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Abstract

In this article we obtain positive singular solutions of

−�u = |∇u|p in �, u = 0 on ∂�, (1)

where � is a small C2 perturbation of the unit ball in RN . For N
N−1 < p < 2 we prove that if � is a 

sufficiently small C2 perturbation of the unit ball there exists a singular positive weak solution u of (1). In 

the case of p > 2 we prove a similar result but now the positive weak solution u is contained in C0,
p−2
p−1 (�)

and yet is not in C0,
p−2
p−1 +ε

(�) for any ε > 0.
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1. Introduction

In this work we are interested in obtaining positive solutions of

{ −�u = |∇u|p in �,

u = 0 on ∂�,
(2)

where p > 1 and � is a bounded domain in RN with a smooth boundary. We first note by the 
maximum principle that the only classical solution is the trivial solution u = 0; to see this re-write 
the equation as −�u − b(x) · ∇u = 0 where b(x) := |∇u|p−2∇u and hence if b is sufficiently 
regular we can apply the maximum principle. So the only hope of finding a positive solution is 
to find some sort of singular weak solution. Exactly how singular will depend on the value of the 
parameter p > 1; see Example 1 for details and more discussion on this.

1.1. Background

A well studied problem is the existence versus non-existence of positive solutions of the Lane–
Emden equation given by

{ −�u = up in �,

u = 0 on ∂�,
(3)

where 1 < p and � is a bounded domain in RN (where N ≥ 3) with smooth boundary. In the 
subcritical case 1 < p < N+2

N−2 the problem is very well understood and H 1
0 (�) solutions are 

classical solutions; see [24]. In the case of p ≥ N+2
N−2 there are no classical positive solutions in 

the case of the domain being star-shaped; see [36]. In the case of non-star-shaped domains much 
less is known; see for instance [11,16–18,35]. In the case of 1 < p < N

N−2 ultra weak solutions 
(non-H 1

0 solutions) can be shown to be classical solutions. For N
N−2 < p < N+2

N−2 one cannot use 
elliptic regularity to show ultra weak solutions are classical. In particular in [31] for a general 
bounded domain in RN they construct singular ultra weak solutions with a prescribed singular 
set. We mention that the weighted Hölder spaces we use in our current work were developed in 
[31], see also [34].

We now return to (2). The first point is that it is a non-variational equation and hence various 
standard tools are not available anymore. The case 0 < p < 1 has been studied in [5]. Some 
relevant monographs for this work include [21,25,38]. Many people have studied boundary blow 
up versions of (2) where one removes the minus sign in front of the Laplacian; see for instance 
[28,39]. See [1–4,6–10,19,20,22,23,26,27,37,29,30,32,33] for more results on equations similar 
to (2). In particular, the interested reader is referred to P.T. Nguyen [32] for recent developments 
and a bibliography of significant earlier work, where the author studies isolated singularities at 0
of nonnegative solutions of the more general quasilinear equation

�u = |x|αup + |x|β |∇u|q in � \ {0},

where � ⊂ R
N (N > 2) is a C2 bounded domain containing the origin 0, α > −2, β > −1

and p, q > 1, and provides a full classification of positive solutions vanishing on ∂� and the 
removability of isolated singularities.
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1.2. Our approach

Before outlining our approach we mention that our work is motivated by [15,31,34,12–14]. 
Some of these works deal with a full space or exterior domains; but the linear analysis is still 
quite similar as compared to what we perform.

We begin by looking at the unit ball for explicit positive radial solutions.

Example 1. Let B1 denote the unit ball centered at the origin in RN for N ≥ 3. Define 
α = (p − 1)(N − 1). In each of the following cases, there is a continuum family of solutions 
parameterized by C; in the case of p > N

N−1 the solutions are distributional solutions on the full 
ball.

• (p = 1) Then

u(r) = C

1∫
r

ey

yN−1 dy, C > 0.

Note that the solution is singular at the origin.
• (1 < p < N

N−1 ) In this case, α < 1 and

u(r) =
1∫

r

dy

(Cyα − p−1
1−α

y)1/(p−1)
, C >

p − 1

1 − α
.

The solution is singular at the origin.
• (p = N

N−1 ) In this case, α = 1 and

u(r) =
1∫

r

dy

(Cy − (p − 1)y lny)1/(p−1)
, C > 0.

The solution is singular at the origin.
• ( N

N−1 < p < 2) In this case, α > 1 and

u(r) =
1∫

r

dy

(
p−1
α−1 y + Cyα)1/(p−1)

, C > −p − 1

α − 1
.

Define τ = (2 − p)/(p − 1). For the special case C = 0,

u(r) =
(

α − 1

p − 1

)1/(p−1) 1

τ
(r−τ − 1).

A computation then shows that u is a classical solution of (2) in the case of � = B1\{0} and 
note that u is singular at the origin. Also note that u is a suitable weak solution on the full 
ball; since p > N .
N−1
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• (p = 2) Here α > 1. The formula for the explicit solution is the same as above. For the 
special case C = 0 we have

u(r) = −(N − 2) ln r.

• (p > 2) The formula for the explicit solution is the same as the case N
N−1 < p < 2. Here 

α > 1. Define τ = (p − 2)/(p − 1). For the special case C = 0,

u(r) =
(

α − 1

p − 1

)1/(p−1) 1

τ
(1 − rτ ).

A computation shows u is a weak solution of (2) and note also that u ∈ C
0,

p−2
p−1 (�) but that 

u does not belong in any better zero order Hölder space.

In this article we prove the existence of positive solutions of (2) on domains � ⊂ R
N which 

are small perturbations of B1 and which have the desired singular nature as suggested by the 
above explicit radial examples.

We write the small perturbations of the domain as �t where t > 0 is small and where �0 = B1. 
So our goal is to obtain nontrivial weak solutions of

{ −�yu(y) = |∇yu(y)|p in �t,

u = 0 on ∂�t ,
(4)

where �t is a perturbation of the unit ball in RN ; �0 = B1 and where N ≥ 3 and N
N−1 < p < 2

or p > 2. Before carrying on we state our main existence result.

Theorem 1. Suppose N ≥ 3.

1. Suppose N
N−1 < p < 2. Then for sufficiently small C2 perturbations of the unit ball, say �t , 

there exists a positive singular weak solution u of (4) which blows up at exactly one point xt

(near the origin) and behaves like u(x) ≈ C|x − xt |
p−2
p−1 near xt . The proof gives the exact 

behavior near xt .
2. Suppose p > 2. Then for sufficiently small C2 perturbations of the unit ball, say �t , there 

exists a positive weak solution u of (4) with u ∈ C∞(�t\{xt }) and with u ∈ C
0,

p−2
p−1 (�t ). In 

addition u is not in C0,q(�t ) for any q >
p−2
p−1 .

We now return to the calculations before we stated our theorem. We now perform a change of 
variables to reduce the problem on small perturbations of the unit ball to the unit ball; this was 
taken from [15] where they examine the extremal solution of the Gelfand problem on perturba-
tions of the unit ball. Let ψ : B1 →R

N be a smooth map and for t > 0 define

�t := {x + tψ(x) : x ∈ B1} .

There is some small 0 < t0 such that for all 0 < t < t0 one has that �t is diffeomorphic to the unit 
ball B1. Let y = x + tψ(x) for x ∈ B1 and note there is some ψ̃ smooth such that x = y + tψ̃(y)

for y ∈ �t . Given u(y) defined on y ∈ �t or v(x) defined on x ∈ B1 we define the other via 
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u(y) = v(x). A computation shows that to find positive singular (either singular in L∞ sense in 
the first range of p or singular in the Hölder sense in the second range of p) solution u(y) of (4)
on �t it is equivalent to finding a positive singular solution v(x) of

⎧⎨
⎩ −�v − Et(v) =

(∑N
i,j,k=1 vxj

vxk

{
δij + t

∂ψ̃j

∂yi

}{
δik + t

∂ψ̃k

∂yi

}) p
2

in B1,

v = 0 on ∂B1,
(5)

where Et is the second order linear differential operator given by

Et(v) := 2t
∑
i,k

vxixk
∂yi

ψ̃k + t
∑
i,k

vxk
∂yiyi

ψ̃k + t2
∑
i,j,k

vxj xk
∂yi

ψ̃j ∂yi
ψ̃k,

and δij = 0 if i 
= j and is 1 otherwise.

We now write the right hand side of (5) as (Ht )
p
2 and so

Ht :=
N∑

i,j,k=1

vxj
vxk

{
δij + t

∂ψ̃j

∂yi

}{
δik + t

∂ψ̃k

∂yi

}
.

We will be a little more precise about Ht than before. Writing out Ht gives (where aij := ∂ψ̃j

∂yi
)

Ht =
N∑

k=1

v2
xk

(
1 + 2takk + t2

∑
i

a2
ik

)

+
N∑

j,k=1,j 
=k

vxj
vxk

(
tajk + takj + t2

∑
i

aij aik

)

and note we can write Ht as

Ht(v)(x) = |∇v(x)|2 + t (A1(x)∇v(x)) · ∇v(x) + t2(A2(x) · ∇v(x)) · ∇v(x)

where Ai(x) are some smooth bounded N × N matrices.
Assumption on range of p. For clarity of presentation we will now assume that N

N−1 < p < 2. 
So in particular we will be looking for a singular (in L∞ sense) solution. We let w(x) denote the 

explicit positive singular solution on the unit ball given above; so w(x) := Cp

(
|x| −(2−p)

p−1 − 1

)

where Cp−1
p := N−2− 2−p

p−1(
2−p
p−1

)p−1 and for future reference we set τ := 2−p
p−1 . So with this in mind we will 

look for solutions of (5) of the form v(x) = w(x) +φ(x) where φ is to be determined. Then note 
that φ must satisfy

{
L(φ) = (Ht (w + φ,x))

p
2 − |∇w|p − p|∇w|p−2∇w · ∇φ + Et(w) + Et(φ) in B1,

φ = 0 on ∂B1,

(6)
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where

L(φ) := −�φ + pτp−1C
p−1
p

x · ∇φ

|x|2 .

