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ABSTRACT. We are interested in the existence versus non-existence of non-
trivial stable sub- and super-solutions of

(0.1) —div(w1Vu) = w2 f(u) in RY,

with positive smooth weights wi(x),w2(x). We consider the cases f(u) =
e, uP where p > 1 and —u~P where p > 0. We obtain various non-existence
results which depend on the dimension N and also on p and the behaviour of
w1,w2 near infinity. Also the monotonicity of w; is involved in some results.
Our methods here are the methods developed by Farina. We examine a specific
class of weights wi(z) = (|z|2 + 1)2 and wa(z) = (|22 + l)gg(gv)7 where
g(z) is a positive function with a finite limit at co. For this class of weights,
non-existence results are optimal. To show the optimality we use various
generalized Hardy inequalities.

1. INTRODUCTION AND MAIN RESULTS

In this note we are interested in the existence versus non-existence of stable sub-
and super-solutions of equations of the form

(1.1) —div(wy (2)Vu) = wa(z) f(u) in RY,

where f(u) is one of the following non-linearities: e*, uP where p > 1 and —u~P
where p > 0. We assume that wy(z) and wa(z), which we call weights, are smooth
positive functions (we allow ws to be zero at say a point) and which satisfy various
growth conditions at co. Recall that we say that a solution u of —Au = f(u) in
RY is stable provided that

[rwe < [ivep, voec,

where C2 is the set of C2 functions defined on R with compact support. Note
that the stability of w is just saying that the second variation at u of the energy
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2004 CRAIG COWAN AND MOSTAFA FAZLY

associated with the equation is non-negative. In our setting this becomes: We say
that a C? sub/super-solution u of (1)) is stable provided that

(12) Jwarwwr < [wver wwect
One should note that (LI can be rewritten as
—Au+ Vy(z) - Vu = we fwy f(u) in RY,

where v = —log(w1 ), and on occasion we shall take this point of view.

Remark 1. Note that if wy has enough integrability, then it is immediate that if u
is a stable solution of (LI)) we have [wsf’(u) = 0 (provided f is increasing). To
see this let 0 < 1 < 1 be supported in a ball of radius 2R centered at the origin
(B2r) with ¢ = 1 on Bp and such that [V¢)| < &, where C > 0 is independent of
R. Putting this ¢ into (L2]) one obtains

, C
/ waf'(u) < ﬁ/ w1,
Br R<|z|<2R

and so if the right-hand side goes to zero as R — oo we have the desired result.

The existence versus non-existence of stable solutions of —Au = f(u) in RY or
—Au = g(x) f(u) in RY is now quite well understood; see [3} 4, 7, [8, 9} 10} [T} [T} [5 6]
We remark that some of these results are examining the case where A is replaced
with A, (the p-Laplacian), and also in many cases the authors are interested in
finite Morse index solutions or solutions which are stable outside a compact set.
Much of the interest in these Liouville type theorems stems from the fact that the
non-existence of a stable solution is related to the existence of a priori estimates
for stable solutions of a related equation on a bounded domain.

In [12] equations similar to —Awu = |z|*u? were examined on the unit ball in RY
with zero Dirichlet boundary conditions. There it was shown that for a > 0 one
can obtain positive solutions for p supercritical with respect to Sobolev embedding
and so one can observe that the term |z| is restoring some compactness. A similar
feature happens for equations of the form

—Au = |z|*f(u) in RY;

the value of « can vastly alter the existence versus non-existence of a stable solution;
see [B] [11 [ [8, [7].

