Homework 1; Due September 25

September 19, 2015

1 Mandatory questions
Question 1. Consider the equation

—Au+C(x)u = f(z) in Q,
{ u = g(x) on 012, (1)

where Q a bounded domain in R with smooth boundary and where there is some M < oo
such that C(x) satisfies 0 < C'(z) < M in Q. Show there is at most one solution of (1).

An example where uniqueness fails. The above result can be weakened to: “provided
C'(z) is not too negative then (1) has at most one solution. We now give an example where
C(z) is too negative and one loses uniqueness. Consider u(z) := sin(3x). Then note that

—u"(z) = u(z) x € (0,m), u(0) = u(mr) = 0.
So re-arranging this we see that u; is a non-zero solution of
—u"(x) = u(z) =0 =z € (0,m), u(0) = u(mr) = 0. (2)

But of course u = 0 is also a solution of (2).

Question 2. Consider

—Au+h(u) = f(z) in Q,
{ u = 0 on 0, (3)

where 2 a bounded domain in RY with smooth boundary and where h : R — R is smooth
with A/(z) > 0 for all z € R. Show (3) has at most one solution.



Hint. Start as with a linear problem: let u,v be solutions and then define w(x) :=
u(x) —v(x). What equation does w solve? You will need to use Question 1 with a particular
C(z) defined in terms of h,u and v.

Question 3. Here we show that if one removes the assumption of €2 bounded then one can
lose uniqueness of solutions. Consider

u = 0 on 0f,

where Q = {(z,y) : 2 € R,0 <y < 7}. Of course u = 0 is a solution of (4). Find another
solution of the form u(z,y) = e** sin(fy) where «, 5 € R are to be determined.

{um<x,y>+uyy<x,y> =0 in €2, (4)

Question 4. In this question we use the maximum principle to obtains bounds on a solution.
Suppose u is a smooth solution of

—Au = f(z) in €,
{ u = 0 on 0, (5)

where Q C Bgr := {z € RY : |z| < R} and where 0 < f(z) < M. Define v(z) :=

M (R? — |z|?). Using the maximum principle show that

MR?
2N -

supu <
Q

Note that when the “diameter of Q7 gets big, ie sup{|z — y| : z,y € Q} then this estimate
gets worse and worse (Note the R?). Below we show an approach to get good estimates that
really only depend on the set {2 not being big in one direction.

A result better than Question 4. (This is not a question) Suppose 0 < v is a solution of

—Av+v = g(z) in €, (6)
u = 0 on 02,

where 0 < ¢g. Note that 0 < v by assumption and so the maximum is attained in €2. Suppose
supg v = v(xg) for zg € Q. Then we have (using the single variable calculus trick) that



Av(zg) <0 and so —Av(zg) > 0. From this note that
v(zo) < —Av(xg) + v(0) = g(20) < Sup g

and hence we have
supv < supg.
Q Q

We now return to the question. Suppose 2 is a bounded domain in RY and suppose that
Q C {z e RY : |z1] < §}. Suppose u solves (5) where 0 < f and so 0 < u. Consider the
change of variables:

u(z) = E(z)v(x),
where E(x) > 0 in Q, is to be determined later. Then note that

—f(z) = Au(z) = E(Av) + 2VE - Vv + vAE.
Also note that v = 0 on 0€). Since F is positive we can divide by E. So v solves

{—Av—%-V@—i—#v = L in Q, 7)
v = 0 on 0.
We would now like to pick E such that this equation resembles (6). So let try and pick
E such that =2£ = 1. Pick E(z) = cos(z1). Then note that E(z) = cos(z1) > 1 in Q. Also
note that —AFE(z) = —% cos(z) = cos(x) = E(z). Now 0 < v and we would like to get
upper bound on v. So let zy € 2 be such that v(zg) = supgv and so —Av(zy) > 0 and
Vou(zg) = 0. So plugging into the pde we have

v(z) < (-m ~ 2 vt <‘§E>v)

) - E(.Io) )

So we have

but we have

Supq ¥ sup (x)
supo B~ o E(x)
and
sup I < SWo /
o F 7 infoFE

and hence we get

which gives




Now with our choice of £ we have supg £/ =1 and infqg £/ > % So we have

supu < 2sup f.
Q Q

There is nothing special about Z. For other widths of domains try E(z) = cos(Az;) where
you pick A > 0 appropriately.

