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Abstract

In this article we consider the existence of positive singular solutions on bounded
domains and also classical solutions on exterior domains. First we consider positive
singular solutions of the following problems:

−∆u = (1 + g(x))|∇u|p in B1, u = 0 on ∂B1, and (1)

−∆u = |∇u|p in Ω, u = 0 on ∂Ω. (2)

In the first problem B1 is the unit ball in RN and in the second Ω is a bounded
smooth domain in RN . In both cases we assume N ≥ 3, N

N−1 < p < 2 and in the first
problem we assume g ≥ 0 is a Hölder continuous function with g(0) = 0. We obtain
positive singular solutions in both cases.
We also consider (2) in the case of Ω an exterior domain RN where N ≥ 3 and p > N

N−1 .
We prove the existence of a bounded positive classical solution of (2) with the additional
property that ∇u(x) · x > 0 for large |x|.

1 Introduction

In this work we are interested in obtaining positive singular solutions of{
−∆u = (1 + g(x))|∇u|p in B1\{0},

u = 0 on ∂B1,
(3)
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where p > 1 and B1 is the unit ball centered at the origin in RN . Here g ≥ 0 is a Hölder
continuous function with g(0) = 0. We also consider the existence of positive singular
solutions of {

−∆u = |∇u|p in Ω,
u = 0 on ∂Ω,

(4)

where Ω a bounded smooth domain in RN . Suppose u is a classical solution of (4), then we
can rewrite the equation as −∆u − b(x) · ∇u = 0 in Ω with u = 0 on ∂Ω where b(x) :=
|∇u|p−2∇u ∈ L∞ and then apply the maximum principle to see u = 0. So the only hope of
finding a nonzero solution of either problem is to find a singular solution. We also consider
(4) in the case of exterior domains.

We now state our main theorems.

Theorem 1. (Bounded domain problems)

1. Suppose N ≥ 3, and N
N−1

< p < 2 and g ≥ 0 is a Hölder continuous function with
g(0) = 0. Then there exists an infinite number of positive singular solutions ut (indexed
by t for large t) of (3) which blows up at the origin. Moreover ut → 0 uniformly away
from the origin.

2. Let x0 ∈ Ω where Ω is a bounded domain with smooth boundary in RN . Suppose p and
N satisfy the same restrictions as part 1 of the theorem. Then there exists an infinite
number of positive singular solution ut (indexed by t for large t) of (4) which blows up
at x0 and is a classical solution away from x0. Moreover ut → 0 uniformly away from
x0.

Theorem 2. (Exterior domain problem) Suppose N ≥ 3, Ω is an exterior domain in RN

with smooth boundary and p > N
N−1

. Then there is an infinite number of positive classical
solutions of (4) (say ut for large t) which satisfy ∇ut(x) · x > 0. In fact for large t we have

lim
|x|→∞

(
|x|N−2(x · ∇ut(x))− 1

t
1
p−1

)
= 0.

We begin by looking at a family of explicit positive radial solutions on the unit ball
centred at the origin which is taken from [2].

Example 1. ([2]) Let B1 denote the unit ball centered at the origin in RN for N ≥ 3. Then
for N

N−1
< p < 2 we define α := (p− 1)(N − 1), β := p−1

α−1
, σ := 2−p

p−1
and note α > 1. Then

ut(r) :=

∫ 1

r

dy

(βy + tyα)1/(p−1)
, t > −β,

is a positive singular solution of (3) in the case of g = 0.

Remark 1. 1. The parameters. For the remaining sections of this work that deal with
results on bounded domains we impose the parameter values from Example 1. This
includes all of the material in the Introduction also.
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2. The exterior problem. In Section 5, where we deal with exterior domains, some of
the parameters will differ. The crucial difference there will be that value of σ. We will
indicate the new values of the parameters in Section 5. For an explicit solution of the
exterior problem on Bc

1 see Example 2.

Remark 2. 1. In a previous work (see [2]) we linearized around ut with t = 0 (whose
linearized operator is given by L0) to obtain solutions of perturbations of (4) in the case
of Ω = B1. This allowed us to obtain singular solutions for (4) for domains which are
small perturbations of the unit ball. It would also allow us to obtain solutions of (3)
in the case of g satisfying a smallness condition. This was also done for systems and
a p-Laplace version, see [13, 14]. The main new ingredient in the current work is to
linearize around the solution ut on the unit ball for t large. This solution is no longer
scale invariant and it is exactly this that allows us to remove any smallness condition
on g and in the case of general domains we don’t need to consider perturbations of the
ball. See [35] Remark 3 for a similar statement.

2. Example 1 is only one range of p taken from an example in [2]. Many of the results
here on bounded domains can be extended to the other ranges of p.

1.1 Background

A well studied problem is the existence versus non-existence of positive solutions of the
Lane-Emden equation given by{

−∆u = up in Ω,
u = 0 on ∂Ω,

(5)

where 1 < p and Ω is a bounded domain in RN (where N ≥ 3) with smooth boundary. In the
subcritical case 1 < p < N+2

N−2
the problem is very well understood and H1

0 (Ω) solutions are

classical solutions; see [28]. In the case of p ≥ N+2
N−2

there are no classical positive solutions in
the case of the domain being star-shaped; see [40]. In the case of non star-shaped domains
much less is known; see for instance [12, 19, 20, 21, 39]. In the case of 1 < p < N

N−2
ultra

weak solutions (non H1
0 solutions) can be shown to be classical solutions. For N

N−2
< p < N+2

N−2

one cannot use elliptic regularity to show ultra weak solutions are classical. In particular in
[35] for a general bounded domain in RN they construct singular ultra weak solutions with
a prescribed singular set, see the book [38] for more details on this.

We now return to (3). The first point is that it is a non variational equation and hence
there are various standard tools which are not available anymore. The case 0 < p < 1 has
been studied in [1]. Some relevant monographs for this work include [29, 25, 42]. Many
people have studied boundary blow up versions of (3) where one removes the minus sign in
front of the Laplacian; see for instance [32, 43]. See [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 23, 24, 26,
27, 30, 31, 41, 33, 34, 36, 37] for more results on equations similar to (3). In particular, the
interested reader is referred to [36] for recent developments and a bibliography of significant
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earlier work, where the author studies isolated singularities at 0 of nonnegative solutions of
the more general quasilinear equation

∆u = |x|αup + |x|β|∇u|q in Ω \ {0},

where Ω ⊂ RN (N > 2) is a C2 bounded domain containing the origin 0, α > −2, β > −1
and p, q > 1, and provides a full classification of positive solutions vanishing on ∂Ω and the
removability of isolated singularities.

Before outlining our approach we mention that our work is heavily inspired by the works
[18, 35, 38, 15, 16, 17, 22]. Many of these works consider variations of −∆u = up on the full
space or an exterior domain. Their approach is to find an approximate solution and then to
linearize around the approximate solution to find a true solution. This generally involves a
very detailed linear analysis of the linearized operator associated with approximate solution
and then one applies a fixed point argument to find a true solution.

1.2 Outline of approach.

To give a brief outline of our approach we consider (3), which is the cleanest case to consider
since there are no cut-off functions needed. We look for solutions of the form u(x) =
ut(x) + φ(x) (where φ is the unknown and where we will end up taking t large). For u
to satisfy (3) it is sufficient that φ satisfies{
Lt(φ) = g(x)|∇ut +∇φ|p + {|∇ut +∇φ|p − |∇ut|p − p|∇ut|p−2∇ut · ∇φ} in B1\{0},

φ = 0 on ∂B1,
(6)

where
Lt(φ) := −∆φ− p|∇ut|p−2∇ut · ∇φ,

which is just the linearized operator associated with the solution ut of the unperturbed
equation. A computation shows that we have the explicit formula

Lt(φ)(x) = −∆φ(x) +
px · ∇φ(x)

β|x|2 + t|x|α+1
.

