" norm one can work directly with
v=2

the ode and combine the results to obtain an estimate of the form |[|ag|| -2« < Cllbol| 0.« -
v v=2
Mode k = 1.

r2al(r) +r(N —1—=p(N =2 —1)aj(r) — (N — Dai(r) =r’b1(r) 0<r <1

with a1 (1) = 0. (Note we have used fact that A1 = N — 1.)
Homogeneous solutions. Try a(r) = r® and we then get

o> +ba—(N—-1)=0
which has roots

b, VB +4(N = 1)

2 2
—b PP+ 4AN - 1)

o=
2 2

Set yi(r) :=r%, yo(r) :=r% (we switched notation from a to y to allow us to index the
solutions without confusion with regards to the modes). Variation of parameters says that

W1, y2) () = (o +ag)resteh,
and a particular solution would be given by

ap(r) =u(r)y1(r) +v(r)y2(r)

where

—nMbi(r) _ —bi() L b)) bi)
V() =

u'(r)= = 1 = 1
W(r) (4 +a_)ro+ w(r) (04 +a_)r*

Let y := a4 + o— and then note we can write the general solution in the form

r

,
o= bi(t o+ by (¢

a(r)=r—/—1()dt—r—/—l()dt—i—Clr“*—i—Czr“*,
14 14 |

ta,—l ta+—1
n

where T and C; are to be picked later.
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The first thing to note that is that

b1 .
i) 1Prllcos,
totffl — ta,+t+l

b .
i) _ 1orlces
tOt+71 - tOl++'L’+1 :

Since a4+ + 7 + 1 > 1 we see that

‘/ b](t) C||b1||C0a

tO{+— r()l++f

and hence

y ta+ 1

7T
1

With this in mind let us take C> = 0. So we now have

r r
= [ bt [ bi(t
a(ry="— / KO /—‘()161:+c1r“+
Y y JoeT
1

t()t_ -1
T

A computation shows that «_ + 7 < 0. Indeed, this is equivalent to b + /b 4+ 8N > 27 or
T— ZTN <b=N—-2— p(N —2—1). A calculation shows that the latter inequality is equivalent
to(p—DE+2)>N(p—1-— %) =N({p-— 1)2_ which is true. Hence, a‘ (i)l is integrable on

(0, 1) and so we can take 77 = 0. So we have

p
bi(t et by(t
am;—/“%—L/“MHw%
V tOlJr—l

1

ta,—l
0

and we pick Cy such that

bi(t
0= f l()d +Cla
Yy 1%-

0

and hence a(1) = 0. Using the bound on by we see that |Ci| < C||bi]| -0« . We now get some
v—2

estimates. First note that

1 1

1
Oa / 7t17v+a+ dt,

r
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Clibrll 0.
and note that 1 — v 4+ o4 > 1 and hence the right hand side is bounded above by ?f:—z and

hence we have

14

ay Cllb1]l ~0.a
res / B0 gy| <« et

tO[+—1 r—U

‘We now examine the other two terms and towards this define

e [ by
Z(”') = 7 tai_]

0

dt + Cré.

Using the bound on b; and C; we see that

Cllbal o,
l2(n)] <= ———=—— 4+ Cllb1ll coa r**,
r—v Cv—2

and hence r 7V |z(r)| < C||by [l 0.0 (1 + r%+~") which gives us the desired weighted L*> bound
v=2
on a(r). To get the desired weighted L bounds on a’(r) and a” (r), differentiate the formula of

a(r) to get a’(r) and do similar as above we, then we use the ODE for a”(r). Combining them
we get then the estimate [|a|| 2.« < Cl|b1]l 00 . O
v v—=2

Lemma 5 (Combining,ihe estimates). Let N, p,t,v bﬁzs in (8). There is some C > 0 such
that for all f € Cg’az(Bl\{O}) there is some ¢ € CE”%(B]\{O}) such that L(¢) = f in B1\{0}.

