
Math7460 Homework 2

October 7, 2019

Question 1 is optional. If you do Question 1 then you can skip one of the other questions.

Question 1. (Analysis question) Let 0 ≤ φ be smooth and suppose its support is is [−1, 1] and
∫
R φ(x)dx = 1.

For ε > 0 small we set φε(x) := ε−1φ(xε ). Given a function f we define the ‘mullification of f by

fε(x) := (φε ∗ f)(x) = (f ∗ φε)(x)

where

(φε ∗ f)(x) :=

∫
R
φε(y)f(x− y)dy.

The goal of this question is to show that fε → f in some sense...depending on f . Recall in class we use the
above formula’s to half proof that fε is smooth. One comment to keep in mind is, depending on what you
are doing you might want to consider φε ∗ f or f ∗ φε. Also you might need to use some facts about φε (its
integral and its support).

(i) Suppose f ∈ C(R) (by this I mean f is uniformly continuous on R). Show fε → f uniformly on R (you
might want to look at how to write fε − f from part (iii) ).

(ii) Let 1 ≤ p < ∞. Given y ∈ R define the ’shift’ operator by (Tyf)(x) := f(x − y). Our goal is to show
that given f ∈ Lp(R) that ‖Tyf − f‖Lp → 0. One can do this directly with some measure theory (and
you can do that if you know the required stuff... probably anything like this follows directly by “Lebesgue
differentiation theorem” or maybe ”Lebesgue Density point theorem”. Instead we will use a density result
(it appears we might be using a circular argument if we assume a density result... but we can prove this
density result using some other results from analysis... including ’Stone-Weirstrass’) (above is just prelude
to question...you don’t need to write anything for the above).
Suppose Cc(R) (continuous compactly supported) is dense in Lp(R). So let f ∈ Lp(R) and let δ > 0 small;
then there exists g ∈ Cc(R) such that ‖f − g‖Lp < δ. Then we have

Tyf − f = (Tyf − Tyg) + (Tyg − g) + (g − f)

and hence
‖Tyf − f‖Lp ≤ ‖Tyf − Tyg‖Lp + ‖Tyg − g‖Lp + ‖g − f‖Lp .

SHOW ‖Tyf − Tyg‖Lp ≤ δ. We’d then have

‖Tyf − f‖Lp ≤ 2δ + ‖Tyg − g‖Lp .

Now SHOW lim supy→0 ‖Tyg − g‖Lp = 0. Now SHOW from this we have limy→0 ‖Tyf − f‖Lp = 0.

(iii) Let 1 ≤ p <∞ and set fε as above. SHOW we can write

fε(x)− f(x) =

∫
R
φε(y)(f(x− y)− f(x))dy,
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and hence we have

|fε(x)− f(x)| ≤
∫
R
|f(x− y)− f(x)|φε(y)dy.

We now want to raise both sides to the power p. One way to do this is to use Jensen’s inequality.

Jensen inequality. Suppose µ is a probability measure on R; ie. µ(R) = 1. Then given any convex
function H : R→ R one has

H(

∫
R
g(x)dµ(x)) ≤

∫
R
H(g(x))dµ(x)

for all functions g.

Returning to our problem; we see the convex function we want to use is H(t) = |t|p. SHOW you can
apply Jensen’s inequality (you will need to indicate what exactly your probability measure is) to get

|fε(x)− f(x)|p ≤
∫
R
|f(x− y)− f(x)|p φε(y)dy.

Now integrate in x and SHOW we can arrive at∫
R
|fε(x)− f(x)|pdx ≤ sup

|y|<ε

∫
R
|f(x− y)− f(x)|pdx.

Using this SHOW
∫
R |f

ε(x)− f(x)|pdx→ 0 as ε↘ 0.

(iv) Here we show one cannot have the above result for p =∞. SHOW given f ∈ L∞ we CANNOT expect
to have fε → f in L∞. Hint. fε is smooth and what kind of convergence is L∞.

Question 2. Let 0 < α < π
2 and set Ω := {x ∈ R2 : r > 0, θ ∈ (0, α)} (we are using polar co-ordinates).

EDIT for this question. By a solution I mean u is smooth in Ω but maybe its badly behaved at the vertex.

(i) Using seperation of variables find the most general solution of

∆u = 0 in Ω, u = 0 on ∂Ω\{0}.

(ii) Using seperation of variables find the most general solution of

∆u = 0 in Ω, ∂νu = 0 on ∂Ω\{0}.

(iii) Let 1 < p <∞. Look for a positive solution of −∆u = up in Ω with u = 0 on ∂Ω\{0}. Hint. Look
for solutions of the form u(r, θ) = g(r)w(θ). (you should be able to figure out exactly what g(r) is and then
you will have some boundary value problem you will need satisfied by w(θ) on θ ∈ (0, α) and this you won’t
be able to solve at this point).
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Question 3. Consider {
−∆u+ u3 = f(x) in Ω,

u = 0 on ∂Ω,
(1)

where f ≥ 0 is bounded and smooth and Ω is bounded.

(i) Recall we have a maximum principle that says: if w satisfies −∆w(x) + C(x)w = g ≥ 0 in Ω with
w = 0 on ∂Ω and C ≥ 0 then w ≥ 0 in Ω. Using this show that a solution of (1) is nonnegative.

(ii) Directly using the equation show that

sup
Ω
|u(x)| ≤

(
sup

Ω
|f(x)|

) 1
3

.

(Remember u is nice...so attains its sup at some x0 ∈ Ω)

Question 4. Suppose 0 < T <∞ and g ∈ C[0, T ) ∩ C1(0, T ). Suppose we have

g′(t) ≤ β(t)g(t) t ∈ (0, T ),

and we assume β is bounded on [0, T ) (maybe blows up at the endpoint). Show

g(t) ≤ g(0)e
∫ t
0
β(τ)dτ , ∀t ∈ (0, T ).

Hint. Note this is NOT an ode. Think about ‘integrating factor’ method.

Question 5. Suppose u = u(x, t) a smooth solution of ut = uxx (x, t) ∈ (0, π)× (0,∞),
ux(0, t) = ux(π, t) = 0 t > 0,
u(x, 0) = φ(x) x ∈ (0, π).

(2)

We assume
∫ π

0
φ(x)dx = 0.

(i) Show for each t > 0 we have
∫ π

0
u(x, t)dx = 0. (Work directly with the pde and not using Fourier series)

(ii) You can assume there the following holds: for all ψ = ψ(x) nice with
∫ π

0
ψ(x)dx = 0 one has∫ π

0

(ψ′(x))2dx ≥
∫ π

0

(ψ(x))2dx.

Set g(t) :=
∫ π

0
(u(x, t))2dx. Show g(t)→ 0 as t→∞.

Hint. Start with g and take a derivative and then play around with the approach from Question 4.
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