We now define the norms we will use for (for the problem on B1);

‖f‖Y := sup
B1

|x|σ+2|f(x)|, ‖φ‖X := sup
B1

{
|x|σ|φ(x)|+ |x|σ+1|∇φ(x)|

}
,

and we denote Y,X as the appropriate spaces; for the space X we impose the boundary
condition φ = 0 on ∂B1. To obtain a solution φ of (6) we will find a fixed point of the
following mapping: Tt(φ) = ψ where{
Lt(ψ) = g(x)|∇ut +∇φ|p + {|∇ut +∇φ|p − |∇ut|p − p|∇ut|p−2∇ut · ∇φ} in B1\{0},

ψ = 0 on ∂B1.
(7)
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In the end we will show that Tt is a contraction on BR (the closed ball of radius R centred
at the origin in X) and hence we can apply Banach’s fixed point theorem. This will give the
existence of φ and then we will argue that u(x) = ut(x) + φ(x) is positive in B1. A crucial
point is that ut converges to zero outside of the origin and hence we will be able to view the
term g(x)|∇ut +∇φ|p as small since g(0) = 0; which allows us not to impose any smallness
assumption on g.

1.2.1 Outline of article.

The approach outlined above makes up Section 2, which contains the linear theory, and
Section 3, which contains the fixed point argument.

In Section 4 we consider (4) on bounded domains. The needed linear theory here will
come from the linear theory on B1 coupled with a gluing argument. Section 4 also contains
the needed fixed point argument, which is more involved than it was for (3).

In Section 5 we examine (4) in the case of exterior domains. Here the needed linear
theory can come via perturbing the Laplacian on a general exterior domain. The theory
here involves a different choice of weight σ than on the bounded domain case. The fixed
point argument here follows essentially the fixed point arguments used in Section 4.

2 The linear operator Lt on B1

In this section we examine the linear operator Lt on B1 and we now state our main result
regarding this.

Proposition 1. There is some C > 0 and t0 (large) such that for all f ∈ Y there is some
φ ∈ X such that {

Lt(φ) = f in B1\{0},
φ = 0 on ∂B1.

(8)

Moreover one has the estimate ‖φ‖X ≤ C‖f‖Y .

One should note that, at least formally, that ∂tut(r)|t=1 is in the kernel of Lt on B1. In
fact this is the case and if we set

ψt(r) := −∂tut(r) =
1

p− 1

∫ 1

r

yα

(βy + tyα)
p
p−1

dy,

then ψt ∈ X and satisfies Lt(ψt) = 0 in B1\{0} with ψ1 = 0 on ∂B1.

Spherical harmonics. Consider the eigenpairs (ψk, λk) of the Laplace-Beltrami operator
∆θ = ∆SN−1 on SN−1 which satisfy

−∆θψk(θ) = λkψk(θ), in θ ∈ SN−1,
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which we normalize ‖ψk‖L2(SN−1) = 1. Note that ψ0 = 1, λ0 = 0 (multiplicity 1); λ1 = N − 1
(multiplicity N); λ2 = 2N .

Given f ∈ Y , φ ∈ X we write

f(x) =
∞∑
k=0

bk(r)ψk(θ), φ(x) =
∞∑
k=0

ak(r)ψk(θ),

and note ak(1) = 0 after considering the boundary condition of φ. A computation shows
that φ satisfies (8) provided ak satisfies

−a′′k(r)−
(N − 1)a′k(r)

r
+
λkak(r)

r2
+

pa′k(r)

βr + trα
= bk(r), for 0 < r < 1, (9)

with ak(1) = 0. Since we already developed a theory for the linear operator L0 in [2] we prefer
to utilize some continuation arguments to obtain results for Lt. This will work sufficiently
well except one needs to be a bit careful since we recall that ψt is in the kernel of Lt. Noting
that ψt is radial one sees this solves the homogenous version of (9) when k = 0. For the
k = 0 mode we will need to solve (9) directly, see Lemma 3. We now define some spaces to
remove this problematic k = 0 mode. Define the closed subspaces of X and Y by

X1 :=

{
φ ∈ X : φ(x) =

∞∑
k=1

ak(r)ψk(θ)

}
, Y1 :=

{
f ∈ Y : f(x) =

∞∑
k=1

bk(r)ψk(θ)

}
,

note the sums start at k = 1 and not k = 0. We begin by stating a few results from [2].
In what follows we will be working on BR or RN and the spaces X and X1 are obvious
extensions of the definitions to these more general settings.

Lemma 1. ([2]).

1. Let 0 < R ≤ ∞ and suppose φ ∈ X1 is such that L0(φ) = 0 in BR\{0} with φ = 0 on
∂BR in the case of R finite. Then φ = 0.

2. Proposition 1 holds if one replaces Lt with L0.

Proof. For the convenience of the reader we prove part 1. We write φ(x) =
∑∞

k=1 ak(r)ψk(θ)
and so ak satisfies

a′′k(r) +
(N − 1)a′k(r)

r
− pa′k(r)

βr
− λkak(r)

r2
= 0, for 0 < r < R,

with ak(R) = 0 in the case of R <∞. Also we have sup0<r<R {rσ|ak(r)|rσ + rσ+1|a′k(r)|} <
∞. Note this ode is of Euler form and hence its solutions are ak(r) = Ckr

γ+k + Dkr
γ−k for

some Ck, Dk ∈ R where γ±k are the roots of

γ2 + (N − 2− p

β
)γ − λk = 0,
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which are given by

γ±k =
−(N − 2− p

β
)

2
±

√
(N − 2− p

β
)2 + 4λk

2
.

A computation shows that γ−1 + σ = −1 and so we have γ−k + σ ≤ −1 for k ≥ 1. We
first consider the case where 0 < R < ∞. To satisfy ak(R) = 0 we see there is some

αk(R) 6= 0 and C̃k ∈ R such that ak(r) = C̃k

(
αk(R)rγ

+
k + rγ

−
k

)
. Now since k ≥ 1 we have

γ−k + σ ≤ −1 < 0 and so to have ak in the appropriate space we must have C̃k = 0. Now

we consider the case of R = ∞. In this case we have ak(r) = Ckr
γ+k + Dkr

γ−k and provided
γ+
k + σ 6= 0 and γ−k + σ 6= 0 we can send r → 0,∞ to see we must have Ck = Dk = 0 for ak

to be in the required space. So to complete the proof we only need to verify γ+
k + σ 6= 0. A

computation shows that

σ + γ+
1 =

(N − 1)p2 + p(−2N + 1) +N + 1

p− 1
> 0,

and the desired result follows by monotonicity in k.

Lemma 2. (Kernel of Lt in X1) Let 0 < R ≤ ∞, t ∈ (0,∞] and φ ∈ X1 with Lt(φ) = 0 in
BR\{0} with φ = 0 on ∂BR in the case of R finite. Then φ = 0.

Proof. Suppose R, t, φ as in the hypthosis. Further we suppose 0 < t <∞ since L∞ = −∆,
and this result is well known for the Laplacian. We write φ(x) =

∑∞
k=1 ak(r)ψk(θ); note

there is no k = 0 mode since φ ∈ X1. Then ak satisfies

−∆ak(r) +
λk
r2
ak(r) +

pa′k(r)

βr + trα
= 0, 0 < r < R, (10)

and in the case of R <∞ we have ak(R) = 0. Moreover there is some Ck > 0 such that

sup
0<r<R

{
rσ|ak(r)|+ rσ+1|a′k(r)|

}
≤ Ck.