Moreover one has ||§|| .2« < C|| fl 0.
v,D v=2

Proof. For this proof we are more precise with our notation regarding the eigenfunctions of
the Laplace—Beltrami operator. First we have ®((f) = 1 and then for the kK = 1 mode there is
{®1,(0) : 1 <i < N} and then there is the higher modes. Given f € CSf‘Z we write

N
FO) =bo(r) + > _b1i(r)®1i(0) + f(x),

i=1

where f € Y* ,. For¢ € C f% we similarly write

N
P(x) =ap(r) + Y _a1i(NO1i(0) + p(x), (15)

i=1

where ¢3 € X%. We now get the desired estimates. Let f € CSf’2 with the above representation
and we let ap, ay i, ¢3 be such that L(ag) = by, L(a1,;) =by,; for1 <i <N and L(dS) = f where
peX ¢ and where all functions satisfy a zero Dirichelt boundary condition. By our earlier results
there is some C > 0 such that
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laollgze < Cllbollcos.  Navillcas < Cllbrillgos 1<i <N, 1l cae < ClLfllcos

We now define ¢ as in (15) and hence L(¢) = f in B;\{0} with ¢ =0 on 9 B;. Additionally we
have

N
lpllcze <C (nboncgfz + D Ibrillcoe + ||f||cgg2> :

i=1

and we now claim there is some C; > 0 such that

N N
(IIbollcg,az + L lnileas + ||f||03,a2> = Cilbo + 011011+ fleas, = Cil s,
1= 1=

which would give our desired estimate. We now suppose the claim is false and so for all m > 1
there is some b’O", bq”i, f™ such that

N N
16 o, + D 18T I coa + 17"l cow = mllbg + D b7 O1i + "l cow . (16)

i=1 i=1

We now define 7' := ”b6n||68f2 and " := ||b§”’i ”Ci’fz for1<i<Nandrty, = ”fm”CSf‘z'
After passing to a subsequence in m we can assume that there is some 0 < iy < N + 1 such that
tiy =" forall 0 <i <N +1.

We now re-normalize each term by dividing by tl.’(')’; we define (without using new notation)

by o'y a fm . N . .
b(’)" = T’gH b’l”i = ﬁ fme= {7 Note we still have (16) with these re-normalized functions,
io ’ io i
and note the left hand side of (16) is bounded below by 1 and above by some constant C. Note
by (16) we have f™ := by + ZlN:l by':©1;+ f" —0in Cgflz.
We now suppose that 0 < iy < N and we now consider

gm(x) = / " (1x18)©1,i,(0)d0,

HesSN-1

where for notational convenience we are defining ®; o(6) = 1 the kK = 0 eigenfunction. We claim

that since f™ — 0 in CBf‘z that g, — 0 in Cng; we will prove this claim later. But now note
that g, (x) = bTi0(|x|) where we are abusing notation again; we are taking bq”io (r) =bg'(r) in

the case of ip = 0. So we have b’l'fio (r)y—>0inC sz; which contradicts the fact that this quantity
has norm 1. So from this we must have i) = N + 1 and we also that b(’)", bﬁ'fl. — 0in Cgflz for
all 0 <i < N. So we must have || f ) o = 1. But recall we have (after applying the triangle
inequality)

Czml " cow =m (1" o —em)
v— v—
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where ¢, is the sum of the norms of by (r), b}"; (r)®1,; (0). So &, — 0 and since ||f’” 0 =1
B v=2

we get a contradiction.
We now prove the needed claim. Without loss of generality take 1 < iy < N. Its clear that
gm — 0 uniformly on B \B%. Now suppose 0 < s < % and let § € $"~! and x € Ay. Then one

sees that

P =€y [ 1O < CuCl " o

fesN-1
and hence we see
sup s°7" sup |g (x)| — 0.
0<S<% XEA;s

We now need to consider the Holder portions of the norm. We first let x, y € B1\B 1 distinct.
Then we have

18m () = gmI _ / Ifm(IXIQ)—fm(|y|9)|11|®1!i0(9)|d9’

lx —yl* - [lx]6 —|yl0]*
feSN—

where

I [lx16 — [ylO|*
1=
lx — y|*

First note that

L™ (x10) — ™ (1y16)]
|1x16 — |yl61*

< f™l 0 -
<"
Also note by the triangle inequality we have /1 < 1. Hence from the above we see that

lgm (x) — gm (Y|
sup — — 0.