To simplify the calculations we will assume that Ht(v, x) = |∇v|2 + t (A1(x)∇v) · ∇v but the 
exact same procedure will work for the non-simplified Ht . To find a solution of (6) we will apply 
the Contraction Mapping Theorem due to Banach and so towards this we define the nonlinear 
mapping Jt (φ) = ψ where ψ satisfies{

L(ψ) = (Ht (w + φ,x))
p
2 − |∇w|p − p|∇w|p−2∇w · ∇φ + Et(w) + Et(φ) in B1,

ψ = 0 on ∂B1,

(7)

of course at this point its not clear this nonlinear mapping Jt is well defined.
We now introduce the weighted Hölder spaces we will use for the fixed point argument; these 

spaces were introduced in [31], see also the monograph [34].
Fix 0 < α < 1 and 0 < s < 1

4 define As := {x ∈ B1 : s < |x| < 2s} and for 0 ≤ k (an integer) 
define

[w]k,α,s :=
k∑

j=0

sj sup
As

|∇jw| + sk+α sup
x,y∈As

|∇kw(x) − ∇kw(y)|
|x − y|α .

We now define the norm

‖w‖
C

k,α
ν

:= ‖u‖Ck,α(B1\B 1
4
) + sup

s∈(0, 1
4 )

s−ν[w]k,α,s .

The explicit norms we will use will be

‖f ‖
C

0,α
ν−2

= ‖f ‖C0,α(B1\B 1
4
) + sup

0<s< 1
4

s2−ν

(
sup
As

|f | + sα sup
x,y∈As

|f (x) − f (y)|
|x − y|α

)
.

‖φ‖
C

2,α
ν

= ‖φ‖C2,α(B1\B 1
4
)

+ sup
0<s< 1

4

s−ν

{
sup
As

|φ| + s sup
As

|∇φ| + s2 sup
As

|D2φ|

+ s2+α sup
x,y∈As

|D2φ(x) − D2φ(y)|
|x − y|α

}
.

We put C2,α
ν,D(B1\{0}) to be the set of functions φ ∈ C2,α

ν (B1\{0}) with φ = 0 on ∂B1. In the 
end we will end up showing that Jt : Br → Br (Br the closed ball centered at the origin with 
radius r in C2,α

ν,D(B1\{0})) is a contraction mapping.
Of course we will need to understand the mapping properties of the linear mapping L on these 

spaces; which is the topic of the next section. Towards this end we begin with a result regarding 
the mapping properties of � on these weighted spaces.
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Theorem ([34], Corollary 2.3). Let 0 < α < 1, N ≥ 3 and let −(N − 2) < ν < 0. Then there 
is some C > 0 such that for all f ∈ C

0,α
ν−2 there is some unique φ ∈ C

2,α
ν,D such that −�φ = f

in B1 and φ = 0 on ∂B1. Moreover we have ‖φ‖
C

2,α
ν

≤ C‖f ‖
C

0,α
ν−2

. In fact � is an isomorphism 

between the spaces.

The specific parameter ranges. As mentioned above we concentrate on the case of N
N−1 < p < 2

and hence, unless otherwise stated, we now will always assume

N ≥ 3,
N

N − 1
< p < 2, τ := 2 − p

p − 1
, ν := −τ. (8)

In the last section of this article we consider the case of the other range of p. We remark that 
much of the linear theory becomes easier if one can take ν < 0 and with |ν| small; but since we 
need it for an explicit value we prefer to just cover that case. Note that under these assumptions 
we have ν ∈ (−(N − 2), 0).

1.3. The linear theory; N
N−1 < p < 2

In this section we consider the solvability of the linear equation given by

{
L(φ) = f in B1\{0},

φ = 0 on ∂B1.
(9)

In particular we would hope to be able to obtain the same theory for L as one has for �: 
there is some C > 0 such that for all f ∈ C

0,α
ν−2 there is some φ ∈ C

2,α
ν,D which satisfies (9) and 

‖φ‖
C

2,α
ν,D

≤ C‖f ‖
C

0,α
ν−2

. One approach to obtain these estimates would be to apply the standard 

continuation argument to connect L to −� via,

Lγ (φ) := −�φ + γpτp−1C
p−1
p

x · ∇φ

|x|2 ,

and note L0 = −� and L1 = L. So to get estimates on L one needs to get estimates on Lγ

independent of γ . We are unable to do that directly on these spaces; to fix the problem we will 
remove the first two modes on the involved function spaces.

For k ≥ 0 we let (�k, λk) denote the kth eigenpair of the Laplace–Beltrami operator, −�θ

on SN−1. So we have −�θ�k(θ) = λk�k(θ) for θ ∈ SN−1 and we assume the eigenfunc-
tions are L2(SN−1) normalized. Now recall λ0 = 0 (multiplicity zero) and λ1 = N − 1 (mul-
tiplicity N ) and then λ2 = 2N . So given a function φ defined on B1 we can write φ as 
φ(x) = ∑∞

k=0 ak(r)�k(θ) for r = |x| and θ = x
|x| for suitably chosen ak(r)’s.

Definition 1. Let N, p, τ, ν be as in (8) and define

Y = Yα
ν−2 :=

{
f ∈ C

0,α
ν−2(B1\{0}) : f has no k = 0,1 modes

}
,

X = Xα
ν,D :=

{
φ ∈ C

2,α
(B1\{0}) : φ has no k = 0,1 modes

}
,
ν,D
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where by no k = 0, 1 modes we mean the function can be represented as 
∑∞

k=2 ak(r)�k(θ); note 
we are abusing notation a bit here since the multiplicity of the k = 1 mode is N . Each subspace 
inherits the full space’s norm.

We now come to one of our main linear results.

Proposition 1. Suppose N, p, τ, ν satisfy (8). Then there is some C > 0 such that for all f ∈ Y

there is some φ ∈ X which satisfies (9) and ‖φ‖X ≤ C‖f ‖Y .

Lemma 1. Let N, p, τ, ν be as in (8)

1. Then X and Y are closed subspaces in their respective spaces.
2. � : X → Y is one to one and onto, continuous with continuous inverse.

Proof. 1. This holds under pointwise convergence.
2. Look at Corollary 2.5 [34]. Under this assumption on ν and N we have � : C2,α

ν,D → C
0,α
ν−2 is 

an isomorphism. We just need to check that that there is no interference between k = 0, 1 modes 
and other modes; which is clear. �

We now consider the kernel of Lγ in X.

Lemma 2 (Kernel of Lγ in X). Suppose N, p, τ, ν satisfy (8) and suppose γ ∈ [0, 1]. Suppose 
φ ∈ X with Lγ (φ) = 0 in B1\{0}. Then φ = 0.

Proof. Let φ ∈ X with Lγ (φ) = 0 in B1\{0}. We write φ(x) = ∑∞
k=2 ak(r)�k(θ) and then note 

we have

a′′
k (r) + (N − 1 − γp(N − 2 − τ))

r
a′
k(r) − λk

r2 ak(r) = 0 0 < r < 1,

with ak(1) = 0 for k ≥ 2. Since the equations are Euler we know there are solutions of the form 
ak(r) = rα where α satisfies

α2 + (N − 2 − γp(N − 2 − τ))α − λk = 0. (10)

We now define the parameter b := bγ := N − 2 − γp(N − 2 − τ). Note the solutions are given 
by

α−
k := −b

2
−

√
b2 + 4λk

2
, α+

k := −b

2
+

√
b2 + 4λk

2
,

and hence ak(r) = Ck(r
α+

k − rα−
k ) where we have used ak(1) = 0. Note that α+

k > 0 for k ≥ 2. 
Now note that if we have α−

k < ν = −τ then we must have ak = 0 otherwise ak /∈ C2,α
ν . So we 

need to check when one has α−
k < −τ . Note that α−

k < −τ is equivalent to b + √
b2 + 8N > 2τ

where we have used the fact that λ2 = 2N . Assume this is not true then for some γ ∈ [0, 1] we 
have 

√
b2 + 8N ≤ 2τ − b. This gives b2 + 8N ≤ (2τ − b)2, implies b ≤ τ − 2N

τ
. In particular 

we must have
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min
γ∈[0,1]b(γ ) = b(1) = N − 2 − p(N − 2 − τ) ≤ τ − 2N

τ
.

This leads us to

(p − 1)(τ + 2) ≤ N(p − 1 − 2

τ
) = N(p − 1)

−p

2 − p
< 0,

a contradiction. Since λk is increasing in k we get the desired result for all k ≥ 2 and hence we 
see ak = 0 for all k ≥ 2 and hence φ = 0. �

We now investigate the kernel of Lγ on the full space.

Lemma 3. Suppose N, p, τ, ν satisfy (8) and γ ∈ [0, 1]. Suppose ψ ∈ C∞(RN\{0}) satisfies

−�ψ(x) + γpτp−1C
p−1
p x · ∇ψ(x)

|x|2 = 0 R
N\{0}.

We further assume that there is some C > 0 such that |ψ(x)| ≤ C|x|ν and ψ has no k = 0, 1
modes. Then ψ = 0.