Fix k ≥ 1 and we set w(τ) := rσak(r) where τ = ln(r). Then a computation shows that
w = w(τ) satisfies

0 = wττ + g(τ)wτ + Ck(τ)w, τ ∈ (−∞, ln(R)), (11)

where
g(τ) = N − 2− 2σ − p

β + te(α−1)τ

Ck(τ) := −λk +
pσ

β + te(α−1)τ
− σ(N − 2− σ).

We now claim that one has the improved decay estimate; rσ|ak(r)| → 0 as r → 0 and in
the case of R = ∞ that we have rσ|ak(r)| → 0 as r → ∞. For the moment we assume we
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have the claim. Then note this gives that w → 0 as τ → −∞ and in the case of R =∞ we
have the same result when τ →∞.

By multiplying by −1, if needed, we can assume that if w 6= 0 (and since w(−∞) =
w(ln(R)) = 0) we can suppose there is some τ0 ∈ (−∞, ln(R)) such that w(τ0) = maxw > 0.
Then we have wττ (τ0) ≤ 0 and wτ (τ0) = 0 and hence from the equation we get Ck(τ0)w(τ0) =
−wττ (τ0) ≥ 0. From this we see that we must have Ck(τ0) ≥ 0. Using the monotonicity of
Ck in τ and k we see that for all τ ∈ (−∞, ln(R)) we have

Ck(τ) ≤ Ck(−∞) ≤ C1(−∞) = −(N − 1) +
pσ

β
− σ(N − 2− σ)

and this quantity can be seen to be negative after considering the restrictions on p. Hence
we must have w = 0 and hence ak = 0 for all k ≥ 1. We now prove the the claimed decay
estimates. Fix k ≥ 1 and set a(r) = ak(r) so we have

−∆a(r) +
λka(r)

r2
+

pa′(r)

βr + trα
= 0, in 0 < r < R,

with a(R) = 0. Suppose the claim is false. Then there is some rm → 0 such that
rσm|a(rm)| ≥ ε0 > 0. Define the rescaled functions am(r) := rσma(rmr) and note |am(1)| ≥ ε0

and rσ|am(r)| ≤ C. A computation shows that

−∆am(r) +
λka

m(r)

r2
+

(am)′(r)

βr + trα−1
m rα

= 0, in 0 < r <
R

rm
.

Passing to the limit we can find some a∞ 6= 0 with rσ|a∞(r)| + rσ+1|(a∞)′(r)| ≤ C which
satisfies L0(a∞) = 0 in 0 < r <∞, but this contradicts our earlier theory on L0. In the case
of R =∞ the proof is similar, but the limiting equation is L∞(a∞) = 0 in 0 < r <∞.

Proposition 2. (Linear theory for Lt on X1) There is some C > 0 and t0 (large) such that
for all t ≥ t0 and f ∈ Y1 there is some φ ∈ X1 which satisfies (8). Moreover one has the
estimate ‖φ‖X ≤ C‖f‖Y .

Proof. Since we already have a well developed theory regarding L0 we will use a continuation
argument to connect this to Lt. For the continuation argument we need to define a new norm,

‖φ‖X̂ := sup
B1

{
|x|σ|φ(x)|+ |x|σ+1|∇φ(x)|+ |x|σ+2|∆φ(x)|

}
,

and we define the spaces X̂ accordingly and we set X̂1 to be the functions in X̂ with no k = 0
mode. We begin by showing that for each 0 < t <∞ that we have the desired mapping prop-
erties; but possibly the constant C depends on t. Later we show we can take C independent
of t for large t; really this result holds for all t ≥ 0 but we will only need it independent of t
for large t. So fix 0 < γ < ∞ and consider (t, φ) 7→ Lt(φ) is continuous from [0, γ] × X̂1 to

Y1. Additionally from our previous work [2] we know that L0 : X̂1 → Y1 is an isomorphism.
To prove Lγ has the desired mapping properties it is sufficient to obtain bounds on Lt for
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0 ≤ t ≤ γ. So we suppose there is 0 ≤ tm ≤ γ and fm ∈ Y1, φm ∈ X̂1 such that Ltm(φm) = fm
in B1\{0} with φm = 0 on ∂B1 and ‖fm‖Y → 0, ‖φm‖X̂ = 1. To get a contradiction we will
show that ‖φm‖X̂ → 0. It will be sufficient to show that supB1

|x|σ+1|∇φm(x)| → 0. To see
this note we can integrate the first order estimate to obtain the zero order estimate. Also
directly from the pde we get the second order estimate if we have the first order one. So we
suppose not; then there is some ε0 > 0 and xm ∈ B1\{0} such that |xm|σ+1|∇φm(xm)| ≥ ε0.
Set sm := |xm| and now consider two cases (in that follows we are passing to subsequences
if necessary): (i) sm bounded away from zero, (ii) sm → 0 (in both cases we assume tm → t).

Case (i). By elliptic theory φm is bounded in C1,δ
loc (B1\{0}) and converges in this space to

some φ. Since sm is bounded away from zero we see that φ 6= 0. Additionally we have
Lt(φ) = 0 in B1\{0} with φ = 0 on ∂B1. Also note φ ∈ X̂1 and hence by our earlier kernel
results we know φ = 0, a contradiction.

Case (ii). Define ζm(z) := sσmφm(smz) for |z| < 1
sm

and note we have the bounds |z|σ|ζm(z)|+
|z|σ+1|∇ζm(z)| ≤ 1. Define zm = s−1

m xm and note |zm| = 1 and |∇ζm(zm)| ≥ ε0. A computa-
tion shows that

Ltmsα−1
m

(ζm) = gm(z) := sσ+2
m fm(smz) in B 1

sm
, ζm = 0 on ∂B 1

sm
. (12)

By elliptic estimates applied to an increasing sequence of annuli, and a suitable diagonal
argument, there is some ζ such that ζm → ζ in C1,δ

loc (RN\{0}) and note there is some |z0| = 1
(the limit of the zm) such that |∇ζ(z0)| ≥ ε0 and hence ζ 6= 0. But we also note that
L0(ζ) = 0 in RN\{0} and ζ satisfies the needed bounds to be able to apply our earlier
Liouville results, hence ζ = 0; which gives the needed contradiction.

So we have shown that for each t ≥ 0 there is some Ct such that we have the desired
linear theory if we replace C with Ct. Now we show the Ct can be taken independently of t.
Note that the above proof really shows the result could only fail in the case of t→∞.

So we suppose the result is false; so there is some tm →∞, fm ∈ Y1, φm ∈ X1 such that
Ltm(φm) = fm in B1\{0} with φm = 0 on ∂B1 with ‖fm‖Y → 0 and ‖φm‖X = 1. As before
there is some xm ∈ B1\{0} such that |xm|σ+1|φm(xm)| ≥ ε0. Set sm := |xm| and we consider
the cases:
(i) sm bounded away from zero, (ii) sm → 0.

Case (i). From the equation and compactness arguments we see there is some φ such that
φm → φ in C1,δ(B1\{0}). Since sm is bounded away from zero we see that φ 6= 0 and also
note that φ ∈ X1. Additionally we can pass to the limit in the equation to see L∞(φ) = 0
in B1\{0} with φ = 0 on ∂B1; but this contradicts the earlier kernel results.

Case (ii). We now follow exactly the case (ii) from the finite t; set ζm(z) = sσmφm(smz)
and then note |z|σ|ζm(z)| + |z|σ+1|∇ζm(z)| ≤ 1. Define zm = s−1

m xm and note |zm| = 1 and
|∇ζm(zm)| ≥ ε0. As before ζm satisfies (12). Again we use a compactness argument away

9



from the origin and ∞ to pass to the limit ζ in C1,δ
loc (RN\{0}) and hence |∇ζ(z0)| ≥ ε0 for

some |z0| = 1 and |z|σ|ζ(z)| + |z|σ+1|∇ζ(z)| ≤ 1 in RN\{0}. Moreover ζ satisfies Lγ(ζ) = 0
in RN\{0} where γ = limm tms

α−1
m ∈ [0,∞]. In all cases we can apply our earlier kernel

results to obtain a contradiction.