x,yeBI\B| lx — y[®
7

We now assume 0 < s < % and x, y € A; are distinct. Using the above computations we see that

g &M () — gm ()]
§2 v+a% < / ”fm||C8f211|®1,i0(9)|d9.

fesSN-1

Combing the results we see that g,, — 0 in Cgf‘z. O
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2. The fixed point argument

Recall we have defined J;(¢) = ¥ where i satisfies (7). To obtain a solution ¢ of (6) we will
show that J; is a contraction on B, where B, is the closed ball of radius r centered at the origin
in Ci’%(Bl\{O}) where as before we assume that N, p, 7, v satisfy (8). Recall the generalized
Binomial theorem says for a > 0 and |b| < a we can write

o
(@+b)t =" pat ok,
k=0

where y9p =1 and y; = g. ‘We use this to rewrite (7) as

L) = yit*|Vw + V[P (A1 () (Vw(x) + Vo () - (Vw(x) + Ve (x)))

k=1
+|[Vw+ Vo|? — |[Vw|? — p|Vw|P>Vw - V¢
+ Ei(w) + E((¢)
=: K1(¢) + K2(p) + E;(w) + E;(¢) in B1\{0} 17)

with ¥ =0 on 0 Bj.
We now begin with some computations. To simplify the calculus in the weighted Holder
spaces we use the following properties and remarks about these spaces.

Lemma 6 (Proposition 2.1 and Lemma 2.2 [34], Lemma 1 in [31]). The following properties
hold.

(i) Assume that u € CET1(By \ {0}) then Vu € C*% (By \ {0)).
(i) Ifu; € C‘ljlf“(Bl \ {0}, i=1,2thenujus € Cfl’ivz(Bl \ {0}) and

<
lunzlcke | capvop = lutleheluzlcse g,y op:

for some constant ¢ > 0 independent of uy and u.
(i) If0<u e C,]f'“(Bl \ {0}) and g > O then u? € C],;;,a(Bl \ {O}). In addition

q

q o <
||L£ ”C,I;;, (B1\{O}) = C“u”C‘Ij'a(B]\{O})

for some constant ¢ > 0 which does not depend on u.
(iii") Also, if we replace u > 0 in above with u > 0 then we have the same if ¢ > k + 1.

(iv) Ifk+a <k’ +a’ and v < V' then the embedding C‘]f,,’“, — Ck s compact.

Remark 1. Note that in Lemma 6 part (iii), if O < g is an integer then we can allow u to be zero
somewhere or change sign. To see this, use part (ii) for g functions u; =u = ... =u, = u and
V=V ==V, = V.
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Computations involving K5. Recall we have
Ky =|Vw+ Vg|? — [Vw|? — p|Vw|P2Vw - V¢,

where w = Cp(|x| " — 1) and ¢ € B, C C}5,
‘We show that when v = —1 then

IK2ll 0w < ClNZ -
for r sufficiently small. We have, by the binomial expansion
P - P
= SVl IV + 3 nl Vol @V - Ve + Vo) = 2 fi + fo.
k=2

Note that we have convergence provided |2Vw - V¢ + IVo|?| < |Vw|?; which will easily be
satisfied provided we take ¢ small in CE"". First we estimate fi. Note we have |Vw| = C|x|"~!
S0

fitx) = x| FPEED vg2,

Note we have |x|@~P)(=v+D ¢ C(2 (vt Also, by part (i) of Lemma 6, V¢ € Cifll and thus

by part (ii), [V$|> = V¢ - V¢ € Cz(u 1y and

IVePlere  =clVeligra-

U 1

Since (2— p)(—v+1)+2(v—1) = v —2 then using part (ii) of Lemma 6 again, we get f1 € Cvlf‘Z
with

Ifillgre = Clvel? ol -

v 1

And since C\l},a C0 a2 and ||V¢||C1 « < |I¢||Cza we get

| fill o = Clig Iz, (1)

where C is independent of ¢. To estimate || f> || coa We write
v—2

2Vw - Vo + |v¢|2)k

= |Vw|Pa(x)k.
V2 [Vw|Pa(x)