Licensed to Univ of Alberta. Prepared on Tue Aug 13 19:52:47 EDT 2013 for download from IP 129.128.207.237.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



STABLE ENTIRE SOLUTIONS OF SEMI-LINEAR ELLIPTIC EQUATIONS 2005

We now come to our main results and for this we need to define a few quantities:

L2t
IG = R74t72 / 1—2tdﬂf,
R<|z|<2R W2

o le 2t+1
Jo = R 1/ ‘%d:@,
R<|z|<2R wa
1
_ -1
—2(2t+p—1) wf—’_% A
I, = R »1 ——r dx,
R<|z|<2R wa
1
_pE2e=1 |Vawy [PF2E-1N 777
Jp = R p1 —r—— dx,
R<|z|<2R w3
1
PHL
_opt2t+1 wf+2t+1 v
Iy = R pH1 — dx
2t )
R<|z|<2R w3
_1
_ pyotil ‘vw1|p+2t+1 p+1
Jy = R THI —r dx.
R<|z|<2R w3

The three equations we examine are
—div(w; Vu) = wee® in RNV (G),
—div(w1 Vu) = wou? in RV (L),
—div(wi Vu) = —wou™P in RV (M),

where we restrict (L) to the case p > 1 and (M) to p > 0. By a solution we always
mean a C? solution. We now come to our main results in terms of abstract wy
and wy. We remark that our approach to non-existence of stable solutions is the
approach due to Farina; see [9] [0} [].

Theorem 1.1.

(1) There is no stable sub-solution of (G) if Ig,Ja — 0 as R — oo for some
0<t<2.
(2) There is no positive stable sub-solution (super-solution) of (L) if I, Jp, — 0

as R — oo for somep—\/p(p—1) <t <p++/plp—1) (0<t<3).

(3) There is no positive stable super-solution of (M) if Inr, Jyr — 0 as R — oo
for some 0 <t <p++/p(p+1).

If we assume that w; has some monotonicity we can do better. We will assume
that the monotonicity conditions are satisfied for large x but really all one needs is
for it to be satisfied on a suitable sequence of annuli.

Theorem 1.2.

(1) There is no stable sub-solution of (G) with Vwi(z) -z < 0 for large x if
Ig — 0 as R — oo for some 0 <t < 2.
(2) There is no positive stable sub-solution of (L) provided I, — 0 as R — oo
for either:
e somel<t<p+/p(p—1) and Vwi(x) -z <0 for large x or
e somep—+/p(p—1) <t <1 and Vwi(z) -2 >0 for large x.
There is no positive super-solution of (L) provided I;, — 0 as R — oo for
some 0 <t < 3 and Vw(z) -z <0 for large x.
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2006 CRAIG COWAN AND MOSTAFA FAZLY

(3) There is no positive stable super-solution of (M) provided Iny — 0 as R —
oo for some 0 <t <p++/plp+1).

Corollary 1. Suppose w1 < Cwsy for large ©, we € L, Vwi(x) -z < 0 for large x.

(1) There is no stable sub-solution of (G) if N < 9.
(2) There is no positive stable sub-solution of (L) if

N<2+ﬁ(p+m).

(3) There is no positive stable super-solution of (M) if

N<2—|—Z% (p+ Voo + 1)).

If one takes w; = wy = 1 in the above corollary, the results obtained for (G) and
(L), and for some values of p in (M), are optimal; see [9] [0} [§].
We now drop all monotonicity conditions on ws.

Corollary 2. Suppose w; < Cws for large x, wy € L™, |Vwi| < Cws for large x.

(1) There is no stable sub-solution of (G) if N < 4.
(2) There is no positive stable sub-solution of (L) if

N<1+Z%(p+m).

(3) There is no positive super-solution of (M) if

N<1+Z%(p+m).

Some of the conditions on w; in Corollary [2 seem somewhat artificial. If we shift
over to the advection equation (and we take w; = wo for simplicity)

—Au+ Vy-Vu= f(u),

the conditions on v become: + is bounded from below and has a bounded gradient.

In what follows we examine the case where w(z) = (|z|> +1)% and wq(x) =
g(z)(|z|* + 1)§, where g(x) is positive, except at say a point, and smooth, and
where lim ;o g(x) = C € (0,00). For this class of weights we can essentially
obtain optimal results.

Theorem 1.3. Take w; and wa as above.

(1) If N+ a—2 <0, then there is no stable sub-solution for (G), (L) (here we
require it to be positive), and in the case of (M) there is no positive stable
super-solution. This case is the trivial case; see Remark [l

Assumption. For the remaining cases we assume that N +a — 2 > 0.
(2) If N+ a—2<4(8—a+2), then there is no stable sub-solution for
(@).