Lemma 3. (k = 0 mode for Lt)

Proof. Consider (9) in the case of k = 0 and to indicate the dependence on t we will write
at(r). Assume sup0<r<1 |b(r)|rσ+2 ≤ 1. A computation shows an integrating factor associated
with the ode is given by

µt(r) = rN−1e
∫ 1
r

1
βs+tsα

ds = rN−1− p(α−1)
p−1

(
β + trα−1

β + t

) p
p−1

.

We then obtain

µt(r)a
′
t(r) = a′t(1)−

∫ 1

r

µt(τ)b(τ)dτ, 0 < r ≤ 1.

We set a′t(1) =
∫ 1

Rt
µt(τ)b(τ)dτ , where Rα−1

t t = 1. Then we get

a′t(r) =
1

µt(r)

∫ r

Rt

µt(τ)b(τ)dτ, 0 < r ≤ 1.

and so we can write at as

at(r) :=

∫ 1

r

(
1

µt(s)

∫ s

Rt

µt(τ)b(τ)dτ

)
ds, 0 < r ≤ 1.

and note at(1) = 0. The only thing left to check is that at satisfies the desired bounds
independent of t for large t; note this careful choice of Rt is what gives the estimate. Also
note we only need to satisfy the first order estimate since we can integrate this to obtain the
zero order estimate. So writing out a′t(r) we see, using the equality N−1− p(α−1)

p−1
= σ−α+2,

that

rσ+1|a′t(r)| ≤ rα−1
∣∣∣ ∫ r

Rt

(β + tτα−1

β + trα−1

) p
p−1 dτ

τα

∣∣∣
and we now consider the two cases: (i) 0 < r < Rt, (ii) Rt < r ≤ 1.

Case (i). For r < Rt we have
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rσ+1|a′t(r)| ≤ rα−1

∫ Rt

r

(β + tτα−1

β + trα−1

) p
p−1 dτ

τα

≤ rα−1
(β + tRα−1

t

β + trα−1

) p
p−1

∫ Rt

r

dτ

τα

=
( β + 1

β + trα−1

) p
p−1

(
1− (Rt

r
)1−α

α− 1

)

≤
(β + 1

β

) p
p−1 1

α− 1
.

Thus we proved

rσ+1|a′t(r)| ≤
(β + 1

β

) p
p−1 1

α− 1
, for 0 < r < Rt. (13)

Case (ii). For r > Rt we write, using the inequality (a+ b)q ≤ cq(a
q + bq) for q > 1,

rσ+1|a′t(r)| ≤
rα−1

(β + trα−1)
p
p−1

∫ r

Rt

(β + tτα−1)
p
p−1

τα
dτ

≤ Crα−1

(β + trα−1)
p
p−1

∫ r

Rt

( 1

τα
+

t
p
p−1

τα−
p(α−1)
p−1

)
dτ

≤ C1r
α−1

(β + trα−1)
p
p−1

(
R1−α
t + t

p
p−1 r

α−1
p−1

)
,

where C1 is a constant independent of t. Recall we have tRα−1
t = 1, thus

rσ+1|a′t(r)| ≤
C1tr

α−1

(β + trα−1)
p
p−1

+
C1(trα−1)

p
p−1

(β + trα−1)
p
p−1

≤ C1

(trα−1)
1
p−1

+ C1,

and since for r ≥ Rt we have trα−1 ≥ tRα−1
t = 1 we get

rσ+1|a′t(r)| ≤ C1 + C1 = 2C1, for r ≥ Rt. (14)

Combining case (i) and (ii) gives

sup
0<r≤1

rσ+1|a′t(r)| ≤ max
{(β + 1

β

) p
p−1 1

α− 1
, 2C1

}
.

Completion of the proof of Proposition 1. Here we combine Lemma 3 and Proposition
2 to complete the proof of Proposition 1. Let f ∈ Y and let φ ∈ X satisfy (8) and we write
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f(x) = f0(r) + f1(x), φ(x) = φ0(r) + φ1(x), where we have split off the k = 0 mode and
φ1 ∈ X1, f1 ∈ Y1. Then we have

‖φ‖X ≤ ‖φ0‖X + ‖φ1‖X
≤ ‖C‖f0‖Y + C‖f1‖Y

and hence if we can show there is some D > 0 (independent of f) such that ‖f0‖Y +‖f1‖Y ≤
D‖f0 + f1‖Y then we would be done. We suppose the result is false and hence for all m ≥ 1
there is some fm ∈ Y such that

1 = ‖fm0 ‖Y + ‖fm1 ‖Y > m‖fm‖Y ,

where we have also performed a normalization of fm and hence fm → 0 in Y . Then note we
have |SN−1|f0(r) =

∫
|θ|=1

fm(rθ)dθ and hence

rσ+2|fm0 (r)| ≤ C

∫
|θ|=1

rσ+2|fm(rθ)|dθ ≤ C1‖fm‖Y ,

and thus ‖fm0 ‖Y → 0. Also note we have fm1 (x) = fm(x)− fm0 (r) and hence ‖fm1 ‖Y → 0; a
contradiction. 2

3 The fixed point argument for (3)

Lemma 4. Suppose 1 < p ≤ 2. Then there is some C = Cp such that for all x, y, z ∈ RN

one has
0 ≤ |x+ y|p − |x|p − p|x|p−2x · y ≤ C|y|p, (15)∣∣∣|x+ y|p − p|x|p−2x · y − |x+ z|p + p|x|p−2x · z

∣∣∣ ≤ C
(
|y|p−1 + |z|p−1

)
|y − z|. (16)∣∣∣|x+ y|p − |x+ z|p

∣∣∣ ≤ C
(
|y|p−1 + |z|p−1 + |x|p−1

)
|y − z|. (17)

We will need some asymptoptics of ut. So first note that

u′t(r) =
−1

(βr + trα)
1
p−1

, and if we set Cβ :=
1

β
1
p−1

,

then

|u′t(r)| ≤ min

{
Cβ

r
1
p−1

,
1

t
1
p−1 rN−1

}
, so (18)

rσ+1|u′t(r)| ≤ min

{
Cβ,

1

t
1
p−1 rN−2−σ

}
. (19)

So we see for any t > 0 we have limr→0 r
σ+1u′t(r) = −Cβ and ut, u

′
t converge uniformly to

zero away from the origin. In what follows BR is the closed ball in X centred at the origin
with radius R.

12



Lemma 5. (Into)

1. There is some C > 0 such that for all 0 < R < 1, 0 < δ < 1, t > 1, φ ∈ BR ⊂ X one
has

‖g|∇ut +∇φ|p‖Y ≤ C

(
Rp + sup

|z|<δ
|g(z)|+ 1

t
p
p−1 δ(N−1)p−σ−2

)
.

2. There is some C > 0 such that for all t > 1, 0 < R < 1 and φ ∈ BR one has∥∥∥|∇ut +∇φ|p − p|∇ut|p−2∇ut · ∇φ− |∇ut|p
∥∥∥
Y
≤ CRp.