IVl @Vw - Ve + Vet =Vl (

We have 2Vw - V¢ € C2(U 1 and |V¢|? € cle
=C|x|21=v) ¢ C2(1 »» hence

2iv_1)» hence 2Vw - V¢ + V| € CZ(U - Also,

\lez o

a(x) = |V1 |2(2Vw Vo +|Vol?) e Cp“.
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Also, by Lemma 6 and the triangle inequality

lallcre < CollVollcra < Collgllcze.
Since |Vw|? € cl (v = CV »» then using again part (ii) of Lemma 6 we get

IVw|Pa()* e €% < %%, for k=2,3,...,

and

Vw|Pak <cchplk,. =cc?(c SRV
Il wlallcofz_ ()||¢||C2,oz_ 0 0”¢”c5"’ ||¢||Cz,a

= Ce(r) 29l e, for k=2,3, ...

where c(r) — 0 as r — 0. Hence

12l o, = (D 1mel €D 2)IVPI2,0 < C IV, (19)

k=2

for r small. Now using the above estimates (18) and (19) we get

1Kzl coe = C||¢|I2Cz,a, (20)

for all ¢ € B, C C;% with sufficiently small .
Computations involving K. Recall we have, with v = w + ¢,

Ai(x)Vv-Vo

o0 o0
Ki) =Y nt“[VolP (A1 (x) Vv - Vo)t = |VolP Y~ ek e ).

k=1 k=1

Taking r sufﬁcwntly small we have |Vv| bounded away from zero. We have Vv € C % then we

show that W € C272v. We write

1 1 1 1 -2

— = = w D ———
Vo2~ Vw2 + Vo2 +2Vw-Vo  |[Vul? | 4 WITvrzvaw | 1+a(x)
w

Note we have |a(x)| < 1 for r sufficiently small, and as we did in the first part we have a € Cé’”
and

lallga < Collllze = c(r) = 0 as r —0.

Also we have

1+a() Z( D'a (x).
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Note that by Lemma 6 part (iii'), a' € Cy'® for every i =0, 1,2, ... and la' |l pra < ||a||icl_a <
0 0

¢! (r), and since Cé’“ is a Banach space then

1 1, 1 o B 1
1+—a(x) S Coa and HmHCéa S;Cl(}’) = l—c(r) <2, (21)

for r small. Now note that we have |Vw|_2 = C|x|2_2” so by Lemma 6 and (21) L=

) > |Vu?
-2_ 1 o
IVw| ™ g € €)%, and

2-2
e ScllCIXIT e
G5, 2-2v

1
H Vol l+a ‘ T

with Cyp independent of  for all small . Now since A(x) is smooth (we need here only A(x) €
Cé’a) and Vv € Cifl then we easily get B(x) := A(x)Vv-Vv € Céfiz with

B <C|IVv|%,, <Clv|*ss.
1Bllcye, < CIVOIZ1L < ClIVIZ.

Summing up the above we get by Lemma 6

A1(x)Vv - Vo

A1Vv-Vo < ”2
U o
[Vv|2 e

l,a .
e Cy", with HiH
0 |[Vvl2 Cé’“

<C,

where C is independent of 7 for all small . Now using |[Vv|? € Cll,’(‘f}q) = Cif‘z (note we used
Lemma 6 part (iii) with |Vv| > 0), C 11;70[2 — C sz (continuously) and the above estimates we get
K e le‘z C Cefz and

o0
1K1l o, < (kz W (€F ) [0l < C6)— 0 as 1 0. 22)
=1

Computations involving E;(w) and E;(¢). To estimate || E;(w)|| -0« and [|E; (@) ]| 0« we can
v=2 v—2
use again Lemma 6 to easily get

IE:w)llcoe = Ct and [ E (@)l oa = Ctl$] 2 (23)

Now by the definition of J;, the continuity of the right inverse of L and the above estimates
(20), (22) and (23) we get

1@l 2o = C(IKill o + 1Kl o, + 1Er@)l o, + 1Ei @)l cox )

<CO+Cl)220 + Ct + Ctll ]l 2,

where C(t) — 0ast — 0.
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Contraction. Let J;(¢) = v and J;(¢o) = Yo with ¢, ¢g € B,. Then we have

L — o) = Ei(¢ — do) + K1(¢) — K1(¢o) + K2(¢) — K2(do).

