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Abstract

We prove that if the elliptic problem —Awu + b(x)|Vu| = ¢(x)u with ¢ > 0 has a
positive supersolution in a domain Q of RV23, then ¢, b must satisfy the inequality

< | [ v+ | [ B secx).
Q Q o4

As an application, we obtain Liouville type theorems for positive supersolutions in
2
exterior domains when c¢(z) — bfl—x) > 0 for large |z|, but unlike the known results

2
we allow the case liminfj, . c(z) — b f) = 0. Also the weights b and ¢ are al-
lowed to be unbounded. In particular, among other things, we show that if 7 :=
lim sup|g| o0 [2b(2)| < 00 then this problem does not admit any positive supersolution

if

N-2+47)?
liminf |z|%c(z) > N =247)

|z|—o00 4 ’

and, when 7 = 0o, we have the same if

. b(x)?

1nfR<\x|<2R(C($) - (i))) —
Supg<|x|<4R |b(z)]

limsup R (

R—o0
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1 Introduction and statement of the main results

In this work we consider classical supersolutions of the equation
—Au+b(z)|Vu| = c(x)u, =€, (1)

where  is an exterior domain RY, N > 3. By a classical supersolution we mean a function
u € C?(Q) verifying the inequality —Au + b(z)|Vu| > ¢(x)u pointwise in Q.

In [8] (also see [9]), Berestycki, Hamel and Nadirashvili implicitly proved, as a consequence
of the study of eigenvalue problems in RY, that if b, ¢ are continuous functions in R" then
the problem

—Au+b(x) - Vu > c(z)u in RY (2)
does not admit any positive solution provided that b and ¢ are bounded and satisfy
b 2
liminf ¢(x) — ba)” > 0. (3)

L. Rossi in [22] generalized the above nonexistence results to the framework of fully nonlinear
elliptic operators. As a particular case, it follows that if b, ¢ are bounded in RY \ By, and
(3) holds then Problem 2 does not admit any positive solution. It’s worth noting that every
supersolution u of (2) is also a supersolution of (1) as we have b(x) - Vu < |b(x)||Vu|. To see
some related problems one can see [11] and [13] where the authors proved some Hadamard
and Liouville type properties for nonnegative viscosity supersolutions of fully non linear uni-
formly elliptic partial differential inequalities in the whole space, or in an exterior domain,
for more references see (3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 18].

In [3] Alarcon, Garcia-Melian and Quaas considered positive classical supersolutions of (1)
for more general unbounded weights b and c. They proved that if b,c € C(RY \ Bg,) verify
(3) and satisfy a further restriction related to the fundamental solutions of the homogeneous
problem (see Theorems 1.1 and 1.2 in [3]) then there are no classical positive supersolutions
to (1) which do (or do not) blow up at infinity. Their proof of nonexistence results depends
on properties of the function m(R) = inf ;g u(z) and fundamental solutions of the equation
Av + b(|z|)|Vo| = 0 in RN \ Bg,, where b(r) := SUp| 41— 0(7).

In this paper we use a different approach, by employing a generalized version of Hardy
inequality, and obtain new Liouville type results, that seems to be sharp in some sense, and
improve the results mentioned above. In particular, we may allow the case

2
liminf ¢(x) — )

=0,
and without the boundedness assumption on the weights b and c.
We proceed now to the statement of our main results. First, using a generalized version

of Hardy inequality proved by the second author in [16], we prove the following lemma which
is crucial in the proofs of the main results.



Proposition 1. If (1) has a solution u > 0 then we have

\//chszg \//Q\wm\//ﬁ& ()
[e-5es | |V¢|2+2\/ [iwar [ %o )

for every ¢ € CX(Q).

or equivalently,

The following is our first general nonexistence result.