Proof. 1. Fix R, δ, φ as in the hypothesis and C will denote a changing constant that is in-
dependent of these parameters. Set I0 := |g(x)||x|σ+2|∇ut+∇φ|p ≤ C|g(x)||x|σ+2 {|∇ut|p + |∇φ|p}.
Also note we have the estimates |x|σ+2|∇φ(x)|p ≤ Rp and rσ+2|∇ut(r)| ≤ C. The
first step is to write supB1

|I0| as a sup over Bδ and δ < |x| < 1. Doing this gives
supBδ I0 ≤ C supBδ |g|. For the other portion we obtain

sup
δ<|x|<1

I0 ≤ CRp + C sup
δ<|x|<1

1

t
p
p−1 |x|(N−1)p−σ−2

≤ CRp +
C

t
p
p−1 δ(N−1)p−σ−2

,

after noting (N − 1)p− σ − 2 > 0.

2. This estimate comes from applying (15) with x = ∇ut and y = ∇φ. One should note
carefully that ∇φ is not small compared to ∇ut (at least away from the origin). We
note generally when applying these fixed point arguments one can take the φ term
small compared to the ut term.

Lemma 6. (Contraction)

1. There is some C > 0 such that for R ∈ (0, 1), t > 1, φi ∈ BR one has

‖I‖Y ≤ CRp−1‖φ2 − φ1‖X ,

where

I := |∇ut +∇φ2|p − p|∇ut|p−2∇ut · ∇φ2 − |∇ut +∇φ1|p + p|∇ut|p−2∇ut · ∇φ1.

2. There is some C > 0 such that for τ ∈ (0, 1), R > 1, φi ∈ Bτ one has

‖J‖Y ≤ C

{
sup
|x|≤δ
|g(x)|+Rp−1 +

1

tδα−1

}
‖φ2 − φ1‖X ,

where
J := g(x) {|∇ut +∇φ2|p − |∇ut +∇φ1|p} .

13



Proof. 1. By using (16) with x = ∇ut, y = ∇φ2, z = ∇φ1 one can obtain the desired
result.

2. Here we use (17) with x = ∇ut, y = ∇φ2, z = ∇φ1. Moreover we follow the idea of
the proof of Lemma 5 part 1; where we consider sup|x|<δ and supδ<|x|<1.

Proof of Theorem 1 part 1. We now complete the proof of our main theorem. Recall we
want to find some φ which satisfies (6) and then u(x) = ut(x) + φ(x) satisfies (3). We will
show that the mapping Tt is a contraction on BR for suitable 0 < R < 1 and large t.

Into. Let 0 < R < 1, 0 < δ < 1, t > 1, φ ∈ BR and set ψ = Tt(φ). Then by Lemma 5 there
is some C (independent of the parameters) such that

‖ψ‖X ≤ C

{
Rp + sup

Bδ

|g|+ 1

t
p
p−1 δ(N−1)p−σ−2

}
,

and hence for ψ ∈ BR its sufficient that

C

{
Rp + sup

Bδ

|g|+ 1

t
p
p−1 δ(N−1)p−σ−2

}
≤ R. (20)

Contraction. Let 0 < R < 1, 0 < δ < 1, t > 1, φi ∈ BR and set ψi = Tt(φi). Then by
Lemma 6 we have

‖ψ2 − ψ1‖X ≤ C

{
Rp−1 + sup

Bδ

|g|+ 1

tδα−1

}
‖φ2 − φ1‖X ,

and hence for Tt to be a contraction its sufficient that

C

{
Rp−1 + sup

Bδ

|g|+ 1

tδα−1

}
≤ 1

2
. (21)

We now choose the parameters. Note we see we can satisfy both (20) and (21) by first
taking R > 0 sufficiently small, then taking δ > 0 sufficiently small and then finally taking
t large.

We now show u > 0 in B1. By taking R > 0 smaller if necessary we see that u(x) > 0
for 0 < |x| < ε for some small ε > 0. We can then apply maximum principle arguments to
see that u > 0 on ε < |x| < 1. 2
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4 −∆u = |∇u|p in general bounded domains; proof of

Theorem 1 part 2

Without loss of generality we suppose 0 ∈ B10s0 ⊂ Ω ⊂⊂ B1 where s0 > 0 (for the general
case we can perform the needed translation). Let 0 ≤ ζ ∈ C∞c (B2s0) with ζ = 1 in Bs0 , and
let 0 ≤ η ∈ C∞c (B4s0) with η = 1 in B2s0 (and both bounded above by 1). Note ζη = ζ. We
look for solutions u of (4) of the form u(x) = ut(x)η(x) + φ(x) where φ = 0 on ∂Ω is the
unknown. Then u is a solution provided φ satisfies{
Lt(φ) = ut∆η + 2∇η · ∇ut − η|∇ut|p + |∇(utη) +∇φ|p − p|∇ut|p−2∇ut · ∇φ in Ω\{0},

φ = 0 on ∂Ω,
(22)

where Lt is as before.
We now state our main linear result for Lt on Ω. Consider the linear problem given by{

Lt(φ) = f in Ω\{0},
φ = 0 on ∂Ω.

(23)

We define X and Y as the obvious extension of the spaces on the unit ball;

‖f‖Y := sup
Ω
|x|σ+2|f(x)|, ‖φ‖X := sup

Ω

{
|x|σ|φ(x)|+ |x|σ+1|∇φ(x)|

}
,

where for the space X we imposed the boundary condition φ = 0 on ∂Ω.

Proposition 3. There is some C > 0 and t0 (large) such that for all f ∈ Y there is some
φ ∈ X which satisfies (23). Moreover one has the estimate ‖φ‖X ≤ C‖f‖Y .

In the next section we give the proof of this result. We mention the proof we use utilizes
a gluing procedure that is heavily motivated by the approach in [15].

The fixed point argument. We write the first equation in (22) as

Lt(φ) =
4∑

k=1

Ik in Ω\{0},

where
I1 = ut∆η + 2∇η · ∇ut,
I2 = |∇(utη)|p − η|∇ut|p,

I3 = |∇(utη) +∇φ|p − |∇(utη)|p − p|∇(utη)|p−2∇(utη) · ∇φ,
I4 = p

{
|∇(utη)|p−2∇(utη)− |∇ut|p−2∇ut

}
· ∇φ.

Now let t0 > 0 be from Proposition 3. For t > t0 define

εt := sup
|x|>2s0

{
|I1|+ |I2|+

∣∣∣|∇(utη)|p−2∇(utη)− |∇ut|p−2∇ut
∣∣∣} .
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Using the convergence of ut and ∇ut to zero away from the origin one sees that εt → 0 as
t→∞, and one can get explicit estimates on εt, but we won’t need them.

Into. Let 0 < R < 1, t > t0, φ ∈ BR ⊂ X and set ψ = Tt(φ). Then we have

‖ψ‖X ≤ C

4∑
k=1

‖Ik‖Y ≤ C0εt + C0

4∑
k=3

‖Ik‖Y ,

and note one easily sees that

‖I4‖Y = sup
|x|>2s0

|x|σ+2|I4| ≤ C2εtR.

Using (15) sees that ‖I3‖Y ≤ CRp. So we see that for Tt(BR) ⊂ BR its sufficient that

Cεt + CεtR + CRp ≤ R. (24)

Contraction. Let 0 < R < 1, t > t0 and φi ∈ BR. Set ψi = TT (φi) and then note that we
have ∣∣Lt(ψ2 − ψ1)

∣∣ ≤ C
{
|∇φ2|p−1 + |∇φ1|p−1

}
|∇φ2 −∇φ1|+ εtχ{|x|>2s0}|∇φ2 −∇φ1|,

where the first term on right is coming from applying (16) and the second term on the right
is coming from the I4 term and χA is the characteristic function of A. From this we obtain

‖ψ2 − ψ1‖X ≤ (CRp + Cεt) ‖φ2 − φ1‖X ,

and hence for Tt to be a contraction it is sufficient that Rp + Cεt ≤ 1
2
. We now pick the

parameters. By first taking 0 < R < 1 sufficiently small and then t large one sees they can
easily satisfy the two needed conditions. We argue as before to show the solution u we get
is indeed singular at the origin and is positive in Ω.