First we estimate || K2 (¢) — K2(¢o) || coa - We have
v—2

K2(¢) — Ka(go) = §|Vw|f”—2(|V¢|2 — |Veol?)

9] 2 ) 2\ k 2 ) 2\ k
+ZVkIVwI”{< Vw- V¢ + |Vl ) _< Vw - Vo + [Vebol > }
k=2

|Vw|? |Vwl|?
= F1(x) + Fa(x).

First note that as we showed before F| € le‘z > Cgf’2 (continuously), also we can write

Fi(x) = 21917 2(V6 + Vo) - Vg — do).
hence

IFillcoe < C)lI¢ —oll2e, CO)—0 as r—0. (24)

Also using the formula ak — bk = (a—D>b) Zf;& a'b*=1=1 for k > 2, we can write

2wV + V\*  [(2Vw - Vo + Vo2 \*
ai(x) :=( ) —<

Vw2 Vw2
_ 2Vw + V¢ + Vo) - V($ — ¢o)
B Vw2
- <2Vw Vo + |V¢|2>" <2Vw Vo + |V¢o|2>""'
X Z 2 2
oy IVl IVl
k—1 . '
= ax(x) ) a3 as(@)
i=0

And similar as we have done in the first part we have a;(x) € C(l)’a, j=1,..,4and
lazligre = Cll¢ — ¢ollc2e, and lajllgla <c(r), j=3,4, c(r) >0 as r—0.
Thus, using Lemma 6,
laillre < Cke()* g = goll ez

that gives
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o0 o0
k—1 _ k=2 _
1P2ll o, = (32 Inelket) =) Ip = doll 2w = Cer)( D Inelke) ) I = doll 2
k=2 k=2
c(ry—>0as r—0. (25)
And since r small we have kc(r)f—2 < (%)k, k=3,4, ... then from (25) we get
”ancofz =cl¢ —dollcze, c(r) =0 as r—0. (26)
Combining (24) and (26) we arrive at

I1K2(@) — K2(@o)ll cow = C)ll¢ — oll2e, C(r) >0 as r—0. 27)

Now we estimate || K1(¢) — K (@)l 0. - Taking v = w + ¢ and vg = w + ¢o we then have
v=2

d A1 (x)Vo - Vo ¥ A1 (x)Vo - Voo |
_ - k T _ P
K1(9) K1(¢0)—];ka {|Vv| ( VP ) Vol ( TIE )}
=Y ne*{IVol7a@* - 1Vuol” (@ (o) .
k=1
We write

B(x) :=|Vo]Pa@)" = |Vl (@) = (IVu|” = [Vuol)a@) + [Vuol” (a()* - a(ve)).
As we showed in the first part we have |Vv|?, |Vug|P € C\l)flz — Cgflz (continuously). Also for

[Vv|2—| V|2

SulE - < 1 then we can write

r sufficiently small we have

|VU|2—|VUO|2 )4 |VU|2—|VUO|21<
Vul? = |[Vuol? = |V P(1+—2_1>_§ LR S A
[Vl [Vl [Vuol?( ( |Vv0|2 ) % ( |Vv0|2 )

Note that we have

Vo= [Vul*  V(u+uo) - V($ — o)
Vw2 |Vvo|?

b(x):

Then for r small
16l o, < Cli¢ = doll e < 2CT

and so we get
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oo
p_ p _ k
IIVol? =1Vl llcoe < D I7el(Clig = Goll c20)

k=1

o
< Cllg = gollc2a Y1l @CHF" < Cillp = ol 2
k=1

Also as it is shown in the first part we have a(v), a(vg) € C(])’“, and using again the formula
ak — b* = (a — b) Y20 a’ b1 we can write

k—1

a(w)* —awo)* = (@) —a(vy)) Zd(v)ia(vo)k”*i,

i=0

Now, similar as we did above, it is really not hard to see that
lla(v) — a(vo)llcé,a <cl|V(v— vo)llclg1 =c|V(p - ¢o)|lcl,_al =cli¢ — doll c2.-