Proof. As before we write ψ(x) = ∑∞
k=2 ak(r)�k(θ) and then ak satisfies (10) and so for each 

k ≥ 2 there is some Ck, Dk such that ak(r) = Ckr
α+

k + Dkr
α−

k . To satisfy the decay condition 
we see, since α+

k > 0, we must have Ck = 0. So ak(r) = Dkr
α−

k . But recall from the proof of 
Lemma 2 we have α−

k < −τ = ν and hence we must have Dk = 0 otherwise the solution is too 
singular at the origin to belong to the required space. Hence we have ψ = 0. �
Proof of Proposition 1. Suppose N, p, τ, ν satisfy (8) and then recall we have � : X → Y

is an isomorphism. We would now like to show that (γ, φ) �→ Lγ (φ) is a continuous lin-
ear mapping from [0, 1] × C

2,α
ν,D(B1\{0}) → C

0,α
ν−2(B1\{0}). To see this we need really only 

examine the gradient term and for these purposes we set L̂(φ)(x) := x·∇φ(x)

|x|2 . Note we have 
x

|x|2 ∈ C
1,α
−1 and by Lemma 6 (see section 2) ∇φ ∈ C

1,α
ν−1 ↪→ C

0,α
ν−2, and again using this lemma 

L̂γ (φ) = x
|x|2 .∇φ ∈ C

1,α
ν−2 ↪→ C

0,α
ν−2 (continuously) and

‖L̂γ (φ)‖
C

0,α
ν−2

≤ ‖ x

|x|2 ‖
C

1,α
−1

‖∇φ‖
C

1,α
ν−1

≤ C‖φ‖
C

2,α
ν

,

so we have the desired continuity of the gradient term.
We now show that we can replace C2,α

ν,D, C0,α
ν−2 with X, Y . We really only need to check that 

given φ ∈ X we have x·∇φ

|x|2 ∈ Y . So fix φ ∈ X; so φ(x) = ∑∞
k=2 ak(r)�k(θ) and so ∇φ(x) · x =

r
∑∞

k=2 a′
k(r)�k(θ) and hence we have Lγ (φ) ∈ Y . So we have (γ, φ) → Lγ (φ) is a continuous 

linear operator from [0, 1] × X to Y . Also note that L0 = −� is an isomorphism. So if we can 
show the appropriate bounds on Lγ then we’d have L1 : X → Y is onto with continuous inverse.

So we suppose we don’t have the required result and so there is γm ∈ [0, 1], fm ∈ Y and 
φm ∈ X such that
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Lm(φm) := Lγm(φm) = fm in B1, φm = 0 on ∂B1

with ‖fm‖Y := ‖fm‖
C

0,α
ν−2

→ 0 and ‖φm‖X := ‖φm‖
C

2,α
ν

= 1. So we have

‖fm‖
C

0,α
ν−2

= ‖fm‖C0,α(B1\B 1
4
) + sup

0<s< 1
4

s2−ν

(
sup
As

|fm| + sα sup
x,y∈As

|f (x) − f (y)|
|x − y|α

)
→ 0.

Also we have

1 = ‖φm‖
C

2,α
ν

= ‖φm‖C2,α(B1\B 1
4
)

+ sup
0<s< 1

4

s−ν

{
sup
As

|φm| + s sup
As

|∇φm| + s2 sup
As

|D2φm|

+ s2+α sup
x,y∈As

|D2φm(x) − D2φm(y)|
|x − y|α

}
.

We now try and obtain a contradiction and to do this we consider a few separate cases:
Case I. ‖φm‖C2,α(B1\B 1

4
) is bounded away from zero.

Case II. ‖φm‖C2,α(B1\B 1
4
) → 0 but there is some sm < 1

4 bounded away from zero such that

s−ν
m

{
sup
Asm

|φm| + sm sup
Asm

|∇φm| + s2
m sup

Asm

|D2φm| + s2+α
m sup

x,y∈Asm

|D2φm(x) − D2φm(y)|
|x − y|α

}

is bounded away from zero.
Case III. There is some sm ↘ 0 such that

s−ν
m

{
sup
Asm

|φm| + sm sup
Asm

|∇φm| + s2
m sup

Asm

|D2φm| + s2+α
m sup

x,y∈Asm

|D2φm(x) − D2φm(y)|
|x − y|α

}
→ 1.

We begin with a result we will use numerous times. Suppose ν̃ ∈R and α̃ ∈ (0, 1) is such that 
φm, φ ∈ C

0,α̃
ν̃

with φm ∈ Y α̃
ν̃

(recall this is the subspace of functions with no k = 0, 1 modes in 

C
0,α̃
ν̃

) and φm → φ in Cloc(B1\{0}). Then φ ∈ Y α̃
ν̃

.
Case I. Let 0 < β < α (but close) and suppose we have ν̂ < ν but close. Then, see [34], we have 
C

2,α
ν,D ⊂⊂ C

2,β

ν̂,D
; and so we have Xα

ν ⊂⊂ X
β

ν̂
. From this we see there is some φ ∈ X

β

ν̂
such that 

(after passing to a subsequence) φm → φ in Xβ

ν̂
. Note that we can pass to the limit in the equation 

for φm to see that φ satisfies Lγ (φ) = 0 in B\{0} with φ = 0 on ∂B; here γm → γ .
Checking the details of the proof of Lemma 2 one sees that for β, ν̂ as above and close enough 

to α, ν we can apply the result of the lemma for the new parameters to see that φ = 0. From this 
we see that φm → 0 in C2,β

ν̂,D
. We now again consider the equation for φm and note that

−�φm = fm − γmpτp−1C
p−1
p

x

|x|2 · ∇φm B1\{0}

with φm = 0 on ∂B1.
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Claim 1. We claim that for ν̂ and β chosen as above (but close enough) we have that

γmpτp−1C
p−1
p

x

|x|2 · ∇φm → 0 in Yα
ν̂−2.

Assuming this claim for now; we can then apply the linear theory for −� to see that φm → 0 in 
C

2,α

ν̂,D
. In particular we have φm → 0 in C2,α(B1\B 1

4
); a contradiction.

Proof of Claim 1. First note that since φm → 0 in C2,β

ν̂,D
and so gm := x

|x|2 · ∇φm → 0 in 

C0,α(B1\B 1
4
). Also note that for 0 < sm < 1

4 we have

s2−ν̂
m sup

Asm

|gm| ≤ Cs1−ν̂ sup
Asm

|∇φm| ≤ C1‖φm‖
C

2,β

ν̂,D

→ 0.

We now consider the final term in the norm. First we note a scaling argument shows there is some 
C > 0

sup
x,y∈Asm

|∇φm(x) − ∇φm(y)|
|x − y| ≤ Csν̂−2

m ‖φm‖
C

2,β

ν̂

.

Let 0 < sm < 1
4 and x, y ∈ Asm . Then we have

|gm(x) − gm(y)| ≤ |∇φm(x) − ∇φm(y)|
|x| + |∇φm(y)||x − y|

|x|2

+ |∇φm(y)|(|y| + |x|)|y − x|
|x|2|y| ,

and using this we see

s2−ν̂+α
m

|gm(x) − gm(y)|
|x − y|α ≤ Cs2−ν̂+α

m

sm

|∇φm(x) − ∇φm(y)|
|x − y|α + Cs2−ν̂+α

m |∇φm(y)|x − y|1−α

s2
m

+ Cs2−ν̂+α
m |∇φm(y)||x − y|1−α

s2
m

and from this we obtain some C0 > 0 such that

s2−ν̂+α
m

|gm(x) − gm(y)|
|x − y|α ≤ C1‖φm‖

C
2,β

ν̂

→ 0,

which completes the proof of the Claim 1. �
Case II. There is some ε0 > 0 and 0 < C ≤ 1

4 and some sm ∈ [C, 14 ]

s−ν
m

{
sup
Asm

|φm| + sm sup
Asm

|∇φm| + s2
m sup

Asm

|D2φm| + s2+α
m sup

x,y∈Asm

|D2φm(x) − D2φm(y)|
|x − y|α

}
≥ ε0.

(11)
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We argue exactly as in Case I to see that φm → 0 in C2,α

ν̂,D
. But since sm is bounded away from 

zero we see the weight ν does not play a role in the quantity (11). From this we see that this 
quantity in (11) goes to zero as m → ∞; a contradiction.
Case III. We now consider four subcases. We assume there is some ε0 > 0, sm → 0 and xm ∈ Asm

such that one of the following holds:
Case 1. s−ν

m |φm(xm)| ≥ ε0,
Case 2. s1−ν

m |∇φm(xm)| ≥ ε0,
Case 3. s2−ν

m |D2φm(xm)| ≥ ε0.

Case 4. some ym ∈ Asm such that s2−ν+α
m

|D2φm(xm)−D2φm(ym)|
|xm−ym|α ≥ ε0.

We now consider each of these four cases. Note in all these cases we have the supremum over 
Asm is bounded above.
Case 1. Define

ψm(x) := s−ν
m φm(smx), |x| < 1

sm
,

and note there is some 1 ≤ |zm| ≤ 2 such that |ψm(zm)| ≥ ε0. Set Ek := {x ∈ R
N : 1

k
< |x| < k}

for k ≥ 2 an integer. Note that ψm satisfies

Lm(ψm) = −�ψm(x) + γmpτp−1C
p−1
p x · ∇ψm(x)

|x|2 = s2−ν
m fm(smx) |x| < 1

sm
. (12)

Note that on Ek we have the right hand side of this equation converge uniformly to zero. 
Using the assumption that ‖φm‖

C
2,α
ν

= 1 we get

sup
0<s< 1

4

s−ν sup
As

|φm| ≤ 1,

that gives

s−ν |φm(x)| ≤ 1, 0 < s <
1

4
, s < |x| < 2s.

Changing the variables x → tx and s → δt in the above we get

t−ν |φm(tx)| ≤ δν, 0 < δ <
1

4t
, δ < |x| < 2δ.

Now taking t = sm in the above inequality and using δν < (
|x|
2 )ν we get, for all 0 < δ < 1

4sm

|ψm(x)| ≤ |x|ν
2ν

for δ < |x| < 2δ.

In particular we have this bound on Ek for each fixed k for large enough m. Note also that for 
each fixed k and all large m with sm < 1

k
, ψm is uniformly bounded in C2,α(Ek). To see this note 

that from the definition of ψm we have
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‖∇ψm‖L∞(Ek) = s1−ν
m sup

x∈Ek

|∇φm(smx)| = s1−ν
m sup

y∈smEk

|∇φm(y)|.