4.1 The linear operator Lt on general bounded domains Ω

In this section we prove Proposition 3. Let ζ, η denote the cut offs from the previous section.
We look for solutions φ or (23) of the form φ(x) = η(x)ϕ(x) + ψ(x). Then a computation
shows its sufficient that ϕ, ψ satisfy{

Lt(ϕ) = ζf − ζpx·∇ψ
β|x|2+t|x|α+1 in B1\{0},

ϕ = 0 on ∂B1,
(25)

{
−∆ψ + (1−ζ)px·∇ψ

β|x|2+t|x|α+1 = (1− ζ)f + ϕ∆η + 2∇η · ∇ϕ− pϕ(x·∇η)
β|x|2+t|x|α+1 in Ω\{0},

ψ = 0 on ∂Ω.
(26)
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As in [15] we use a fixed point argument to find a solution (ϕ, ψ). The general procedure
is given ϕ we solve (26) for ψ. Then we put this ψ into the right hand side of (25) and solve
for ϕ, which we call ϕ̂. This defines a nonlinear mapping T t(ϕ) = ϕ̂ and if we can show this
map has a fixed point, then we have the desired solution (23); of course one still needs the
estimate.

Proof of Proposition 3. Let t0 be from Proposition 1 and let C0 denote the promised
constant C. Take f ∈ Y with ‖f‖Y = 1. We now will show that T t is a contraction mapping
on B2C0 ⊂ X (the closed ball radius 2C0 in X centred at the origin).

Into. Let ϕ ∈ B2C0 and let ψ satisfy (26). Note the advection term is zero near the origin
and converges uniformly to zero on the Ω. So by standard elliptic theory there is some C > 0
such that for all t ≥ 0 one has supΩ |∇ψ| ≤ C + CC0. Set T t(ϕ) = ϕ̂. Then we have

‖ϕ̂‖X ≤ C0‖ζf‖Y + C0

∥∥ ζpx · ∇ψ
β|x|2 + t|x|α+1

∥∥
Y
,

and note ‖ζf‖Y ≤ 1 and the second term is bounded above by

C sup
Ω

|∇ψ||x|σ+1

β + t|x|α−1
≤ C (C + CC0) sup

Ω

|x|σ+1

β + t|x|α−1
,

and note δt := supΩ
|x|σ+1

β+t|x|α−1 → 0 as t→∞. So for large enough t we see that ϕ̂ ∈ B2C0 .

Contraction. Let ϕi ∈ B2C0 and we let ψi solve (26) and we set ϕ̂i = T t(ϕi). Using standard
estimates and noting the right hand side of (26) is zero near the origin, one sees that

sup
Ω
|∇ψ2 −∇ψ1| ≤ C1‖ϕ2 − ϕ1‖X

for all t ≥ 0. Then note we have

Lt(ϕ̂2 − ϕ̂1) =
−pζx · ∇(ψ2 − ψ1)

β|x|2 + t|x|α+1
B1,

with ϕ̂2 − ϕ̂1 = 0 on ∂B1. So as before we get

‖ϕ̂2 − ϕ̂1‖X ≤ Cδt sup
Ω
|∇(ψ2 − ψ1)| ≤ CδtC1‖ϕ2 − ϕ1‖X .

So we see for large enough t we can apply Banach’s fixed point theorem and obtain a
fixed point ϕ, ie. T t(ϕ) = ϕ. Moreover note we have ‖ϕ‖X ≤ 2C0. Now recall we have
φ = ηϕ+ψ. Using the X bound on ϕ and the gradient bound on ψ we see that ‖φ‖X ≤ C2.
This completes the proof of Proposition 3. 2
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5 Theorem 2; the exterior domain problem

The parameters for the exterior domain problem: N ≥ 3, p > N
N−1

, α := (p−1)(N−
1), β := p−1

α−1
, σ := N − 2 + ε, where ε > 0 is small and note α > 1.

Here we consider {
−∆u = |∇u|p in Ω,

u = 0 on ∂Ω,
(27)

in the case where Ω is an exterior domain (with smooth boundary) in RN with N ≥ 3 and
N
N−1

< p < 2. We show there is a positive classical solution of (3). For simplicity we assume
that Bc

2 ⊂⊂ Ω ⊂⊂ Bc
1 where the c denotes compliment. We begin by looking at an explicit

example the the compliment of the unit ball.

Example 2. Let the parameters be as above and set

ut(r) =

∫ r

1

1

(tyα − βy)
1
p−1

dy.

Then for all t > β, ut is a classical positive solution of (3) in the case of Ω = B1
c
. Also

note that ut is increasing in r and is bounded. Also we see that ut,∇ut converge uniformly
to zero on B1

c
as t→∞.

For notational convenience now, when solving a pde on a ball or an exterior of a ball we
will write Br or Bc

r; of course its understood the domain is always open. As in the case of
bounded domain Ω we will look for a solution of the form u(x) = η(x)ut(x) + φ(x), where η
is a suitable cut off to make u = 0 on ∂Ω; take 0 ≤ η ≤ 1 to be smooth with η = 0 in B2

and η = 1 for Bc
3. As before the linearized operator will be of crucial importance. We set

Lt(φ) := ∆φ+ p|∇ut|p−2∇ut · ∇φ,

and an explicit computation shows

Lt(φ) = ∆φ+
px · ∇φ(x)

|x| (t|x|α − β|x|)
.

We now choose our function spaces. As before we define

‖φ‖X := sup
Ω
|x|σ+1|∇φ(x)|, ‖f‖Y := sup

Ω
|x|σ+2|f(x)|,

where σ is to be determined and where the spaces X and Y are defined using the above
norms; for the space X we impose φ = 0 on ∂Ω.

The parameter σ. As before we will employ a fixed point argument to obtain φ ∈ BR :=
{φ ∈ X : ‖‖φ‖X ≤ R} where R > 0 is small, and where u(x) = η(x)ut(x)+φ(x) is a solution.
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The order in choosing the parameters will be the same as before; we will pick R > 0 small
and then take t large. Recalling that ut (and its derivatives in x) converge to zero when
t → ∞ we see there will be a natural hurdle of showing u 6= 0; this was not an issue in the
previous results since no matter how large t was chosen we had uniform blow up near the
origin. So returning to the form of our solution we see that if φ ∈ BR and |x| large we have

|∇u(x)| ≥ 1

(trα − βr)
1
p−1

− R

|x|σ+1
,

where r = |x|. From this we see no matter how large t is chosen (or the value of R) that
if σ + 1 > α

p−1
then for large enough |x| we have ∇u(x) 6= 0. With this in mind we choose

σ := N − 2 + ε where ε > 0 is small. One should note that this value of σ is somewhat
nonstandard. A lot of linear theory has been done where σ ∈ (0, N − 2). Typically the X
norm would also have a zero order term given by |x|σ|φ(x)|; for our value of σ we cannot
include this term but this doesn’t affect us since we really only need decay of the gradients.
In the next section we will show the desired linear theory that there is some C > 0 and large
t0 such that for all t > t0, for all f ∈ Y there is some φ ∈ X which satisfies Lt(φ) = f in Ω
with φ = 0 on ∂Ω. Moreover one has ‖φ‖X ≤ C‖f‖Y .