Then taking C > max{||a(v)||cé.a, ||a(v0)||cé,a} we get

la@)" = a(o)ll g < ckC* g — goll 2
Using all the above obtained estimates we get
1Bl coa < kCH i — ol g2

Hence,

o0
IK1(@) = Ki(@0) coa = D Il e Hig = goll 2
k=1
o
=1( 3 kO )6 = doll e
k=1
Thus taking ¢ small such that k@C)1 < (%)k for k > 2, we get

IK1(#) = Ki(@o)ll cow = Ctll¢ = oll c2a- (28)

Finally using (27), (28), the fact that || E; (¢ — ¢0) lcoe =Ctll¢—oll 20 and continuity of L~!
v=2 v
we get, for small 7 and 7,

I1:(¢) = Ji(@o)ll o = (Ct+C()¢ — ol c2a, €)= 0 as r—0.

This shows that for sufficiently small ¢ and r, J; : B, — B, is a contraction and hence we can
apply Banach’s Contraction Mapping Principle to obtain a fixed point ¢ € B,. Now recall that
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v(x) = w(x) + ¢(x) and note that 0 < w € Cv p and hence for r > 0 small enough we have
v(x) > 0 for 0 < |x| < 1 after taking into account the growth of the functions near x = 0 and the

fact that w’(1) < 0. Moreover we have v(x) — oo as |x| — 0. Indeed, we have v(x) ~ C|x| 1’—1

near the origin. To see this, note that we have |[v — w”CZa = ||¢||C2a < r. This in particular

gives sup,_. 157" supy [v(x) —w(x)| <r.Hence, [v(x) —w(x)| <r|x|" for 0 < |x| < 5. Note
S<g

that we have w(x) = C, (|x|" — 1) (and v < 0) thus taking r sufficiently small we get c1|x|” <

v(x) < ca|x|" for |x| small. Taking into account other terms in the definition of ||[v — w|| 2o We

obtain similar estimates on Vv and D?v, and see that v behaves like |x|” near the origin. This

proves the second part of the first assertion in Theorem 1, noting that u(y) = v(x) where x and
y are related through y = x + v (x).

3. Case p>2

In this section we will always assume
N>3, p>2, =2 yi=1, 29)

We are now interested in obtaining positive nonclassical solutions of (4) in the case of p > 2
for ¢t > 0 small enough. Recall from Example 1 that w(x) := C, (1 — |x|7), where C[‘l,’_1 =
NT_,,Z,TT, is a C%7(By) weak solution of (5) in the case of r = 0. So we will look for solutions
of (5), in the case of 0 < ¢ small, in the form of v(x) = w(x) + ¢ (x) where ¢ is in a suitable
space. As in the case of % < p <2 we need ¢ to satisfy (6) and to find a ¢ we will apply
the Banach Contraction Mapping Principle to the nonlinear mapping J; defined as in (7), which
at this point is not well defined. As before a crucial step will be to understand the linearized
operator L(¢) := —A¢ + —p|Vw|P~2Vw - V¢ associated with the explicit radial solution w. A

computation shows L is given by

PN =2+10)(x- Vo)
|x|2

L(¢):=—A¢p+

The space we will work on is Ci‘%(?\{O}).

Theorem (/34], Proposition 2.3). Suppose N, p, t,v are as in (29). There is some C such that

forall f e CSf‘Z there is unique ¢ € C‘%"" and ¢ € R suchthat —A¢ = f in Bi\{0} with¢ = on

d B (note we are not prescribing ¢, it depends on f). Additionally we have ||§|| .2« < C|l f | p0. -
v v—=2

Corollary 1. Suppose N, p,t,v are as in (29) and suppose f € CSf‘z has no k = 0 mode. Let
@, ¢ be from the above theorem. Then ¢ = 0 and ¢ has no k = 0 mode.

So in this new parameter range for v it is only the kK = 0 mode that is causing any issues.