Now assume supy∈smEk
|∇φm(y)| = supy∈As′m

|∇φm(y)| for a subset As′
m

⊆ smEk then (note we 

must have sm
s′
m

< k) we have

s1−ν
m sup

y∈smEk

|∇φm(y)| = (
sm

s′
m

)1−ν(s′
m)1−ν sup

y∈As′m
|∇φm(y)| ≤ k1−ν‖φm‖

C
2,α
ν

= k1−ν,

where in the last inequality we used the assumption that 1 = ‖φm‖
C

2,α
ν

. Similarly we can obtain 

‖D2ψm‖L∞(Ek) ≤ k2−ν and also find a uniform bound for the Hölder norm of D2ψm on Ek . Now 
since Ek ⊆ Ek+1 and 

⋃∞
1 Ek = R

N \ {0} then by the above estimates ψm is locally uniformly 
bounded in C2,α(RN \ {0}). Hence by the Arzela–Ascoli theorem and a standard diagonal argu-
ment, up to a subsequence, ψm converges at least in C1,α

loc (RN \ {0}) to a function ψ which is a 
solution of

Lγ∞(ψ) = −�ψ(x) + γ∞pτp−1C
p−1
p x · ∇ψ(x)

|x|2 = 0 in R
N\{0}, (13)

with lim|x|→∞ |ψ(x)| = 0 and |ψ(x)| ≤ 2−ν |x|ν . Here we have γm → γ∞ ∈ [0, 1]. Note also that 
since each φm had no k = 0, 1 modes we see that ψ has no k = 0, 1 modes. Then by Lemma 3
we have ψ = 0, but recalling ψm → ψ = 0 in C1,α(Ek) for each k ≥ 2 we see that ψm(zm) → 0; 
a contradiction.
Case 2. Define ψm(x) := s−ν

m φm(smx). From our assumption on φm there is some |zm| ∈ (1, 2)

such that |∇ψm(zm)| ≥ ε0. Now note that ψm solves (12) and we can pass to the limit as in 
case 1. So as in case 1 we have ψm → ψ = 0 in C1,γ (Ek) for each k ≥ 2. In particular we have 
|∇ψm(zm)| → 0; a contradiction.
Case 3. Again we set ψm(x) := s−ν

m φm(smx). We now suppose the result does not hold and so 
there is some ε0 > 0 and some 1 < |zm| < 2 such that |D2ψm(zm)| ≥ ε0. As before we have ψm

satisfies (12) on Ek . Set gm(x) := s2−ν
m fm(smx) denote the right hand side of (12). As before we 

have gm → 0 in L∞(Ek) for each fixed k. We now check the Hölder portion of the norm. Note 
for x, y ∈ Ek (k fixed and m large) we have

|gm(x) − gm(y)|
|x − y|α = s2−ν+α

m

|fm(smx) − fm(smy)|
|smx − smy|α .

Then note we have the existence of some Ck such that

|gm(x) − gm(y)|
|x − y|α = s2−ν+α

m

|fm(smx) − fm(smy)|
|smx − smy|α ≤ Ck‖fm‖

C
0,α
ν−2

and hence we have gm → 0 in C0,α(Ek) for all 2 ≤ k. We now claim that ψm → 0 in C2,α(Ek)

for all k ≥ 2 and in particular we have the result for k = 2; which gives

s2−ν
m sup

sm <|x|<2s

|D2φm(x)| = sup
x∈E2

|D2ψm(x)| → 0, and

2 m
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s2−ν+α
m sup

x,y∈E2

|D2φm(smx) − D2φm(smy)|
|smx − smy|α = sup

x,y∈E2

|D2ψm(x) − D2ψm(y)|
|x − y|α → 0,

which rules out case 3 and case 4.
We now prove the needed claim. We first fix 0 < β < α but close and note by a compactness 

argument (and a diagonal argument) there is some ψ such that ψm → ψ in C2,β(Ek) for all 
k ≥ 2. So as above ψ satisfies the limiting equation and we can use the previous results to see 
that ψ = 0 in Ek . We now rewrite (12) as

−�ψm(x) = s2−ν
m fm(smx) − γmpτp−1C

p−1
p x · ∇ψm(x)

|x|2 |x| < 1

sm
, (14)

and note that since ψm → 0 in C2,β(E2k) we must have γmpτp−1C
p−1
p x·∇ψm(x)

|x|2 → 0 in C0,α(E2k)

and hence we can use interior estimates to obtain the desired convergence to result on Ek. �
We now examine the linear operator L on modes k = 0 and k = 1.

Lemma 4 (k = 0, 1 modes). Let N, p, τ, ν be as in (8). There is some C > 0 such that for all 
functions b0, b1 (with finite norm defined below) defined on (0, 1] there is some ak defined on 
(0, 1] with ak(1) = 0 and which satisfies

a′′
k (r) + (N − 1 − p(N − 2 − τ))

r
a′
k(r) − λk

r2 ak(r) = bk(r), 0 < r < 1.

Moreover one has the estimate ‖ak‖C
2,α
ν

≤ C‖bk‖C
0,α
ν−2

.

Proof. As before we set β := (N − 1 − p(N − 2 − τ)) and b := β − 1.
Mode k = 0. Using the integrating factor technique we have

d

dr
(rβa′

0(r)) = rβb0(r) 0 < r < 1,

and integrating this from r to 1 and taking a′
0(1) = 0 as a free parameter we get

rβa′
0(r) = −

1∫
r

tβb0(t)dt,

and using the bound on b0 we see

|a′
0(r)| ≤

‖b0‖C
0,α
ν−2

rβ

1∫
r

tβ−2+νdt.

Checking the parameter ranges one sees that β − 2 + ν < −1 and hence there is some C > 0
such that
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|a′
0(r)| ≤ C

‖b0‖C
0,α
ν−2

r1−ν
,

which is the desired weighted L∞ estimate on a′
0. Integrating this estimate gives r−ν |a0(r)| ≤

C‖b‖
C

0,α
ν−2

. To obtain estimates for the other terms in the C2,α
ν norm one can work directly with 

the ode and combine the results to obtain an estimate of the form ‖a0‖C
2,α
ν

≤ C‖b0‖C
0,α
ν−2

.

Mode k = 1.

r2a′′
1 (r) + r(N − 1 − p(N − 2 − τ))a′

1(r) − (N − 1)a1(r) = r2b1(r) 0 < r < 1

with a1(1) = 0. (Note we have used fact that λ1 = N − 1.)
Homogeneous solutions. Try a(r) = rα and we then get

α2 + bα − (N − 1) = 0

which has roots

α+ := −b

2
+

√
b2 + 4(N − 1)

2

α− := −b

2
−

√
b2 + 4(N − 1)

2
.

Set y1(r) := rα+ , y2(r) := rα− (we switched notation from a to y to allow us to index the 
solutions without confusion with regards to the modes). Variation of parameters says that

W(y1, y2)(r) = (α− + α+)rα++α−−1,

and a particular solution would be given by

ap(r) = u(r)y1(r) + v(r)y2(r)

where

u′(r) = −y2(r)b1(r)

W(r)
= −b1(r)

(α+ + α−)rα+−1 , v′(r) = y1(r)b1(r)

w(r)
= b1(r)

(α+ + α−)rα−−1 .

Let γ := α+ + α− and then note we can write the general solution in the form

a(r) = rα−

γ

r∫
T1

b1(t)

tα−−1 dt − rα+

γ

r∫
1

b1(t)

tα+−1 dt + C1r
α+ + C2r

α− ,

where T1 and Ci are to be picked later.
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The first thing to note that is that

|b1(t)|
tα−−1 ≤

‖b1‖C
0,α
ν−2

tα−+τ+1

|b1(t)|
tα+−1 ≤

‖b1‖C
0,α
ν−2

tα++τ+1 .

Since α+ + τ + 1 > 1 we see that

∣∣∣
r∫

1

b1(t)

tα+−1 dt

∣∣∣ ≤
C‖b1‖C

0,α
ν−2

rα++τ

and hence

∣∣∣ rα+

γ

r∫
1

b1(t)

tα+−1 dt

∣∣∣ ≤
C‖b1‖C

0,α
ν−2

rτ
.

With this in mind let us take C2 = 0. So we now have

a(r) = rα−

γ

r∫
T1

b1(t)

tα−−1 dt − rα+

γ

r∫
1

b1(t)

tα+−1 dt + C1r
α+ .

A computation shows that α− + τ < 0. Indeed, this is equivalent to b + √
b2 + 8N > 2τ or 

τ − 2N
τ

≤ b = N − 2 −p(N − 2 − τ). A calculation shows that the latter inequality is equivalent 
to (p − 1)(τ + 2) ≥ N(p − 1 − 2

τ
) = N(p − 1)

−p
2−p

, which is true. Hence, b1(t)

tα−−1 is integrable on 
(0, 1) and so we can take T1 = 0. So we have

a(r) = rα−

γ

r∫
0

b1(t)

tα−−1 dt − rα+

γ

r∫
1

b1(t)

tα+−1 dt + C1r
α+ ,

and we pick C1 such that

0 = 1

γ

1∫
0

b1(t)

tα−−1 dt + C1,

and hence a(1) = 0. Using the bound on b1 we see that |C1| ≤ C‖b1‖C
0,α
ν−2

. We now get some 

estimates. First note that

1∫ |b1(t)|
tα+−1 dt ≤ ‖b1‖C

0,α
ν−2

1∫
1

t1−ν+α+ dt,
r r
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and note that 1 − ν + α+ > 1 and hence the right hand side is bounded above by 
C‖b1‖

C
0,α
ν−2

rα+−ν and 
hence we have

∣∣∣ rα+

γ

r∫
1

b1(t)

tα+−1 dt

∣∣∣ ≤
C‖b1‖C

0,α
ν−2

r−ν
.