Remark 3. We remark that in our first attempt at proving the needed linear theory for Lt

we used a proof similar to the previous sections. We first considered the result on Bc
1 using

spherical harmonics and a blow up argument. We then used the gluing procedure from the
previous section to extend this to a general exterior domain. The result held for all t in the
allowed range (except t had to be bounded away from β). Later we realized that for large
t (and we really only need the result for large t) that Lt is really just a perturbation of the
Laplacian and hence we can prove the needed result via a more abstract approach. It is still
useful to consider the spherical harmonic approach on Bc

1 to see exactly how the zero order
estimate fails.

The nonlinear set up and the fixed point argument. Here we follow the general
procedure as in the case of a general bounded domain Ω. A computation shows that u (as
described above) is a solution of (27) if φ satisfies

{
−Lt(φ) = ut∆η + 2∇η · ∇ut − η|∇ut|p + |∇(utη) +∇φ|p − p|∇ut|p−2∇ut · ∇φ in Ω\{0},

φ = 0 on ∂Ω,
(28)

and as before we rewrite this as

−Lt(φ) =
4∑

k=1

Ik in Ω\{0},

where
I1 = ut∆η + 2∇η · ∇ut, I2 = |∇(utη)|p − η|∇ut|p,

I3 = |∇(utη) +∇φ|p − |∇(utη)|p − p|∇(utη)|p−2∇(utη) · ∇φ,
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I4 = p
{
|∇(utη)|p−2∇(utη)− |∇ut|p−2∇ut

}
· ∇φ.

Note that I1 = I2 = 0 in B2 ∪Bc
3. Also we have I4 = 0 in Bc

3. Similiar to before we set

εt := sup
Ω

{
|I1|+ |I2|+

∣∣∣|∇(utη)|p−2∇(utη)− |∇ut|p−2∇ut
∣∣∣} ,

and note this is really a sup of Ω ∩ B3 and hence its trivial to see εt → 0 as t → ∞ after
taking into account the behaviour of ut for large t. We now consider the fixed point argument.
Consider T t(φ) = ψ where

−Lt(ψ) =
4∑

k=1

Ik(φ) in Ω, ψ = 0 on ∂Ω,

where we are writing Ik(φ) to indicate the φ dependence.

Into. Let 0 < R < 1, t > t0, φ ∈ BR ⊂ X and ψ = T t(φ). Then we have

‖ψ‖X ≤ Cεt (1 +R) + C‖I3‖Y ,

where this last term will depend on whether p ≤ 2 or p > 2. We first consider the case of
p ≤ 2; and in this case we use (15) with x = ∇(utη), y = ∇φ to arrive at

‖I3‖Y ≤ C sup
Ω
|x|σ+2|∇φ|p ≤ CRp sup

Ω
|x|σ+2−p(σ+1), (case p ≤ 2),

which is bounded by CRp provided σ + 2 − p(σ + 1) ≤ 0 which is in fact the case after
recalling the value of σ = N − 2 + ε. For p > 2 we will use the following inequality∣∣∣|x+ y|p − |x|p − p|x|p−2x · y

∣∣∣ ≤ C|y|p + C|x|p−2|y|2, x, y ∈ RN ,

and after taking x and y as above gives

‖I3‖Y ≤ CRp + CR2 sup
Ω
|x|σ+2|∇(utη)|p−2|x|−2σ−4.

Considering the convergence to zero of ∇ut and ut we see the only possible issue of the
second term is for large x. For large x note that

|∇(utη)|p−2 ≤ C

t
p−2
p−1 |x|(N−1)(p−2)

.

Using this we can substiture into the above (after taking into account the value of σ) to
arrive at: there is some ε̂t → 0 as t→∞ such that

‖I3‖Y ≤ CRp + Cε̂tR
2, (case p > 2).
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So for T t(BR) ⊂ BR (in either case) its sufficient that

C
(
εt(1 +R) +Rp + ε̂tR

2
)
≤ R. (29)

Contraction. Let 0 < R < 1, t > t0, φi ∈ BR ⊂ X and ψi = T t(φi). Then note we have

|I4(φ2)− I4(φ1)| ≤ εtχB3(x)|∇φ2 −∇φ1|,

and hence ‖I4(φ2) − I4(φ1)‖Y ≤ Cεt‖φ2 − φ1‖X . To examine the I3 term we use (17) with
x = ∇(utη) and y = ∇φ2, z = ∇φ1 to arrive at

|I3(φ2)− I3(φ1)| ≤ C
{
|∇(utη)|p−1 + |∇φ2|p−1 + |∇φ1|p−1

}
|∇φ2 −∇φ1|.

Using these estimates we see

‖I3(φ2)− I3(φ1)‖Y ≤ C

(
Rp−1 + sup

Ω
|x||∇(utη)|p−1

)
‖φ2 − φ1‖X .

A computation shows that

|∇(utη)|p−1 ≤ C

t|x|α
in Ω,

for large t. Using this and the fact that α > 1 we see that

‖I3(φ2)− I3(φ1)‖Y ≤ C

(
Rp−1 +

1

t

)
‖φ2 − φ1‖X ,

and hence for T t to be a contraction on BR its sufficient that

C

(
Rp−1 +

1

t

)
≤ 1

2
. (30)

We now choose the parameters R and t. By taking R > 0 sufficiently small and fixing and
then taking t large we see that we can satisfy (29) and (30). We can now apply the Banach’s
fixed point theorem to see there is some φ ∈ BR such that T t(φ) = φ. As noted earlier for
large x we have ∇u(x) 6= 0 and hence we know u is not identically zero. Also note that a
computation shows

∇u(x) · x ≥ 1

rN−2

(
1

(t− βr1−α)
1
p−1

− R

rε

)
,

where r = |x|. So we see for large |x| that u is increasing in the radial direction. Now we
show u is positive. Suppose not, then using the monotonicity in the radial direction we see
there is some x0 ∈ Ω such that minΩ u = u(x0) ≤ 0. Then we can use the strong maximum
principle to see that u = u(x0) in Ω; a contradiction.
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5.1 The linear theory

We begin with a theorem regarding the mapping properties of the Laplacian and for this we
need to define a new norm. Consider

‖φ‖X̂ := sup
Ω

{
|x|σ+1|∇φ(x)|+ |x|σ+2|∆φ(x)|

}
,

and we set X̂ := {φ : ‖φ‖X̂ <∞, and φ = 0 on ∂Ω}.

Theorem 3. The mapping ∆ : X̂ → Y is continuous, linear, one to one and onto with
continuous inverse.

As a corollary of this will obtain results regarding the solvability of{
Lt(φ)(x) = f(x) in Ω,

φ = 0 on ∂Ω.
(31)

Corollary 1. There is some t0 large and C such that for all t > t0 and for all f ∈ Y there
is some φ ∈ X that satisfies (31). Moreover ‖φ‖X ≤ C‖f‖Y .

Lemma 7. (Kernel of ∆) Suppose ∆φ = 0 in RN\{0} with sup0<|x| |x|σ+1|∇φ(x)| < ∞
or ∆φ = 0 in B1\{0} with ∂νφ = 0 on ∂B1 and supB1

|x|σ+1|∇φ(x)| < ∞. Then φ is a
constant.

Proof. Suppose φ as in the hypothesis and we write as φ(x) =
∑∞

k=0 ak(r)ψk(θ). Then for
all k ≥ 0 we have

a′′k(r) +
N − 1

r
a′k(r)−

λkak(r)

r2
= 0, in r ∈ (0, R), (32)

where R = ∞ in the first case and in the second case R = 1 and one has the boundary
condition a′k(1) = 0. Also note there is some Ck > 0 such that we have sup0<r<R r

σ+1|a′k(r)| <
∞. We now consider the various modes.

• (k = 0). The general solution in this case is a0(r) = C0 + D0

rN−2 . We first consider the
case of R =∞. In this case we see to satisfy the gradient bound we must have D0 = 0
and hence a0 is constant. When R = 1 we also see D0 = 0 since a′0(1) = 0.

