
Homework 1; Due September 25

September 19, 2015

1 Mandatory questions

Question 1. Consider the equation{
−∆u+ C(x)u = f(x) in Ω,

u = g(x) on ∂Ω,
(1)

where Ω a bounded domain in RN with smooth boundary and where there is some M <∞
such that C(x) satisfies 0 ≤ C(x) ≤M in Ω. Show there is at most one solution of (1).

An example where uniqueness fails. The above result can be weakened to: “provided
C(x) is not too negative then (1) has at most one solution. We now give an example where
C(x) is too negative and one loses uniqueness. Consider u(x) := sin(3x). Then note that

−u′′(x) = 9u(x) x ∈ (0, π), u(0) = u(π) = 0.

So re-arranging this we see that uk is a non-zero solution of

−u′′(x)− 9u(x) = 0 x ∈ (0, π), u(0) = u(π) = 0. (2)

But of course u = 0 is also a solution of (2).

Question 2. Consider {
−∆u+ h(u) = f(x) in Ω,

u = 0 on ∂Ω,
(3)

where Ω a bounded domain in RN with smooth boundary and where h : R → R is smooth
with h′(z) ≥ 0 for all z ∈ R. Show (3) has at most one solution.
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Hint. Start as with a linear problem: let u, v be solutions and then define w(x) :=
u(x)− v(x). What equation does w solve? You will need to use Question 1 with a particular
C(x) defined in terms of h, u and v.

Question 3. Here we show that if one removes the assumption of Ω bounded then one can
lose uniqueness of solutions. Consider{

uxx(x, y) + uyy(x, y) = 0 in Ω,
u = 0 on ∂Ω,

(4)

where Ω := {(x, y) : x ∈ R, 0 < y < π}. Of course u = 0 is a solution of (4). Find another
solution of the form u(x, y) = eαx sin(βy) where α, β ∈ R are to be determined.

Question 4. In this question we use the maximum principle to obtains bounds on a solution.
Suppose u is a smooth solution of{

−∆u = f(x) in Ω,
u = 0 on ∂Ω,

(5)

where Ω ⊂ BR := {x ∈ RN : |x| < R} and where 0 ≤ f(x) ≤ M . Define v(x) :=
M
2N

(R2 − |x|2). Using the maximum principle show that

sup
Ω
u ≤ MR2

2N
.

Note that when the “diameter of Ω” gets big, ie sup{|x − y| : x, y ∈ Ω} then this estimate
gets worse and worse (Note the R2). Below we show an approach to get good estimates that
really only depend on the set Ω not being big in one direction.

A result better than Question 4. (This is not a question) Suppose 0 ≤ v is a solution of{
−∆v + v = g(x) in Ω,

u = 0 on ∂Ω,
(6)

where 0 ≤ g. Note that 0 ≤ v by assumption and so the maximum is attained in Ω. Suppose
supΩ v = v(x0) for x0 ∈ Ω. Then we have (using the single variable calculus trick) that



∆v(x0) ≤ 0 and so −∆v(x0) ≥ 0. From this note that

v(x0) ≤ −∆v(x0) + v(x0) = g(x0) ≤ sup
Ω
g

and hence we have
sup

Ω
v ≤ sup

Ω
g.

We now return to the question. Suppose Ω is a bounded domain in RN and suppose that
Ω ⊂ {x ∈ RN : |x1| < π

3
}. Suppose u solves (5) where 0 ≤ f and so 0 ≤ u. Consider the

change of variables:
u(x) = E(x)v(x),

where E(x) > 0 in Ω, is to be determined later. Then note that

−f(x) = ∆u(x) = E(∆v) + 2∇E · ∇v + v∆E.

Also note that v = 0 on ∂Ω. Since E is positive we can divide by E. So v solves{
−∆v − 2∇E

E
· ∇v + (−∆E)

E
v = f

E
in Ω,

v = 0 on ∂Ω.
(7)

We would now like to pick E such that this equation resembles (6). So let try and pick
E such that −∆E

E
= 1. Pick E(x) = cos(x1). Then note that E(x) = cos(x1) ≥ 1

2
in Ω. Also

note that −∆E(x) = − d2

dx2
cos(x) = cos(x) = E(x). Now 0 ≤ v and we would like to get

upper bound on v. So let x0 ∈ Ω be such that v(x0) = supΩ v and so −∆v(x0) ≥ 0 and
∇v(x0) = 0. So plugging into the pde we have

v(x0) ≤
(
−∆v − 2∇E

E
· ∇v +

(−∆E)

E
v

) ∣∣∣
x0

=
f(x0)

E(x0)
.