Theorem 1. Let Q = RN \ Bg, be an exterior domian and b,c € C(Q) with c(z) — bel—x) >0

for |z| sufficiently large. Then (1) does not have any positive supersolution if for some v > 1
we have

infrepeyro*(c = %) _ f2Im2+48+6

sup
R>2R0 SUPE |g) <oyr (1 + % In~y

+ 5, (6)

where B = % In particular this the case if

liminfy, o |2]2(c — & N —2)2
111 111 || — |:C‘ (C 4) > ( ) ’ (7)
2\Ib(w)|) 4

N—-2

lim supy, 0 (1 +

As a consequence we have the following result which is more easy to be checked in
applications:

Proposition 2. Let b,c € C(RY \ Bg,) with c¢(x) — @ > 0 for |x| sufficiently large.

(i) Assume T := limsupy, _, [vb(x)| < co. Then (1) does not have any positive superso-
lution if

N -2 2
lim inf |z|%c(z) > ﬂ (8)
|| —o00 4
Moreover, if b > 0 and
N -2 2
lim sup |z|%c(z) < %, (9)

|z| =00

then (1) has a positive supersolution in RN \ Bg, for Ry sufficiently large.

(4) If limsupy, . [2b(z)| = oo then (1) does not have any positive supersolution if

(infR<|x<gR(C — %))
= OQ.

limsup R
SUD 2 iy o 102

R—o0

(10)
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Example 1. Consider the problem
—Au + bz Vu| > c|z/'u RN\ Bg,, (11)

where b,c € R and p > 2\. Then it 1s easy to see that we have

inf pejz)<2r(c(x) — @

SUPR<|z|<2R |b(z)]|

J(R) := R( )> > CoR*, when > 2\,

and also )

J(R) = Ci(c— bZ)R’\, when =2\,

Then by Corollary 2 we see that (11) does not admit any positive supersolution when pu > 2\
and c >0, or p =2\ and c — % > 0. Also, in the remaining cases, its not hard to see that a
positive supersolution can always be constructed for suitably large Ry (see [3] Corollary 1.2

).
Example 2. Consider the problem
| |2)\

1
—Au+ |2Vl = (5 Fope T ERV\B, (12)

bz)® _ = hence, if 4 >0

4 |

where A\ > —1 and A+ u < 1. Note here we have c¢(x) —

2

liminfc — — =0,
|z|—00

thus none of the previous results can apply. However we have, for a fived v > 1,

. 2 b2 . 2
inf pejojaryr [2]°(c — 7F) infp |z|*—H
4 <|z|<yR O(RY+—>
= = — 00 as R — oo.
1 2SUPR |4 <R |Tb(T)] 25UP R o) <yr [T]1FA ( )
+ N_2 1+ N—2

Hence by the above result (12) does not admit any positive supersolution.

Remark 1. Note in the special case b(x) = 0, from Proposition 2 (with 7 = 0 in part (i))
we see that the equation
—Au > c(z)u, (13)

in an exterior domain €2, does not admit any positive supersolution if

N — 2)?
liminf |z |*c(x) > g

|z|—o00 4

(14)
It is worth noting that in [17, 20, 21] it is pointed out that the above nonexistence result

for positive supersolution to (13) can be obtained by using Agmon-Allegretto- Piepenbrink
theory [1]. The above is also proved in [14] by a different method, where the authors for the
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proof employed the Kelvin transform to transfer the unbounded domain €2 into a bounded one
containing the origin and then applied a result of [15] regarding the nonexistence of positive
solutions for the problem —Au = #u—i—f, with Dirichlet BC. in a a bounded smooth domain

D containing the origin, where 0 < f € Ly (D \ {0}) and p > %.

However, note that our Proposition 2 proves more, indeed by part (i) we see that (14) is

indeed sufficient for the nonexistence of positive supersolutions for the more general equation
e(z)

—Au + W|Vu\ > c(x)u, (15)
T

in exterior domains when lim,_, |e(x)| = 0.

As a byproduct of the above results, we can prove the following useful general estimate
using a Hardy type inequality.