Proof. We write ¢ (x) = Z/tio ar(r)®(0) and note that since f has no k = 0 mode we have
aog(r) = and after taking into account the behavior of ¢ near x = 0 we see that
=0.S0¢(0)=d(x)=Cr+ ZZO:] ay(r)O(0) and integrating this over SN=1 we arrive at
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C2|SN_1| = fSN—l ¢ (r0)do and hence this quantity is independent of 0 < r < 1. But recall that
|¢(x)| < C|x|* and hence by sending r \( 0 we have C; = 0 and now sending » /' 1 we have
¢=0. O

Definition 2. Let N, p, 7, v be as in (29) and set
Ye =Y = {f e %% (BI\{0}): f hasno k=0 mode} ,
and
X% =X = {¢ € C2% (B1\{0}) : ¢ has no k = 0 mode } ,
and we use the natural norm the subspace inherits from the full space.
So A : X — Y is an isomorphism.
Proposition 2. Let N, p, T, v be as in (29). Then there is some C > 0 such that for all f € Y7 ,

there is some ¢ € X5 , such that L(¢) = f in B1\{0} with ¢ =0 on 3 By. Moreover one has the
estimate ||p|| 2o < C”f”c(),ot .
v V=2

Proof. We begin by analyzing the kernel of L,, on the unit ball and also the full space.
Suppose ¢ € X satisfies Ly, (¢) = 01in B1\{0}. Asin Lemma 2 we write ¢ = Z,fil ar(r)©r(0)
and so ay satisfies
N-1-yp(N-2+71)) ,

A
a;(r)+ . a,(r) — r—’;ak(r) =0 O0<r<l, (30)

with a; (1) = 0 for k > 1. As before this is an equation of Euler form and so we look for solutions
of the form r* and so o must satisfy o> + ab — Ay = 0 where b = by=N-2—yp(N—-2+71)
and as before this has roots

—b P24 L _ b N/
_—b_ ot ‘

o = = —

2 2 0 Tk 2

Taking into the boundary condition we see we must have a;(r) = Ck(r”‘k+ — r% ). Note first that
ozk+ > (0 and also note that since ozk+ # a, we see that if o, < t then we must have C =0
otherwise ¢ ¢ X. But note o, < 0 and so we have ap = 0 for k > 1 and hence ¢ = 0.

We now consider the full space problem; which we will arrive at later after a blow up argu-
ment. Let ¢ € C*®°(RV\{0}) which satisfies

—ay 4 2 2;;)()( YY) o rM\o,

and we also assume 1 satisfies the pointwise bound | (x)| < C|x|* for some C > 0. Ad-
ditionally we assume i has no k = 0 mode. We now show = 0; as before we assume
Y we can write ¥ (x) = Z,fil ai(r)®(0). Then a; satisfies (30) on 0 < r < o0 and so we

+ = L _
have ay(r) = Cyr% — Dpr% . Again since oz;r >« and ax— < 0 (and hence less than 1)
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we have Dy = 0. By using the pointwise bound on  at both the origin and infinity we see
that we must have Cy = 0 unless oc,'f = 7. We now rule out this case; so we need to rule out

h = —b + /b% + 4); = 27. First note that /’(b) < 0 and so we have

2(p -2
p—1

’

h((y)) = h( max b(y)) =hb(0) =h(N —2)>2>
v€[0,1]

and hence we have —b + /b% + 41 > 27 forall y € [0, 1] and k > 1. We can now conclude that
Y =0.

We now examine the operator L and as before we use a continuation argument; for 0 <y <1
set L, (¢p) :=—A¢ + w. To begin we need to show that (y,¢) — L, (¢) is a
continuous linear operator from [0, 1] x X§ to Y ,. The proof of this result for the previous
range of p carries over to this range of p. So to prove the desired estimate for L it is sufficient to
prove a priori estimates independent of y. So towards a contradiction we assume L, (¢n) = fin

where || fiully — Oand ||y [lx =1 (here Y =Y , and X = X7) and y;, € [0, 1]. We now derive

%
a contradiction. The proof is almost exactly the same as in the case of the other range of p. The

only issue one needs to be careful with is that we don’t have the needed theory for A on Cg’%

to Cgf‘z now; but we have the theory on X9 to Y , and this suffices. We now argue exactly as
before by considering the various cases. In each case we obtain the needed contradiction after
using the above results regarding the kernel of L,, on the unit ball and the full space. O

We now obtain the needed linear theory for the kK = 0 mode.