B IfN+a-2< Q(ﬁp O‘1+2 (p+ Vpp—1) ) then there is no positive

stable sub-solution of (L).

4 IfN+a-2< Z(Bpf1+2) (p—|— Vpp+1) ) then there is no positive
stable super-solution of (M).

Licensed to Univ of Alberta. Prepared on Tue Aug 13 19:52:47 EDT 2013 for download from IP 129.128.207.237.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



STABLE ENTIRE SOLUTIONS OF SEMI-LINEAR ELLIPTIC EQUATIONS 2007

(5) Furthermore, (2), (3), (4) are optimal in the sense that if N +o—2 >
0 and the remaining inequality is not satisfied (and in addition we
assume we do not have equality in the inequality), then we can find a
suitable function g(x) which satisfies the above properties and a stable
sub-/super-solution u for the appropriate equation.

Remark 2. Many of the above results can be extended to the case of equality in
either N + a — 2 > 0 or the other inequality which depends on the equation we are
examining. We omit the details because one cannot prove the results in a unified
way.

In showing that an explicit solution is stable we will need the weighted Hardy
inequality given in [2].

Lemma 1. Suppose E > 0 is a smooth function. Then one has

1 - 1 T— T
(152 [ BN + (-1 [(amE g < [ Eive,
for all p € C*(RYN) and 7 € R.
By picking an appropriate function F this gives

Corollary 3. For all ¢ € Cg° and t,a € R, we have

JasuPEver = 4507 [P oP) e

(it + %) /(N —2t+ ) f|x|2)(1 +zf?) "8 2,

2. PROOF OF MAIN RESULTS

Proof of Theorem [Tl (1) Suppose u is a stable sub-solution of (G) with I, Jo —
0as R — oo and let 0 < ¢ < 1 denote a smooth compactly supported function.
Put 1 := e*¢ into (L2), where 0 < t < 2, to arrive at

/w26(2t+1)u¢2 < tQ/wle2t“|Vu|2¢2

+ / w1 Vel + 2t / w1 pVu - Vo.
Now multiply (G) by e?“¢? and integrate by parts to arrive at
on /w162tu|vu|2¢2 < /W2€(2t+1)u¢2 _ 2/w162tu¢vu . V¢,

and now if one equates like terms, one arrives at

(Q;t) /w2e(2t+1)u¢2 < /wlthu <v¢|2 _ %) dx

2
Now substitute ¢™ into this inequality for ¢ where m is a large integer to obtain

@/wze(%#)%m < Cm/wwm(bzm_z (IVo[* + ¢lAd]) do

(2.2) ~D,, / 2?1y, - Ve,

(2.1) —1/62“‘¢le -Vo.
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2008 CRAIG COWAN AND MOSTAFA FAZLY

where C,,, and D,, are positive constants just depending on m. We now estimate
the terms on the right, but we mention that when one assumes the appropriate
monotonicity on wi, it is the last integral on the right which one is able to drop:

_2t w
/wle2tu¢2m72|v¢|2 _ /w22t+1 e2tu¢2m72_21t|v¢‘2
w22t+1

2t

(/ c‘)26(2t+1)u¢(2m—2)%dx) 2

w2t+1 2#;-1
1 2(2t4+1
x (/T|V¢| ( )) :
w3

Now, for fixed 0 < t < 2 we can take m large enough so that (2m — 2)% > 2m,
and since 0 < ¢ < 1 this allows us to replace the power on ¢ in the first term on

the right with 2m, and hence we obtain
(2.3)

ETEs) w2ttt =
/wle2tu¢2m—2‘v¢|2 < (/W2€(2t+1)u¢2md$) (/ 1 |v¢2(2t+1)> .