• (k ≥ 1). Note ak satisfies an ode of Euler type and hence the roots of γ2+(N−2)γ−λk =

0 are relevant. In this case the general solution is given by ak(r) = Ckr
γ+k + Dkr

γ−k

where

γ±k =
−(N − 2)

2
±
√

(N − 2)2 + 4λk
2

.

Note that
rσ+1a′k(r) = Ckγ

+
k r

γk+σ +Dkγ
−
k r

γ−k +σ.
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In the case of R =∞ we see that if γ+
k , γ

−
k , γ

+
k + σ, γ−k + σ are all nonzero then we can

show the quantity on the left is unbounded in r unless Ck = Dk = 0. We come back to
these verifying these quantities are nonzero shortly. Now consider the case of R = 1.
Then to satisfy a′k(1) = 0 imposes the condition Ckγ

+
k +Dkγ

−
k = 0 and hence

rσ+1a′k(r) = Ckγ
+
k

(
rγ

+
k +σ − rγ

−
k +σ

)
.

In this case note if γ−k + σ < 0 then we must have Ck = 0 to satisfy the desired
estimate.
We now consider the various parameters in question. Note that γ+

1 = 1 and γ−1 =
−N + 1 and hence by monotonicity of γ±k we see γ±k 6= 0 for k ≥ 1. Also note by
montonicity we have

γ+
k + σ ≥ γ+

1 + σ = σ + 1 > 0, γ−k + σ ≤ γ−1 + σ = −1 + ε < 0.

Proof of Theorem 3. Its clear ∆ is linear and continuous (to see its continuous note the

X̂ norm includes the graph norm for ∆).

One to one. Let φ ∈ X̂ with ∆φ = 0 in Ω and φ = 0 on ∂Ω. By integrating the first order
portion of the X̂ norm along a ray one sees that φ is bounded. Let R be big and multiply
the equation by φ and integrate over Ω ∩ BR (the open ball centred at the origin in RN) to
see ∫

Ω∩BR
|∇φ|2dx ≤ sup

Ω
|φ|
∫
∂BR

|∇φ| ≤ sup
Ω
|φ|CN‖φ‖X̂R

−ε,

after recalling the value of σ. Sending R → ∞ we see that φ = 0 after taking into account
the boundary condition of φ.

Onto. Let Rm →∞ and consider the problem


∆φ(x) = f(x) in Ωm,

φ = 0 on ∂Ω, (the inner boundary)

∂νφ = 0 on ∂BRm , (the outer boundary)

(33)

where Ωm := Ω ∩BRm . We claim there is some C > 0 such that for all m large and fm ∈ Y
there is some φm which satisfies (33) and moreover one has the estimate ‖φm‖X̂ ≤ C‖fm‖Y .
We accept the validity of the claim for now. Then given f ∈ Y (on Ω) we let φm satisfy (33).
We can then use a diagonal argument and compactness to pass to the limit (after passing to

a suitable subsequence) to find some φ ∈ X̂ (on Ω) which satisfies ∆φ = f in Ω with φ = 0
on ∂Ω. Moreover one has the estimate ‖φ‖X̂ ≤ C‖f‖Y .
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Proof of claim. There is no issue with the existence of a solution of (33), the only possible

problem is the estimate fails. We first prove the estimate if we replace the X̂ norm with
the X norm. Towards a contradiction we can assume for large enough m the estimate fails.
Then after normalizing there is φm ∈ X (in Ωm) and fm ∈ Y (in Ωm) which satisfies (33) and
‖φm‖X = 1 and ‖fm‖Y → 0. Then there is some xm ∈ Ωm such that |xm|σ+1|∇φm(xm)| ≥ 1

2

and we set sm = |xm|. We consider three cases: (i) sm bounded; (ii) sm unbounded but
sm
Rm
→ 0; (iii) sm

Rm
bounded away from zero.

Case (i). Using compactness and a diagonal argument we see that there is some φ such that
φm → φ in C1,δ

loc (Ω ∩ BR) for all R large. Using the convergence we can pass to the limit in
the equation and hence ∆φ = 0 in Ω with φ = 0 on ∂Ω. Also note that since sm is bounded
there is some x0 ∈ Ω such that |∇φ(x0)| ≥ 1

2
. Additionally we have |∇φ(x)| ≤ 1 in Ω and

hence we can apply our result regarding the kernel to obtain a contradiction.

Case (ii). In this case we consider ζm(z) := sσmφm(smz) for z ∈ Ωm := {z : smz ∈ Ωm} and
note Ωm → RN\{0}. We define zm by smzm = xm and hence |zm| = 1 satisfies |∇ζm(zm)| ≥ 1

2
.

Additionally note that |z|σ+1|∇ζm(z)| ≤ 1 in Ωm. Set ζm(z) := ζm(z)−ζm(zm) and hence ζm

satisfies the same estimates as ζm and ζm(zm) = 0. Also we note that ∆ζm(z) = gm(z) :=
sσ+2
m fm(smz) in Ωm. Using a diagonal and compactness argument there is some ζ such that

∆ζ = 0 in RN\{0}; ζm → ζ in C1,δ
loc (RN\{0}) and if zm → z0 then we have |∇ζ(z0)| ≥ 1

2
.

But this contradicts the results from Lemma 7.

Case (iii). We now assume sm
Rm

is bounded away from zero. Here we consider ζm(z) :=
Rσ
mφm(Rmz) for z ∈ Ωm := {z : Rmz ∈ Ωm} and note the outer portion of the bound-

ary of Ωm is just ∂B1. Also note Ωm is roughly an annulus with a shrinking hole at the
origin. We define zm by Rmzm = xm and so |zm| ≤ 1 and is bounded away from zero.
Also note we have |∇ζm(z)| ≤ 1 in Ωm and |∇ζm(zm)| ≥ ε0 for some ε0 > 0. We now set
ζm(z) = ζm(z) − ζm(zm) and note ζm satisfies the same estimates and ζm(zm) = 0. Also
note that ζm satisfies ∆ζm(z) = gm(z) := Rσ+2

m fm(Rmz) in Ωm with ∂νζ
m = 0 on ∂B1 (the

outer portion of ∂Ωm) and we omit the boundary condition on the inner boundary. By a
compactness and diagonal argument there is some ζ such that ζm → ζ in C1,δ

loc (B1\{0}).
Moreover we have |∇ζ| 6= 0 and |z|σ+1|∇ζ(z)| ≤ 1 in B1\{0} and ∆ζ(z) = 0 in B1\{0} with
∂νζ = 0 on ∂B1. But this contradicts the results from Lemma 7.

So we have shown that we have the desired gradient estimate on φ. The second order
estimate on φ comes directly off the equation.

2

Proof of Corollary 1. Recall we have

Lt(φ) = ∆φ+
px · ∇φ(x)

|x| (t|x|α − β|x|)
.

The claim is that for large t we can see Lt as a perturbation of ∆. To see this we write δ = 1
t
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and then we can write
Lt(φ) = L̃δ := ∆φ+ T δ(φ),

where

T δ(φ)(x) :=
δpx · ∇φ(x)

|x| (|x|α − δβ|x|)
.

Let φ ∈ X with ‖φ‖X ≤ 1 and then note we have

‖T δ(φ)‖Y ≤ δp sup
Ω

1

|x|α−1 − δβ
,

for small enough δ and hence the operator norm ‖T δ‖L(X,Y ) ≤ Cδ for small enough δ. Using
this and Theorem 3 one can apply some standard functional analysis to complete the proof.
Note if one tries a similar argument on the linear operators from the previous sections they
will see it fails. 2.
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