Lemma 7 (Mode k =0). Let N, p, T, v be as in (29). Then there is some C > 0 such that for all
f = f(r) there is some a = a(r) such that L(a) = — f in B1\{0} with a(1) = 0. Moreover we
have ||a|| c2a < Cllfllcofzz-

Proof. Note a must satisfy a” (r) + w = f where B:=N — 1 — p(N — 2+ 7). Using the
integrating factor method and integrating between r and 1 we arrive at (after setting a’(1) =T a
free parameter to be picked later)

1

Pa(ry=T —/tﬁf(t)dz.

y
Note we have 12~7| f(1)| < ”f”CO,ot . From this note we have
v—2

/ P lfllcoe,
rﬁ|a )| <I|T| +f ﬁ,

r

and a computation shows we have 2 — 7 — 8 > 1 and so we have

rPla () < IT|+ Cllfllgoa rP 71T,
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and hence we have
P O 1T TP 4+ Cll fllgoa, < 1T+ ClLf Lo

sincel —t—8>0.
We now get a formula for a and some estimates on a.
Writing out a’(r) from our earlier formula and integrating r € (R, 1) we arrive at

1 1

1
—a(R)zT/r—ﬂdr —/r—ﬂ/zﬁf(r)dzdr,

R R r

after using the fact that a(1) = 0. We can use Fubini’s theorem on the double integral to see

1 1

1 1
a —ﬁ)/r*ﬁ/tﬂf(t)dtdr=/¢f(t)dz —R‘*ﬂ/tﬂf(t)dt.
R r R R

So we can now write out

R 1
~(1—=B)a(R)=T —Cy +/tf(t)dt —TR'"F +R1—f’/tﬁf(t)dt,

0 R

where Cy := fol tf(t)dt (which is finite since #f (¢) is integrable on (0, 1)). We want “l(elf) to be
bounded for 0 < R small. So we will take T = Cy and hence

R 1

—(1—B)a(R) = f tf(0)dt — TRV 4 R / o F(oydr.

0 R
Note that

1 1

71= [ 170ldr < flcon, [ a1 = ol f o,

0 0

We can compute the various estimates for a directly from the formula fora. O
Lemma 8 (Combining the linear estimates). Let N, p,t,v be as in (29). Then there is some

C > 0 such that for all f € C)%(BI\{0}) there is some ¢ € C,'%(B1\{0}) such that L($) = f
in Bi\{0} with ¢ =0 on dB|. Moreover one has ||¢|| .2« < C|| f| 0. -
v v—2

Proof. The proof is the same as the case of p <2. O
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The fixed point argument. We proceed exactly as we did in the case of % < p < 2. For

sufficiently small # > 0 and r > 0 we are able to find a ¢ € B, C CE”“D(E\{O}) (and recall

v = 1) which satisfies (6) and hence v(x) = w(x)+ ¢ (x) satisfies (5). We now recall that w(x) :=

Cp (1 —|x|") where T = ﬁ—_% and where C), > 0. Arguing as in the case of % < p <2 wesee

that by taking ¢, r > O sufficiently small we have v > 0 in Bj. Also similar as in the previous
section, from the inequality |[v — w|| 2« = [Pl 20 <7, we get [v(x) — w(x)| <r|x|" for 0 <

|x] < %, and since 7 > 0 this gives v(0) = C,. Then we can write the later inequality as |v(x) —
v(0)+Cplx|"| <r|x|*, implies that w > Cp —r > 0 for r small. This in particular gives

[v(x) —vO)] _

x—0 |x|‘L'+8

k]

which shows that v ¢ C%T+¢(By) for any & > 0. Recalling that u(y) = v(x) where x and y
are related through y = x + ¢¢(x). Since # > 0 is small and v is smooth this gives that u ¢
CcO%t+e(Q,) for any € > 0.
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