2t
w3

IN

We now take the test functions ¢ to be such that 0 < ¢ < 1 with ¢ supported in
the ball Bog with ¢ = 1 on Bg and |V¢| < %, where C' > 0 is independent of R.
Using this choice of ¢ we obtain

2t
2t+1 1
(2.4) /wlezt“¢2m_2|v¢\2 < (/w26(2t+1)u¢2m) 17

One similarly shows that

2t

2t+1 1
/wleztu¢2mfl|A¢| < (/W2e(2t+1)u¢2m) ICQ;-H'

So, combining the results we obtain

2t
2_ ¢t 2t+1 1
( 5 )/w2e(2t+1)u¢2m < O, (/WQG(ZH_DuqmedJ)) ICZ;t+1

(2.5) —D,, / A p?m I, - Vo

‘We now estimate this last term. A similar argument using Holder’s inequality shows
that

2t
2ot 2t%#l
Ja .

/62tu¢2m71‘vw1”v¢| < </w2¢2m€(2t+1)ud.’[>

Combining the results gives that

1
21 1 i
(2.6) (2-— t) (/ w26(2t+1)u¢2md$> < Icz;t+1 + ch;t+1’

and now we send R — oo and use the fact that I, Jg — 0 as R — oo to see that

/w2e(2t+1)u — O,

which is clearly a contradiction. Hence there is no stable sub-solution of (G).
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STABLE ENTIRE SOLUTIONS OF SEMI-LINEAR ELLIPTIC EQUATIONS 2009

(2) Suppose that u > 0 is a stable sub-solution (super-solution) of (L). Then

a similar calculation as in (1) shows that for p — \/p(p—1) <t < p+ +/p(p—1)

(0 <t < 3) one has
t2
2t—1

(p— =) / w1 < D / UMD ([T + 6| Ag))

(1-1) / 2t ,2m—1
Corn————~ [ u""¢p""" "Vw; - Vo
+ 2026~ 1) ¢ 1-Vo
One now applies Holder’s argument as in (1), but the terms I, and Jy, will appear
on the right-hand side of the resulting equation. This shift from a sub-solution to
a super-solution depending on whether ¢ > % ort < % is a result from the sign
change of 2t — 1 at t = % We leave the details for the reader.

(3) This case is also similar to (1) and (2). O

Proof of Theorem [L2. (1) Again we suppose that there is a stable sub-solution u
of (G). Our starting point is ([Z2]), and we wish to be able to drop the term

_Dm 62tu¢2m71vw1 . v¢

from (22). We can choose ¢ as in the proof of Theorem [Tl but also such that
Vo(z) = —C(z)z, where C(x) > 0. So if we assume that Vw; - & < 0 for large z,
then we see that this last term is non-positive and hence we can drop the term.
Then the proof is as before, but now we only require that limg_., I = 0.

(2) Suppose that u > 0 is a stable sub-solution of (L) and so (Z7)) holds for all
p—+/plp—1) <t <p++/p(p—1). Now we wish to use monotonicity to drop the
term from (Z7) involving the term Vw; - V. ¢ is chosen similarly as in (1), but
here one notes that the coefficient for this term changes sign at ¢ = 1, and hence by
restriction of ¢ to the appropriate side of (1) (along with the above condition on ¢
and wq) we can drop the last term depending on which monotonicity we have and
hence obtain a contraction we only require that limg_,~, I, = 0. The result for the
non-existence of a stable super-solution is similar, but here one uses the restriction
0<t<3.

(3) The proof here is similar to (1) and (2), and we omit the details. O

Proof of Corollary [ll. We suppose that w; < Cws for large x, wy € L, Vw; (2)-x <
0 for large x.

(1). Since Vw; - 2 < 0 for large x we can apply Theorem to show the non-
existence of a stable solution to (G). Note that with the above assumptions on w;
we have that
CRN
Rit+2
For N <9 we can take 0 < t < 2 but close enough to 2 so that the right-hand side
goes to zero as R — oo.