Corollary 1. Let E be a positive smooth function in an exterior domain Q in RN (N >3)
with —AE > 0. Then

—AFE N — 2)?
1‘132%15\:@2 7 < ( I ) : (16)
Example 3. As an application of the above corollary consider the equation
—Au = |z|*uP, in Q, (17)

where a € R, p > 1 and Q is an exterior domain in RN (N > 3). Now if u is a positive
classical supersolutions of this equation then we get, by Corollary 1,
—Au (N —2)?

lim inf |z|? = lim inf |2|*"2uP! <

However, we know that a superharmonic function u satisfies u(x) > C|z|>=N in Q (see [23]
or [2, 12]), hence we must have a + 2+ (p — 1)(2 — N) < 0. Thus the above equation does
not admit any positive supersolution if p < %fg, which is a known result. Also, by a similar
argument from Corollary 1 we see that the equation

—Au="L (1> 0)

j]*

(N-2)°

does not admit any positive supersolution in an exterior domain if p > ~—;

Corollary 2. If (1) has a solution u > 0 , and there exists a smooth function E > 0 with
—AFE >0 such that

(18)
then



b2
[le=Se <) [1vep, oecm@. (19)
Q Q
As a consequence (1) does not have any supersolution if

p N —2)?
liminf [z[2(c — ) > (14 27) =2
|| =00 4 4

(20)

In particular, taking E(z) = |z|*N

does not have any supersolution if

we see that if T := limsup, . [7|b(x) < oo then (1)

N —2 2
lim inf |z|%c(z) > ﬂ

|z|—o00 4

2 Proofs of the main results

For the proof of our main results we use the following Hardy type inequality which is a
special case of a result from [16] . For the sake of completeness we give a proof.

Lemma 1. Let E > 0 be smooth. Then for all T € R we have

2 2 |VE|2 00
Vo|*de > (T = T7) ¢’ +T —¢ ¢ € C(Q). (21)
Q
In particular, taking T = % we get
VE|? —AFE -
2 [wopar = [F2Ee s [Z250 secx@ (22)
Proof. Fix ¢ € C°(Q) and set v := E~7¢. Then computing E?T|Vv|? gives
T?|VE|?¢?
E*|Vo? = |V¢|? —2TV¢ - VEGE " + %
and now integrate this and note this term on the left is nonnegative. Now integrating the
middle term by parts (put all derivatives on E) then gives the desired result. ]

1
t

Proof of proposition 1. For ¢ > % set v := u+. Then we have

—Av ¢ Vo2 |V
- t—1 —b Q
v t + ) v? v nes
or,
—AU+1‘VU|2 E+(t_1)|Vv|2 _b|Vv]
v 2 v: Tt 27 0?2 v
2
S
{200 —1)

(=)



Recall the inequality (22),

—A 1 2
/—U¢2d:c+—/ @gﬁ?dx < 2/ IVo|*dx
QO v 2 (9] v Q

for all ¢ € C°(Q2), then we get from above

t
2d <2t/V 2d —|——/b2 2dx.

Now we set
J [ p2ede
L
44/ [ IV o|2dx
to get
2 2
/c¢2dx < <\// IVo|2dz + \// b—¢2dx)
Q Q o4

or

\// ¢2<\//\V¢!2 \/
that proves (4). Squaring both sides of (4) gives (5). O

Proof of Theorem 1. Assume (1) has a positive supersolution u. Then from Proposition
1, ¢,b must satisfy inequality (5). Let v > 1, R > 2R, and take a smooth function % in
with ¢ = 0 for Ry < |z| < Z or [z >2yR, v =1in R< |z| <yR,0< ¢ <1and V¢ < 2.
Now we consider ¢ := |z[~"1) as a test function in (5), where 3 := 2. We have

Vo = —Blz| " Ppa + x| PV

gives
Vol* = B2 — 22| 2pw Vo + |2 |V,
and then by the assumptions on ¥ and Vi) we have the estimates

8 16
E/B|x|1N 4+ — $|27N

Vol < 5l + =

R
§<|x|<R, or YR < |z| < 2yR

and
IVo|* = B%lz| ™™, R <|z| <~R.

Now we write

frwer = wep= [ wers [ vers [ \
Q B|z|<2vR Bz|<Rr R<|z|<vR yR<|z|<2vR
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Using the fact that if « + N # 0 we have

/ |z|%de = Ky
R<|z|<T

and if o + N = 0 we have

r T
/ |x|“dx = KN/ r* N ldr = KyIn —
R<|z|<T R R

(we set Ky =1 as it appears the same in both sides of the inequality) then we compute

T N a+N
Ta+ —R +
/ rot Ny = Ky
R a+ N

I(R) < B2In2+48+6:=Cy, I(R)=/*lnvy
and since I[3(R) = I;(2yR) we also get

I(R) < Ch.