We now examine the other two terms and towards this define

z(r) := rα−

γ

r∫
0

b1(t)

tα−−1 dt + C1r
α+ .

Using the bound on b1 and C1 we see that

|z(r)| ≤
C‖b1‖C

0,α
ν−2

r−ν
+ C‖b1‖C

0,α
ν−2

rα+ ,

and hence r−ν |z(r)| ≤ C‖b1‖C
0,α
ν−2

(1 + rα+−ν) which gives us the desired weighted L∞ bound 

on a(r). To get the desired weighted L∞ bounds on a′(r) and a′′(r), differentiate the formula of 
a(r) to get a′(r) and do similar as above we, then we use the ODE for a′′(r). Combining them 
we get then the estimate ‖a‖

C
2,α
ν

≤ C‖b1‖C
0,α
ν−2

. �
Lemma 5 (Combining the estimates). Let N, p, τ, ν be as in (8). There is some C > 0 such 
that for all f ∈ C

0,α
ν−2(B1\{0}) there is some φ ∈ C

2,α
ν,D(B1\{0}) such that L(φ) = f in B1\{0}. 

Moreover one has ‖φ‖
C

2,α
ν,D

≤ C‖f ‖
C

0,α
ν−2

.

Proof. For this proof we are more precise with our notation regarding the eigenfunctions of 
the Laplace–Beltrami operator. First we have �0(θ) = 1 and then for the k = 1 mode there is 
{�1,i (θ) : 1 ≤ i ≤ N} and then there is the higher modes. Given f ∈ C

0,α
ν−2 we write

f (x) = b0(r) +
N∑

i=1

b1,i (r)�1,i (θ) + f̂ (x),

where f̂ ∈ Yα
ν−2. For φ ∈ C

2,α
ν,D we similarly write

φ(x) = a0(r) +
N∑

i=1

a1,i (r)�1,i (θ) + φ̂(x), (15)

where φ̂ ∈ Xα
ν . We now get the desired estimates. Let f ∈ C

0,α
ν−2 with the above representation 

and we let a0, a1,i , φ̂ be such that L(a0) = b0, L(a1,i ) = b1,i for 1 ≤ i ≤ N and L(φ̂) = f̂ where 
φ̂ ∈ Xα

ν and where all functions satisfy a zero Dirichelt boundary condition. By our earlier results 
there is some C > 0 such that
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‖a0‖C
2,α
ν

≤ C‖b0‖C
0,α
ν−2

, ‖a1,i‖C
2,α
ν

≤ C‖b1,i‖C
0,α
ν−2

1 ≤ i ≤ N, ‖φ̂‖
C

2,α
ν

≤ C‖f̂ ‖
C

0,α
ν−2

.

We now define φ as in (15) and hence L(φ) = f in B1\{0} with φ = 0 on ∂B1. Additionally we 
have

‖φ‖
C

2,α
ν

≤ C

(
‖b0‖C

0,α
ν−2

+
N∑

i=1

‖b1,i‖C
0,α
ν−2

+ ‖f̂ ‖
C

0,α
ν−2

)
,

and we now claim there is some C1 > 0 such that

(
‖b0‖C

0,α
ν−2

+
N∑

i=1

‖b1,i‖C
0,α
ν−2

+ ‖f̂ ‖
C

0,α
ν−2

)
≤ C1‖b0 +

N∑
i=1

b1,i�1,i + f̂ ‖
C

0,α
ν−2

= C1‖f ‖
C

0,α
ν−2

,

which would give our desired estimate. We now suppose the claim is false and so for all m ≥ 1
there is some bm

0 , bm
1,i , f̂

m such that

‖bm
0 ‖

C
0,α
ν−2

+
N∑

i=1

‖bm
1,i‖C

0,α
ν−2

+ ‖f̂ m‖
C

0,α
ν−2

≥ m‖bm
0 +

N∑
i=1

bm
1,i�1,i + f̂ m‖

C
0,α
ν−2

. (16)

We now define tm0 := ‖bm
0 ‖

C
0,α
ν−2

and tmi := ‖bm
1,i‖C

0,α
ν−2

for 1 ≤ i ≤ N and tmN+1 := ‖f̂ m‖
C

0,α
ν−2

. 

After passing to a subsequence in m we can assume that there is some 0 ≤ i0 ≤ N + 1 such that 
tmi0

≥ tmi for all 0 ≤ i ≤ N + 1.
We now re-normalize each term by dividing by tmi0 ; we define (without using new notation) 

bm
0 := bm

0
tmi0

, bm
1,i := bm

1,i

tmi0
, f̂ m := f̂ m

tmi0
. Note we still have (16) with these re-normalized functions, 

and note the left hand side of (16) is bounded below by 1 and above by some constant C. Note 
by (16) we have f m := bm

0 + ∑N
i=1 bm

1,i�1,i + f̂ m → 0 in C0,α
ν−2.

We now suppose that 0 ≤ i0 ≤ N and we now consider

gm(x) :=
∫

θ∈SN−1

f m(|x|θ)�1,i0(θ)dθ,

where for notational convenience we are defining �1,0(θ) = 1 the k = 0 eigenfunction. We claim 
that since f m → 0 in C0,α

ν−2 that gm → 0 in C0,α
ν−2; we will prove this claim later. But now note 

that gm(x) = bm
1,i0

(|x|) where we are abusing notation again; we are taking bm
1,i0

(r) = bm
0 (r) in 

the case of i0 = 0. So we have bm
1,i0

(r) → 0 in C0,α
ν−2; which contradicts the fact that this quantity 

has norm 1. So from this we must have i0 = N + 1 and we also that bm
0 , bm

1,i → 0 in C0,α
ν−2 for 

all 0 ≤ i ≤ N . So we must have ‖f̂ m‖
C

0,α
ν−2

= 1. But recall we have (after applying the triangle 

inequality)

C ≥ m‖f m‖ 0,α ≥ m
(
‖f̂ m‖ 0,α − εm

)

Cν−2 Cν−2
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where εm is the sum of the norms of bm
0 (r), bm

1,i (r)�1,i (θ). So εm → 0 and since ‖f̂ m‖
C

0,α
ν−2

= 1

we get a contradiction.
We now prove the needed claim. Without loss of generality take 1 ≤ i0 ≤ N . Its clear that 

gm → 0 uniformly on B1\B 1
4
. Now suppose 0 < s < 1

4 and let θ ∈ Sn−1 and x ∈ As . Then one 
sees that

s2−ν |gm(x)| ≤ Ci0

∫
θ∈SN−1

|f m(|x|θ)|s2−νdθ ≤ Ci0C‖f m‖
C

0,α
ν−2

and hence we see

sup
0<s< 1

4

s2−ν sup
x∈As

|gm(x)| → 0.

We now need to consider the Hölder portions of the norm. We first let x, y ∈ B1\B 1
4

distinct. 
Then we have

|gm(x) − gm(y)|
|x − y|α ≤

∫
θ∈SN−1

|f m(|x|θ) − f m(|y|θ)|
||x|θ − |y|θ |α I1|�1,i0(θ)|dθ,

where

I1 = ||x|θ − |y|θ |α
|x − y|α .

First note that

|f m(|x|θ) − f m(|y|θ)|
||x|θ − |y|θ |α ≤ ‖f m‖

C
0,α
ν−2

.

Also note by the triangle inequality we have I1 ≤ 1. Hence from the above we see that

sup
x,y∈B1\B 1

4

|gm(x) − gm(y)|
|x − y|α → 0.

We now assume 0 < s < 1
4 and x, y ∈ As are distinct. Using the above computations we see that

s2−ν+α |gm(x) − gm(y)|
|x − y|α ≤

∫
θ∈SN−1

‖f m‖
C

0,α
ν−2

I1|�1,i0(θ)|dθ.

Combing the results we see that gm → 0 in C0,α
ν−2. �



2884 A. Aghajani et al. / J. Differential Equations 264 (2018) 2865–2896
2. The fixed point argument

Recall we have defined Jt(φ) = ψ where ψ satisfies (7). To obtain a solution φ of (6) we will 
show that Jt is a contraction on Br where Br is the closed ball of radius r centered at the origin 
in C2,α

ν,D(B1\{0}) where as before we assume that N, p, τ, ν satisfy (8). Recall the generalized 
Binomial theorem says for a > 0 and |b| < a we can write

(a + b)
p
2 =

∞∑
k=0

γka
p
2 −kbk,

where γ0 = 1 and γ1 = p
2 . We use this to rewrite (7) as

L(ψ) =
∞∑

k=1

γkt
k|∇w + ∇φ|p−2k ((A1(x)(∇w(x) + ∇φ(x))) · (∇w(x) + ∇φ(x)))k

+ |∇w + ∇φ|p − |∇w|p − p|∇w|p−2∇w · ∇φ

+ Et(w) + Et(φ)

=: K1(φ) + K2(φ) + Et(w) + Et(φ) in B1\{0} (17)

with ψ = 0 on ∂B1.
We now begin with some computations. To simplify the calculus in the weighted Hölder 

spaces we use the following properties and remarks about these spaces.

Lemma 6 (Proposition 2.1 and Lemma 2.2 [34], Lemma 1 in [31]). The following properties 
hold.

(i) Assume that u ∈ Ck+1,α
ν (B1 \ {0}) then ∇u ∈ C

k,α
ν−1(B1 \ {0}).