Both (2) and (3) also follow directly from applying Theorem Note that one
can say more about (2) by taking the multiple cases as listed in Theorem [[2] but
we have chosen to leave this to the reader. O

Ig <

Proof of Corollary 2l Since we have no monotonicity conditions now we will need
both I and J to go to zero to show the non-existence of a stable solution. Again
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2010 CRAIG COWAN AND MOSTAFA FAZLY

the results are obtained immediately by applying Theorem [[.1] and we prefer to
omit the details. ]

Proof of Theorem [L3 (1) If N + a — 2 < 0, then using Remark [Il one easily sees
there is no stable sub-solution of (G) and (L) (positive for (L)) or a positive stable
super-solution of (M). So we now assume that N + a« — 2 > 0. Note that the
monotonicity of w; changes when « changes sign, and hence one would think that
we need to consider separate cases if we hope to utilize the monotonicity results.
But a computation shows that in fact I and J are just multiples of each other in
all three cases, so it suffices to show, say, that limg_,,, I = 0.
(2) Note that for R > 1 one has

C
I < / ‘x|a(2t+1)72t6
RAt+2 R<|z|<2R

< ¢ RN+a(2t+1)-2t8
= RAt+2 )

and so to show the non-existence we want to find some 0 < t < 2 such that
4t +2 > N + a(2t + 1) — 2tB3, which is equivalent to 2¢t(8 — a + 2) > (N + a — 2).
Now recall that we are assuming that 0 < N + o — 2 < 4(8 — a + 2) and hence
we have the desired result by taking ¢t < 2 but sufficiently close. The proof of the
non-existence results for (3) and (4) are similar and we omit the details.
(5) We now assume that N+« —2 > 0. In showing the existence of stable sub-
/super-solutions we need to consider 8 — a4+ 2 < 0 and 8 — a + 2 > 0 separately.
o (f—a+2<0). Here we take u(x) = 0 in the case of (G) and v = 1 in the
case of (L) and (M). In addition we take g(z) = €. It is clear that in all
cases u is the appropriate sub- or super-solution. The only thing one needs
to check is the stability. In all cases this reduces to trying to show that we
have

o [a+iaP)iier < [ up)EvoP
for all ¢ € C2°, where o is some small positive constant; it is either € or pe
depending on which equation we are examining. To show this we use the
result from Corollary [8] and we drop a few positive terms to arrive at
a « |=’E|2 _{4a
1 HEVO2 > (t+ = N-20t+1)——— ) (1 Z)ita
JaraPEver = @+ 5 [ (8204 0 ) (el
which holds for all ¢ € C2° and t,a € R. Now, since N +a —2 > 0, we
can choose ¢ such that —5 <t < "T*Q So, the integrand function on the
right-hand side is positive, and since for small enough o we have
|z

14+ |z|?

ag(t+%)(N—2(t+1) ) forall xRV

we get stability.
e (B—a+2>0). In the case of (G) we take u(z) = —W In(1+|z|?) and

g(z) =B —a+2)(N+ (a— 2)%) By a computation one sees that u
is a sub-solution of (@), and hence we now need only to show the stability,

which amounts to showing that
/ g@w? / VP2
A+ 2[)=2H = ) (A +]z2)7 5
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STABLE ENTIRE SOLUTIONS OF SEMI-LINEAR ELLIPTIC EQUATIONS 2011

for all ¢ € C2°. To show this we use Corollary Bl So we need to choose an
appropriate t in —§ <t < % such that for all z € RV we have
|22

(B—a+2)(N+(a—2) [2I* ) < (t+g)27
(1+ |z[?

1+ |22 2

« Iz
+@+§)(N—2@+UT£%F>.

With a simple calculation one sees that we just need to have

B-a+2) < (t+2),

2
B-at+2)(N+a—2) < @+%NN—t—2+%».

If one takes t = ¥ in the case where N # 2 and ¢ close to zero in the

case for NV = 2, one easily sees that the above inequalities both hold after
considering all the constraints on «, 8 and N.

We now consider the case of (L). Here one takes g(z) := ﬁ;ﬁ'z(l\] +

9_ B-at2 || d — (1 2 *72(;0‘:[)2 Usi tiallv th
(a—2-=2 )H_MQ) and u(z) = (1 + |z]*) . Using essentially the
same approach as in (G) one shows that u is a stable sub-solution of (L)

with this choice of g.

_ 2\ S50 .— B=a+2
For the case of (M) we take u(z) = (1+[z|*) 20 and g(x) := =55 (N +

B—a+2, |z
(a—2+ o1 )1+|w‘2). O
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