Hence, we proved that
[ 1962 <200+ #10n, (23)
Q

Recall from (5) we have
_ 9 2 [ T2
[e=Se < [1vor+ \//Q!W! [ %o
¢2

b 0 5 _ 1 2
Zﬁb = Z¢ < 1, Suwp |zb()] T3
Q B <jz|<2vR E <|z|<2yR B |z|<2vR ||

2

We write

and estimate the last integral by the Hardy inequality in exterior domains (see [16]) as

¢ <o [
< Vol
[j<|x|<27R || (N - 2) Q| |

/Q(C_ Zj)¢2 < (1+ QSUP§<]|§|<_2~/;|J7E’($)|)/legb|2'

The above inequality together inequality (23) give

hence,

" 250D - 1 7))
o= 16 < (14 =) (2 4+ 64 P o),

8



and then using the estimate

0 b 28 28-21,.12 b? 5 b
c—— > c——)|x|*” = x| “z|*(c——) > inf |z|*(c——)In~,
/Q< 4 )(b N /R<|:c|<’yR< 4 )| | /R<|x|<'yR | | | | ( 4 ) N R<|x\<7R| | ( 4 ) !

we arrive at )
infpeppjcrr [2)2(c— %)  B2In2+ 48 +6

25up§<\z|<2'ﬂ% |wb(x)| - ln '-)/
1 + N-—2

+ B2 (24)

Hence, there exists no positive supersolution if inequality (24) violates for some R > 2Rq
and 7 > 1, that proves the first part. Also, letting v — oo and then R — oo in (24) we see
that (1) does not have any positive supersolution if (7) holds. O

Proof of Proposition 2. To prove (i) note that from Theorem 1 we have the desired
result if ,
liminfj e [2)2(c — %) (N —2)?

>
. 2|xb(x
lim SUP\xHoo(l + %) 4

Now using the fact that

b2 7_2
liminf |z|*(c — =) > liminf |2|%c — —,
|z|—o0 4 |z|—o0 4
we see that the inequality above holds if
2 (N —2)? 2T (N —2+71)?
liminf |z|?c > — 1 = :
minffefe > 7o T (U ) 1
To prove the second part of (i), set a := limsup,_,., |7[*c, then (9) reads as a < (Nfi”)z.
Now choose a; > o and 71 < 7 such that
N —2+1)?
e 2eny -

Now we look for some m > 0 so that the function u(z) = |z|~™ is a supersolution of equation
(1) in RN \ Bpg, for R; sufficiently large. We need

—Au+ b(2)|Vu| — cu = |z| "2 [m(N — 2 —m) + mblz| — cz|*| >0,
for |z| sufficiently large. We have
m(N —2 —m) +mblz| —clz]>* >m(N =2 —m) +mr —a; = —m?> + (N =2+ 7)m — ay.

for |x| sufficiently large, and note the last term is nonnegative for some m > 0 if and only if
(25) holds.
To prove part (ii), note that if inequality (10) holds then inequality (6) holds with v = 2

9



and the results follows by Theorem 1. O]

Proof of Corollary 1. First note that from Lemma 1, if we take 7" =1 in (21) we then get

—AFE
/ Vo|*dz > / ——¢* P CF (). (26)
Q o E
Taking c(z) := =2 then from (26) we see that this c satisfies (4) with b = 0, hence from
(1) we must have
(N —2)*

lim inf <
lglrggo\x!()_ 1

that proves (14). O

Y

Proof of Corollary 2. By the assumption (18) we have

[VEF

] — 1 E2 Y

and then by the Hardy-type inequality (see [16])

VE|?
[wor= [B2e weecx),

/Qb%bg §72/|V¢|2-

Using this in (5) we get (19). One can now proceed as in the the proof of Theorem 1 to get
(20). O

we get
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