(ii) If ui ∈ Ck,α
νi

(B1 \ {0}), i = 1, 2 then u1u2 ∈ C
k,α
ν1+ν2

(B1 \ {0}) and

‖u1u2‖C
k,α
ν1+ν2

(B1\{0}) ≤ c‖u1‖C
k,α
ν1

‖u2‖C
k,α
ν2 (B1\{0}),

for some constant c > 0 independent of u1 and u2.
(iii) If 0 < u ∈ Ck,α

ν (B1 \ {0}) and q > 0 then uq ∈ C
k,α
qν (B1 \ {0}). In addition

‖uq‖
C

k,α
qν (B1\{0}) ≤ c‖u‖q

C
k,α
ν (B1\{0})

for some constant c > 0 which does not depend on u.
(iii′) Also, if we replace u > 0 in above with u ≥ 0 then we have the same if q > k + 1.

(iv) If k + α < k′ + α′ and ν < ν′ then the embedding Ck′,α′
ν′ ↪→ Ck,α

ν is compact.

Remark 1. Note that in Lemma 6 part (iii), if 0 < q is an integer then we can allow u to be zero 
somewhere or change sign. To see this, use part (ii) for q functions u1 = u2 = ... = uq = u and 
ν1 = ν2 = ... = νq = ν.
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Computations involving K2. Recall we have

K2 = |∇w + ∇φ|p − |∇w|p − p|∇w|p−2∇w · ∇φ,

where w = Cp(|x|−τ − 1) and φ ∈ Br ⊂ C
2,α
D,ν .

We show that when ν = −τ then

‖K2‖C
0,α
ν−2

≤ C‖φ‖2
C

2,α
ν

,

for r sufficiently small. We have, by the binomial expansion

K2 = p

2
|∇w|p−2|∇φ|2 +

∞∑
k=2

γk|∇w|p−2k(2∇w · ∇φ + |∇φ|2)k := p

2
f1 + f2.

Note that we have convergence provided |2∇w · ∇φ + |∇φ|2| < |∇w|2; which will easily be 
satisfied provided we take φ small in C2,α

ν . First we estimate f1. Note we have |∇w| = C|x|ν−1

so

f1(x) = |x|(2−p)(−ν+1)|∇φ|2.
Note we have |x|(2−p)(−ν+1) ∈ C

1,α
(2−p)(−ν+1). Also, by part (i) of Lemma 6, ∇φ ∈ C

1,α
ν−1 and thus 

by part (ii), |∇φ|2 = ∇φ · ∇φ ∈ C
1,α
2(ν−1) and

‖|∇φ|2‖
C

1,α
2(ν−1)

≤ c‖∇φ‖2
C

1,α
ν−1

.

Since (2 −p)(−ν+1) +2(ν−1) = ν−2 then using part (ii) of Lemma 6 again, we get f1 ∈ C
1,α
ν−2

with

‖f1‖C
1,α
ν−2

≤ C‖∇φ‖2
C

1,α
ν−1

.

And since C1,α
ν−1 ↪→ C

0,α
ν−2 and ‖∇φ‖

C
1,α
ν−1

≤ ‖φ‖
C

2,α
ν

we get

‖f1‖C
0,α
ν−2

≤ C‖φ‖2
C

2,α
ν

, (18)

where C is independent of φ. To estimate ‖f2‖C
0,α
ν−2

we write

|∇w|p−2k(2∇w · ∇φ + |∇φ|2)k = |∇w|p
(2∇w · ∇φ + |∇φ|2

|∇w|2
)k := |∇w|pa(x)k.

We have 2∇w · ∇φ ∈ C
1,α
2(ν−1) and |∇φ|2 ∈ C

1,α
2(ν−1), hence 2∇w · ∇φ + |∇φ|2 ∈ C

1,α
2(ν−1). Also, 

1
|∇w|2 = C|x|2(1−ν) ∈ C

1,α
2(1−ν), hence

a(x) = 1
2 (2∇w · ∇φ + |∇φ|2) ∈ C

1,α
0 .
|∇w|
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Also, by Lemma 6 and the triangle inequality

‖a‖
C

1,α
0

≤ C0‖∇φ‖
C

1,α
ν−1

≤ C0‖φ‖
C

2,α
ν

.

Since |∇w|p ∈ C
1,α
p(ν−1) = C

1,α
ν−2, then using again part (ii) of Lemma 6 we get

|∇w|pa(x)k ∈ C
1,α
ν−2 ↪→ C

0,α
ν−2, for k = 2,3, ...,

and

‖ |∇w|pak‖
C

0,α
ν−2

≤ CCk
0‖φ‖k

C
2,α
ν

= CC2
0

(
C0‖φ‖

C
2,α
ν

)k−2‖φ‖2
C

2,α
ν

= Cc(r)k−2‖φ‖2
C

2,α
ν

, for k = 2,3, ...,

where c(r) → 0 as r → 0. Hence

‖f2‖C
0,α
ν−2

≤ C
( ∞∑

k=2

|γk|(c(r))k−2
)
‖∇φ‖2

C
2,α
ν

≤ C′‖∇φ‖2
C

2,α
ν

, (19)

for r small. Now using the above estimates (18) and (19) we get

‖K2‖C
0,α
ν−2

≤ C‖φ‖2
C

2,α
ν

, (20)

for all φ ∈ Br ⊂ C
2,α
D,ν with sufficiently small r .

Computations involving K1. Recall we have, with v = w + φ,

K1(x) =
∞∑

k=1

γkt
k|∇v|p−2k(A1(x)∇v · ∇v)k = |∇v|p

∞∑
k=1

γkt
k(

A1(x)∇v · ∇v

|∇v|2 )k.

Taking r sufficiently small we have |∇v| bounded away from zero. We have ∇v ∈ C
1,α
ν−1 then we 

show that 1
|∇ v|2 ∈ C

1,α
2−2ν . We write

1

|∇v|2 = 1

|∇w|2 + |∇φ|2 + 2∇w · ∇φ
= 1

|∇w|2
1

1 + |∇φ|2+2∇w·∇φ

|∇w|2
= |∇w|−2 1

1 + a(x)
.

Note we have |a(x)| < 1 for r sufficiently small, and as we did in the first part we have a ∈ C
1,α
0

and

‖a‖
C

1,α
0

≤ C0‖φ‖
C

2,α
ν

:= c(r) → 0 as r → 0.

Also we have

1

1 + a(x)
=

∞∑
(−1)iai(x).
i=0
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Note that by Lemma 6 part (iii′), ai ∈ C
1,α
0 for every i = 0, 1, 2, ... and ‖ai‖

C
1,α
0

≤ ‖a‖i

C
1,α
0

≤
ci(r), and since C1,α

0 is a Banach space then

1

1 + a(x)
∈ C

1,α
0 and

∥∥∥ 1

1 + a

∥∥∥
C

1,α
0

≤
∞∑
i=0

ci(r) = 1

1 − c(r)
< 2, (21)

for r small. Now note that we have |∇w|−2 = C|x|2−2ν so by Lemma 6 and (21), 1
|∇v|2 =

|∇w|−2 1
1+a(x)

∈ C
1,α
2−2ν and

∥∥∥ 1

|∇v|2
∥∥∥

C
1,α
2−2ν

≤ c||C|x|2−2ν ||
C

1,α
2−2ν

∥∥∥ 1

1 + a

∥∥∥
C

1,α
0

:= C0,

with C0 independent of r for all small r . Now since A(x) is smooth (we need here only A(x) ∈
C

1,α
0 ) and ∇v ∈ C

1,α
ν−1 then we easily get B(x) := A(x)∇v · ∇v ∈ C

1,α
2ν−2 with

‖B‖
C

1,α
2ν−2

≤ C‖∇v‖2
C

1,α
ν−1

≤ C‖v‖2
C

2,α
ν

.

Summing up the above we get by Lemma 6

A1(x)∇v · ∇v

|∇v|2 ∈ C
1,α
0 , with

∥∥∥A1∇v · ∇v

|∇v|2
∥∥∥

C
1,α
0

≤ C‖v‖2
C

2,α
ν

≤ C,

where C is independent of r for all small r . Now using |∇v|p ∈ C
1,α
p(ν−1) = C

1,α
ν−2 (note we used 

Lemma 6 part (iii) with |∇v| > 0), C1,α
ν−2 ↪→ C

0,α
ν−2 (continuously) and the above estimates we get 

K1 ∈ C
1,α
ν−2 ⊂ C

0,α
ν−2 and

‖K1‖C
0,α
ν−2

≤
( ∞∑

k=1

|γk|(Ct)k
)
‖v‖p

C
2,α
ν

≤ C(t) → 0 as t → 0. (22)

Computations involving Et(w) and Et(φ). To estimate ‖Et(w)‖
C

0,α
ν−2

and ‖Et(φ)‖
C

0,α
ν−2

we can 

use again Lemma 6 to easily get

‖Et(w)‖
C

0,α
ν−2

≤ Ct and ‖Et(φ)‖
C

0,α
ν−2

≤ Ct‖φ‖
C

2,α
ν

. (23)

Now by the definition of Jt , the continuity of the right inverse of L and the above estimates 
(20), (22) and (23) we get

‖Jt (φ)‖
C

2,α
ν

≤ C
(
‖K1‖C

0,α
ν−2

+ ‖K2‖C
0,α
ν−2

+ ‖Et(w)‖
C

0,α
ν−2

+ ‖Et(φ)‖
C

0,α
ν−2

)
≤ C(t) + C‖φ‖2

C
2,α
ν

+ Ct + Ct‖φ‖
C

2,α
ν

,

where C(t) → 0 as t → 0.
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Contraction. Let Jt (φ) = ψ and Jt (φ0) = ψ0 with φ, φ0 ∈ Br . Then we have

L(ψ − ψ0) = Et(φ − φ0) + K1(φ) − K1(φ0) + K2(φ) − K2(φ0).

First we estimate ‖K2(φ) − K2(φ0)‖C
0,α
ν−2

. We have

K2(φ) − K2(φ0) = p

2
|∇w|p−2(|∇φ|2 − |∇φ0|2)

+
∞∑

k=2

γk|∇w|p
{(

2∇w · ∇φ + |∇φ|2
|∇w|2

)k

−
(

2∇w · ∇φ0 + |∇φ0|2
|∇w|2

)k
}

:= F1(x) + F2(x).