2 Extra questions for graduate students

Question 100; Mandatory question for graduate students. (L? convergence of the
cosine series) Goal of the this problem is to show that given f € L?(0,7) that the cosine
series converges in L? to f. We begin with some definitions.

Consider K a compact topological space and let C(K) denote the set of real valued
continuous functions on K. We say A C C(K) is a subalgebra provided its a linear space
over R and provided f,g € A then fg € A (here (fg)(z) := f(x)g(x)). We say A seperates
K provided for all z,y € K with x # y there is some f € A such that f(z) # f(y).

Theorem 1. (Stone- Weistrass)
Let K,C(K) be as above and suppose A C C(K) is a subalgebra with seperates K. In
addition suppose 1 € A. Then A is dense in C(K).

Consider
A:={f: where f(x)= Z cr cos(kx)where ¢ € R and all but a finite number are zero}.
k=0

(I) Using cos(a+b) = cos(a) cos(b) —sin(a) sin(b) and cos(a—b) = cos(a) cos(b)+sin(a) sin(b),
show that A is a subalgebra on C0, 7] which seperates [0, 7]. Using the Stone-Weirstrass
theorem conclude that A is dense in C[0, 7]. Define

A, ={feA:¢,=0forall k >n+1}.
Conclude that given f € C[0, 7] that
inf - -0
Jnf sup l9(x) = f(@)]
as n — oo.

(IT) Given n > 2 let S, (f) denote the n'" partial cosine series: so

n

Sp(f)(x) = Z a, cos(kx)

k=0

where
2 1

ag = — /07r f(z) cos(kx)dx, ag = — /07r f(z)dz.

™ ™



Our goal of this part is to show that
— = inf — :
1f = Su(f) ||L2(0,7r) gg}% If g||L2(0,7r)

First note that S,(f) € A, and hence we have ||f — S, (f)|[z2(0,5) = infgea, |f — 9ll20.7)
and so we just need to show the other direction. Let g € A, and assume

n

g(x) = Z ¢ cos(kx)

k=0

and lets compute G(c) := ||g — fHLz(07r we are viewing G : R"™! — R. Show that (use can
accept the orthogonality conditions for cos(kz) and be careful with & = 0 term) that

G(c) 1 & = I
- :cg—Zcoao—Fg;ci—;ckak—i—;/o f(zx)*dx

We would now like to minimize G over R"*!. Show that G has a global minimum at ¢ = a
where a = (ag, a1, ..., a,) are defined as above. What can you conclude.

(IIT) We now tie the different parts of the question together. Fix f € L?(0,7) and let 0 < ¢
be small. Then by some density results there is some h € C[0, 7] such that ||f — |2 < e.
Then by part (I) and (IT) we have

1Sn(h) = hlzz < inf lg —Rllz2 < inf sup|g(z) — h(z)|vm =0

"[07r

as n — 0o. Then note that we have

150 (f) = Fllz < [[Su(f) = Su(B)llz2 + [15n(h) = hllz2 + lh = [l L2,

and recall we have ||h — f||.2 < e. Also by Parseval we have ||S,,(f) — Sn(h)||r2 = ||Sa(f —
h)||z2 < C||f — h||r2 < Ce where C independent of ¢, f, h,n. So we end up with something
like

1Sn(f) = fllzz < (C + 1)e + [[Su(h) — hl|2

and so

limsup [[Su(f) = fllz2 < (C + 1)

and since € > 0 is arbitrary we have ||S,,(f) — f|[z2 — 0.