So we have

sup
Ω

u(x)

E(x)
≤ f(x0)

E(x0)
≤ sup

Ω

f

E

but we have
supΩ u

supΩ E
≤ sup

Ω

u(x)

E(x)

and

sup
Ω

f

E
≤ supΩ f

infΩ E

and hence we get
supΩ u

supΩ E
≤ supΩ f

infΩ E

which gives

sup
Ω
u ≤ supΩE

infΩ E
sup

Ω
f.



Now with our choice of E we have supΩ E = 1 and infΩ E ≥ 1
2
. So we have

sup
Ω
u ≤ 2 sup

Ω
f.

There is nothing special about π
3
. For other widths of domains try E(x) = cos(λx1) where

you pick λ > 0 appropriately.

2 Extra questions for graduate students

Question 100; Mandatory question for graduate students. (L2 convergence of the
cosine series) Goal of the this problem is to show that given f ∈ L2(0, π) that the cosine
series converges in L2 to f . We begin with some definitions.

Consider K a compact topological space and let C(K) denote the set of real valued
continuous functions on K. We say A ⊂ C(K) is a subalgebra provided its a linear space
over R and provided f, g ∈ A then fg ∈ A (here (fg)(x) := f(x)g(x)). We say A seperates
K provided for all x, y ∈ K with x 6= y there is some f ∈ A such that f(x) 6= f(y).

Theorem 1. (Stone-Weistrass)
Let K,C(K) be as above and suppose A ⊂ C(K) is a subalgebra with seperates K. In

addition suppose 1 ∈ A. Then A is dense in C(K).

Consider

A := {f : where f(x) =
∞∑
k=0

ck cos(kx)where ck ∈ R and all but a finite number are zero}.

(I) Using cos(a+b) = cos(a) cos(b)−sin(a) sin(b) and cos(a−b) = cos(a) cos(b)+sin(a) sin(b),
show that A is a subalgebra on C[0, π] which seperates [0, π]. Using the Stone-Weirstrass
theorem conclude that A is dense in C[0, π]. Define

An := {f ∈ A : ck = 0 for all k ≥ n+ 1}.

Conclude that given f ∈ C[0, π] that

inf
g∈An

sup
[0,π]

|g(x)− f(x)| → 0

as n→∞.
(II) Given n ≥ 2 let Sn(f) denote the nth partial cosine series: so

Sn(f)(x) :=
n∑
k=0

ak cos(kx)

where

ak =
2

π

∫ π

0

f(x) cos(kx)dx, a0 =
1

π

∫ π

0

f(x)dx.



Our goal of this part is to show that

‖f − Sn(f)‖L2(0,π) = inf
g∈An

‖f − g‖L2(0,π).

First note that Sn(f) ∈ An and hence we have ‖f − Sn(f)‖L2(0,π) ≥ infg∈An ‖f − g‖L2(0,π)

and so we just need to show the other direction. Let g ∈ An and assume

g(x) =
n∑
k=0

ck cos(kx)

and lets compute G(c) := ‖g − f‖2
L2(0,π); we are viewing G : Rn+1 → R. Show that (use can

accept the orthogonality conditions for cos(kx) and be careful with k = 0 term) that

G(c)

π
= c2

0 − 2c0a0 +
1

2

n∑
k=1

c2
k −

n∑
k=1

ckak +
1

π

∫ π

0

f(x)2dx.

We would now like to minimize G over Rn+1. Show that G has a global minimum at c = a
where a = (a0, a1, ..., an) are defined as above. What can you conclude.

(III) We now tie the different parts of the question together. Fix f ∈ L2(0, π) and let 0 < ε
be small. Then by some density results there is some h ∈ C[0, π] such that ‖f − h‖L2 < ε.
Then by part (I) and (II) we have

‖Sn(h)− h‖L2 ≤ inf
g∈An

‖g − h‖L2 ≤ inf
g∈An

sup
[0,π]

|g(x)− h(x)|
√
π → 0

as n→∞. Then note that we have

‖Sn(f)− f‖L2 ≤ ‖Sn(f)− Sn(h)‖L2 + ‖Sn(h)− h‖L2 + ‖h− f‖L2 ,

and recall we have ‖h− f‖L2 < ε. Also by Parseval we have ‖Sn(f)− Sn(h)‖L2 = ‖Sn(f −
h)‖L2 ≤ C‖f − h‖L2 ≤ Cε where C independent of ε, f, h, n. So we end up with something
like

‖Sn(f)− f‖L2 ≤ (C + 1)ε+ ‖Sn(h)− h‖L2

and so
lim sup

n
‖Sn(f)− f‖L2 ≤ (C + 1)ε

and since ε > 0 is arbitrary we have ‖Sn(f)− f‖L2 → 0.