First note that as we showed before F1 ∈ C1,α
ν−2 ↪→ C0,α

ν−2 (continuously), also we can write

F1(x) = p

2
|∇w|p−2(∇φ + ∇φ0) · ∇(φ − φ0),

hence

‖F1‖C
0,α
ν−2

≤ C(r)‖φ − φ0‖C
2,α
ν

, C(r) → 0 as r → 0. (24)

Also using the formula ak − bk = (a − b) 
∑k−1

i=0 aibk−1−i for k ≥ 2, we can write

a1(x) :=
(

2∇w · ∇φ + |∇φ|2
|∇w|2

)k

−
(

2∇w · ∇φ0 + |∇φ0|2
|∇w|2

)k

= (2∇w + ∇φ + ∇φ0) · ∇(φ − φ0)

|∇w|2

×
k−1∑
i=0

(
2∇w · ∇φ + |∇φ|2

|∇w|2
)i (

2∇w · ∇φ0 + |∇φ0|2
|∇w|2

)k−1−i

:= a2(x)

k−1∑
i=0

a3(x)ia4(x)k−1−i .

And similar as we have done in the first part we have aj(x) ∈ C
1,α
0 , j = 1, ..., 4 and

‖a2‖C
1,α
0

≤ C‖φ − φ0‖C
2,α
ν

, and ‖aj‖C
1,α
0

≤ c(r), j = 3,4, c(r) → 0 as r → 0.

Thus, using Lemma 6,

‖a1‖C
1,α
0

≤ Ckc(r)k−1‖φ − φ0‖C
2,α
ν

,

that gives
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‖F2‖C
0,α
ν−2

≤ C
( ∞∑

k=2

|γk|kc(r)k−1
)
‖φ − φ0‖C

2,α
ν

= Cc(r)
( ∞∑

k=2

|γk|kc(r)k−2
)
‖φ − φ0‖C

2,α
ν

,

c(r) → 0 as r → 0. (25)

And since r small we have kc(r)k−2 ≤ ( 1
2 )k , k = 3, 4, ... then from (25) we get

‖F2‖C
0,α
ν−2

≤ c(r)‖φ − φ0‖C
2,α
ν

, c(r) → 0 as r → 0. (26)

Combining (24) and (26) we arrive at

‖K2(φ) − K2(φ0)‖C
0,α
ν−2

≤ C(r)‖φ − φ0‖C
2,α
ν

, C(r) → 0 as r → 0. (27)

Now we estimate ‖K1(φ) − K1(φ0)‖C
0,α
ν−2

. Taking v = w + φ and v0 = w + φ0 we then have

K1(φ) − K1(φ0) =
∞∑

k=1

γkt
k

{
|∇v|p

(
A1(x)∇v · ∇v

|∇v|2
)k

− |∇v0|p
(

A1(x)∇v0 · ∇v0

|∇v0|2
)k

}

:=
∞∑

k=1

γkt
k
{
|∇v|pa(v)k − |∇v0|p(a(v0)

k
}
.

We write

B(x) := |∇v|pa(v)k − |∇v0|p(a(v0)
k = (|∇v|p − |∇v0|p)a(v)k + |∇v0|p(a(v)k − a(v0)

k).

As we showed in the first part we have |∇v|p, |∇v0|p ∈ C
1,α
ν−2 ↪→ C

0,α
ν−2 (continuously). Also for 

r sufficiently small we have |∇v|2−|∇v0|2
|∇v0|2 < 1 then we can write

|∇v|p − |∇v0|p = |∇v0|p
(
(1 + |∇v|2 − |∇v0|2

|∇v0|2 )
p
2 − 1

)
=

∞∑
k=1

γk(
|∇v|2 − |∇v0|2

|∇v0|2 )k.

Note that we have

b(x) := |∇v|2 − |∇v0|2
|∇v0|2 = ∇(v + v0) · ∇(φ − φ0)

|∇v0|2 .

Then for r small

‖b‖
C

0,α
ν−2

≤ C‖φ − φ0‖C
2,α
ν

≤ 2Cr

and so we get
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‖|∇v|p − |∇v0|p‖
C

0,α
ν−2

≤
∞∑

k=1

|γk|(C‖φ − φ0‖C
2,α
ν

)k

≤ C‖φ − φ0‖C
2,α
ν

∞∑
k=1

|γk|(2Cr)k−1 ≤ C1‖φ − φ0‖C
2,α
ν

.

Also as it is shown in the first part we have a(v), a(v0) ∈ C
1,α
0 , and using again the formula 

ak − bk = (a − b) 
∑k−1

i=0 aibk−1−i we can write

a(v)k − a(v0)
k = (a(v) − a(v0))

k−1∑
i=0

a(v)ia(v0)
k−1−i .

Now, similar as we did above, it is really not hard to see that

‖a(v) − a(v0)‖C
1,α
0

≤ c‖∇(v − v0)‖C
1,α
ν−1

= c‖∇(φ − φ0)‖C
1,α
ν−1

≤ c‖φ − φ0‖C
2,α
ν

.

Then taking C ≥ max{‖a(v)‖
C

1,α
0

, ‖a(v0)‖C
1,α
0

} we get

‖a(v)k − a(v0)
k‖

C
1,α
0

≤ ckCk−1‖φ − φ0‖C
2,α
ν

.

Using all the above obtained estimates we get

‖B(x)‖
C

0,α
ν−2

≤ kCk−1‖φ − φ0‖C
2,α
ν

.

Hence,

‖K1(φ) − K1(φ0)‖C
0,α
ν−2

≤
∞∑

k=1

|γk|tkkCk−1‖φ − φ0‖C
2,α
ν

= t
( ∞∑

k=1

|γk|k(tC)k−1
)
‖φ − φ0‖C

2,α
ν

.

Thus taking t small such that k(tC)k−1 < ( 1
2 )k for k ≥ 2, we get

‖K1(φ) − K1(φ0)‖C
0,α
ν−2

≤ Ct‖φ − φ0‖C
2,α
ν

. (28)

Finally using (27), (28), the fact that ‖Et(φ −φ0)‖C
0,α
ν−2

≤ Ct‖φ −φ0‖C
2,α
ν

and continuity of L−1

we get, for small t and r ,

‖Jt (φ) − Jt (φ0)‖C
0,α
ν−2

≤ (Ct + C(r))‖φ − φ0‖C
2,α
ν

, C(r) → 0 as r → 0.

This shows that for sufficiently small t and r , Jt : Br → Br is a contraction and hence we can 
apply Banach’s Contraction Mapping Principle to obtain a fixed point φ ∈ Br . Now recall that 
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v(x) = w(x) + φ(x) and note that 0 < w ∈ C
2,α
ν,D and hence for r > 0 small enough we have 

v(x) > 0 for 0 < |x| < 1 after taking into account the growth of the functions near x = 0 and the 

fact that w′(1) < 0. Moreover we have v(x) → ∞ as |x| → 0. Indeed, we have v(x) ≈ C|x| p−2
p−1

near the origin. To see this, note that we have ‖v − w‖
C

2,α
ν

= ‖φ‖
C

2,α
ν

< r . This in particular 

gives sup0<s< 1
4
s−ν supAs

|v(x) −w(x)| < r . Hence, |v(x) −w(x)| < r|x|ν for 0 < |x| < 1
2 . Note 

that we have w(x) = Cp (|x|ν − 1) (and ν < 0) thus taking r sufficiently small we get c1|x|ν ≤
v(x) ≤ c2|x|ν for |x| small. Taking into account other terms in the definition of ‖v − w‖

C
2,α
ν

we 

obtain similar estimates on ∇v and D2v, and see that v behaves like |x|ν near the origin. This 
proves the second part of the first assertion in Theorem 1, noting that u(y) = v(x) where x and 
y are related through y = x + tψ(x).

3. Case p > 2

In this section we will always assume

N ≥ 3, p > 2, τ := p − 2

p − 1
, ν := τ. (29)

We are now interested in obtaining positive nonclassical solutions of (4) in the case of p > 2
for t > 0 small enough. Recall from Example 1 that w(x) := Cp (1 − |x|τ ), where Cp−1

p :=
N−2+τ
τp−1 , is a C0,τ (B1) weak solution of (5) in the case of t = 0. So we will look for solutions 

of (5), in the case of 0 < t small, in the form of v(x) = w(x) + φ(x) where φ is in a suitable 
space. As in the case of N

N−1 < p < 2 we need φ to satisfy (6) and to find a φ we will apply 
the Banach Contraction Mapping Principle to the nonlinear mapping Jt defined as in (7), which 
at this point is not well defined. As before a crucial step will be to understand the linearized 
operator L(φ) := −�φ + −p|∇w|p−2∇w · ∇φ associated with the explicit radial solution w. A 
computation shows L is given by

L(φ) := −�φ + p(N − 2 + τ)(x · ∇φ(x))

|x|2 .

The space we will work on is C2,α
ν,D(B\{0}).

Theorem ([34], Proposition 2.3). Suppose N, p, τ, ν are as in (29). There is some C such that 
for all f ∈ C

0,α
ν−2 there is unique φ ∈ C2,α

ν and ζ ∈ R such that −�φ = f in B1\{0} with φ = ζ on 
∂B1 (note we are not prescribing ζ , it depends on f ). Additionally we have ‖φ‖

C
2,α
ν

≤ C‖f ‖
C

0,α
ν−2

.

Corollary 1. Suppose N, p, τ, ν are as in (29) and suppose f ∈ C
0,α
ν−2 has no k = 0 mode. Let 

φ, ζ be from the above theorem. Then ζ = 0 and φ has no k = 0 mode.

So in this new parameter range for ν it is only the k = 0 mode that is causing any issues.

Proof. We write φ(x) = ∑∞
k=0 ak(r)�k(θ) and note that since f has no k = 0 mode we have 

a0(r) = C1
rN−2 + C2 and after taking into account the behavior of φ near x = 0 we see that 

C1 = 0. So φ(rθ) = φ(x) = C2 + ∑∞
ak(r)�k(θ) and integrating this over SN−1 we arrive at 
k=1



2892 A. Aghajani et al. / J. Differential Equations 264 (2018) 2865–2896
C2|SN−1| = ∫
SN−1 φ(rθ)dθ and hence this quantity is independent of 0 < r < 1. But recall that 

|φ(x)| ≤ C|x|τ and hence by sending r ↘ 0 we have C2 = 0 and now sending r ↗ 1 we have 
ζ = 0. �
Definition 2. Let N, p, τ, ν be as in (29) and set

Yα
ν−2 := Y =

{
f ∈ C

0,α
ν−2(B1\{0}) : f has no k = 0 mode

}
,

and

Xα
ν,D := X =

{
φ ∈ C

2,α
ν,D(B1\{0}) : φ has no k = 0 mode

}
,

and we use the natural norm the subspace inherits from the full space.

So � : X → Y is an isomorphism.

Proposition 2. Let N, p, τ, ν be as in (29). Then there is some C > 0 such that for all f ∈ Yα
ν−2

there is some φ ∈ Xα
ν,D such that L(φ) = f in B1\{0} with φ = 0 on ∂B1. Moreover one has the 

estimate ‖φ‖
C

2,α
ν

≤ C‖f ‖
C

0,α
ν−2

.

Proof. We begin by analyzing the kernel of Lγ on the unit ball and also the full space.
Suppose φ ∈ X satisfies Lγ (φ) = 0 in B1\{0}. As in Lemma 2 we write φ = ∑∞

k=1 ak(r)�k(θ)

and so ak satisfies

a′′
k (r) + (N − 1 − γp(N − 2 + τ))

r
a′
k(r) − λk

r2 ak(r) = 0 0 < r < 1, (30)

with ak(1) = 0 for k ≥ 1. As before this is an equation of Euler form and so we look for solutions 
of the form rα and so α must satisfy α2 + αb − λk = 0 where b = bγ = N − 2 − γp(N − 2 + τ)

and as before this has roots

α−
k := −b

2
−

√
b2 + 4λk

2
, α+

k := −b

2
+

√
b2 + 4λk

2
.

Taking into the boundary condition we see we must have ak(r) = Ck(r
α+

k − rα−
k ). Note first that 

α+
k > 0 and also note that since α+

k 
= α−
k we see that if α−

k < τ then we must have Ck = 0
otherwise φ /∈ X. But note α−

k < 0 and so we have ak = 0 for k ≥ 1 and hence φ = 0.
We now consider the full space problem; which we will arrive at later after a blow up argu-

ment. Let ψ ∈ C∞(RN\{0}) which satisfies

−�ψ + γp(N − 2 + τ)(x · ∇ψ)

|x|2 = 0 R
N\{0},

and we also assume ψ satisfies the pointwise bound |ψ(x)| ≤ C|x|τ for some C > 0. Ad-
ditionally we assume ψ has no k = 0 mode. We now show ψ = 0; as before we assume 
ψ we can write ψ(x) = ∑∞

k=1 ak(r)�k(θ). Then ak satisfies (30) on 0 < r < ∞ and so we 

have ak(r) = Ckr
α+

k − Dkr
α−

k . Again since α+ > α− and αk− < 0 (and hence less than τ ) 
k k
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we have Dk = 0. By using the pointwise bound on ψ at both the origin and infinity we see 
that we must have Ck = 0 unless α+

k = τ . We now rule out this case; so we need to rule out 

h := −b + √
b2 + 4λk = 2τ . First note that h′(b) < 0 and so we have

h(b(γ )) ≥ h( max
γ∈[0,1]b(γ )) = h(b(0)) = h(N − 2) ≥ 2 >

2(p − 2)

p − 1
,

and hence we have −b+√
b2 + 4λk > 2τ for all γ ∈ [0, 1] and k ≥ 1. We can now conclude that 

ψ = 0.
We now examine the operator L and as before we use a continuation argument; for 0 ≤ γ ≤ 1

set Lγ (φ) := −�φ + p(N−2+τ)(x·∇φ(x))

|x|2 . To begin we need to show that (γ, φ) �→ Lγ (φ) is a 
continuous linear operator from [0, 1] × Xα

ν to Yα
ν−2. The proof of this result for the previous 

range of p carries over to this range of p. So to prove the desired estimate for L it is sufficient to 
prove a priori estimates independent of γ . So towards a contradiction we assume Lγm(φm) = fm

where ‖fm‖Y → 0 and ‖φm‖X = 1 (here Y = Yα
ν−2 and X = Xα

ν ) and γm ∈ [0, 1]. We now derive 
a contradiction. The proof is almost exactly the same as in the case of the other range of p. The 
only issue one needs to be careful with is that we don’t have the needed theory for � on C2,α

ν,D

to C0,α
ν−2 now; but we have the theory on Xα

ν to Yα
ν−2 and this suffices. We now argue exactly as 

before by considering the various cases. In each case we obtain the needed contradiction after 
using the above results regarding the kernel of Lγ on the unit ball and the full space. �

We now obtain the needed linear theory for the k = 0 mode.

Lemma 7 (Mode k = 0). Let N, p, τ, ν be as in (29). Then there is some C > 0 such that for all 
f = f (r) there is some a = a(r) such that L(a) = −f in B1\{0} with a(1) = 0. Moreover we 
have ‖a‖

C
2,α
ν

≤ C‖f ‖
C

0,α
ν−2

.

Proof. Note a must satisfy a′′(r) + βa′(r)
r

= f where β := N − 1 − p(N − 2 + τ). Using the 
integrating factor method and integrating between r and 1 we arrive at (after setting a′(1) = T a 
free parameter to be picked later)

rβa′(r) = T −
1∫

r

tβf (t)dt.

Note we have t2−τ |f (t)| ≤ ‖f ‖
C

0,α
ν−2

. From this note we have

rβ |a′(r)| ≤ |T | +
1∫

r

‖f ‖
C

0,α
ν−2

t2−τ−β
,

and a computation shows we have 2 − τ − β > 1 and so we have

rβ |a′(r)| ≤ |T | + C‖f ‖ 0,α rβ−1+τ ,

Cν−2
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and hence we have

r1−τ |a′(r)| ≤ |T |r1−τ−β + C‖f ‖
C

0,α
ν−2

≤ |T | + C‖f ‖
C

0,α
ν−2

,

since 1 − τ − β > 0.
We now get a formula for a and some estimates on a.
Writing out a′(r) from our earlier formula and integrating r ∈ (R, 1) we arrive at

−a(R) = T

1∫
R

r−βdr −
1∫

R

r−β

1∫
r

tβf (t)dtdr,

after using the fact that a(1) = 0. We can use Fubini’s theorem on the double integral to see

(1 − β)

1∫
R

r−β

1∫
r

tβf (t)dtdr =
1∫

R

tf (t)dt − R1−β

1∫
R

tβf (t)dt.

So we can now write out

−(1 − β)a(R) = T − Cf +
R∫

0

tf (t)dt − T R1−β + R1−β

1∫
R

tβf (t)dt,

where Cf := ∫ 1
0 tf (t)dt (which is finite since tf (t) is integrable on (0, 1)). We want a(R)

Rν to be 
bounded for 0 < R small. So we will take T = Cf and hence

−(1 − β)a(R) =
R∫

0

tf (t)dt − T R1−β + R1−β

1∫
R

tβf (t)dt.

Note that

|T | ≤
1∫

0

t |f (t)|dt ≤ ‖f ‖
C

0,α
ν−2

1∫
0

tτ−1dt ≤ Cτ‖f ‖
C

0,α
ν−2

.

We can compute the various estimates for a directly from the formula for a. �
Lemma 8 (Combining the linear estimates). Let N, p, τ, ν be as in (29). Then there is some 
C > 0 such that for all f ∈ C

0,α
ν−2(B1\{0}) there is some φ ∈ C

2,α
ν,D(B1\{0}) such that L(φ) = f

in B1\{0} with φ = 0 on ∂B1. Moreover one has ‖φ‖
C

2,α
ν

≤ C‖f ‖
C

0,α
ν−2

.

Proof. The proof is the same as the case of p < 2. �
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The fixed point argument. We proceed exactly as we did in the case of N
N−1 < p < 2. For 

sufficiently small t > 0 and r > 0 we are able to find a φ ∈ Br ⊂ C
2,α
ν,D(B1\{0}) (and recall 

ν = τ ) which satisfies (6) and hence v(x) = w(x) +φ(x) satisfies (5). We now recall that w(x) :=
Cp (1 − |x|τ ) where τ = p−2

p−1 and where Cp > 0. Arguing as in the case of N
N−1 < p < 2 we see 

that by taking t, r > 0 sufficiently small we have v > 0 in B1. Also similar as in the previous 
section, from the inequality ‖v − w‖

C
2,α
ν

= ‖φ‖
C

2,α
ν

< r , we get |v(x) − w(x)| < r|x|τ for 0 <

|x| < 1
2 , and since τ > 0 this gives v(0) = Cp . Then we can write the later inequality as |v(x) −

v(0) +Cp|x|τ | < r|x|τ , implies that |v(x)−v(0)|
|x|τ ≥ Cp − r > 0 for r small. This in particular gives

lim
x→0

|v(x) − v(0)|
|x|τ+ε

= ∞,

which shows that v /∈ C0,τ+ε(B1) for any ε > 0. Recalling that u(y) = v(x) where x and y
are related through y = x + tψ(x). Since t > 0 is small and ψ is smooth this gives that u /∈
C0,τ+ε(�t ) for any ε > 0.
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