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Abstract

We examine the following fourth order Hénon equation

∆2u = |x|αup in RN ,

where 0 < α. Define the Hardy-Sobolev exponent p4(α) := N+4+2α
N−4 . We show that in

dimension N = 5 there are no positive bounded classical solutions provided 1 < p < p4(α).
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1 Introduction and main results
In this work we are interested in the following fourth order problem

∆2u = |x|αup in RN , (1.1)

where p > 1 and α > 0. Our interest is in the Liouville property (ie. the nonexistence of positive
solutions). We begin by recalling the known results for the second order analog of (1.1),

−∆u = |x|αup in RN . (1.2)

The case where α = 0 has been very widely studied, see [2], [3], [10],[9]. It is known that there are
no positive classical solutions of (1.2) under various decay assumptions as |x| → ∞ provided that
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1 < p <
N + 2
N − 2

,

and in the case of N = 2 there is no solution for any p > 1. We further remark that this is an optimal
result. We now give a brief background on the case where α is nonzero, for more details see [17].
We define the Hardy-Sobolev exponent

p2(α) :=
N + 2 + 2α

N − 2
,

where N ≥ 3. It is known, see [10] and [4], that if α ≤ −2 then there are no positive solutions to (1.2)
on any domain containing the origin. Hence we restrict our attention to the case where α > −2. The
case of radial solutions is completely understood, see [10] and [1], where they show there exists a
positive classical radial solution of (1.2) if and only if p ≥ p2(α). This result suggests the following:

Conjecture 1.1 Suppose that α > −2. If 1 < p < p2(α) then (1.2) has no classical bounded
solution.

Note that p2(α) ≤ N+2
N−2 exactly when α ≤ 0. Also note that the term |x|α changes monotonicity when

α changes sign. For these reasons the methods available to prove this conjecture greatly depend on
the sign of α. Until recently the best known results concerning (1.2), apart from the radial case, were

Theorem 1.1 Let α > −2 and p > 1.

1. If p < min{p2(0), p2(α)} then there are no positive sufficiently regular solutions of (1.2).

2. If p < N+α
N−2 then there are no positive weak supersolutions of (1.2).

The first part of this theorem is from [10] and [1]. Note that this implies that the Conjecture 1.1 holds
in the case of negative α. The second part is from [15] and is an optimal result after considering
u(x) = C|x|

−α−2
p−1 for some positive C. We now come to the method which we will extend to (1.1).

In [18] the Lane-Emden conjecture, which is related to the nonexistence of positive solutions of the
elliptic system

−∆u = vp, −∆v = uq RN ,

was shown to be true in dimension N = 4. Later this method was extended in [17] to show:

Theorem 1.2 Suppose that N = 3 and α > 0. If 1 < p < p2(α) then there is no positive bounded
classical solution of (1.2).

In fact they prove more. They show there is no positive classical solution that satisfies certain growth
conditions. This method does allow them to obtain new, but non optimal, non existence results in
higher dimensions. We also mention that they give a new proof of Theorem 1.1. It is precisely
Theorem 1.2 which we will extend to (1.1). We remark that one could use the methods from [17]
to prove results concerning (1.1) for negative α but we choose not to do this. We mention that these
methods were extended independently in [6] and [16] to the weighted system

−∆u = |x|αvp, −∆v = |x|βuq RN .

Before stating our result we briefly recall the results for (1.1). The most studied case is when α = 0.
In this case the positive classical bounded solutions of (1.1) are classified and there are no positive
bounded solutions provided

1 < p <
N + 4
N − 4

,
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see [12], [19]. For other results concerning (1.1) we direct the reader to [7], [11]. Using the methods
from [15] one can show there are no positive weak supersolutions of (1.1) provided that

1 < p <
N + α

N − 4
,

see the comment after Lemma 2.3. In various applications one is not interested in any solution of
(1.1) but rather one with added properties. In [6] it was shown that there are no positive finite Morse
index solutions of (1.1) provided

1 < p < p4(α) :=
N + 4 + 2α

N − 4
.

We now come to our result.

Theorem 1.3 Suppose that 0 < α. Then there is no positive bounded classical solution of (1.1)
provided N = 5 and

1 < p < p4(α) =
N + 4 + 2α

N − 4
= 9 + 2α.

Remark 1.1 The results of this article have recently been extended to the case of polyharmonic
Henon Lane Emden systems, see [5]. A particular case of their result is given by: the only nonneg-
ative bounded classical solution of (−∆)mu = |x|αup in RN is zero in the case where N = 2m + 1 and
1 < p < 1 + 4m + 2α. Note the main result of the current article is the case when m = 2. Also in [5]
the case of radial solutions are examined where they use a generalization of the method developed
in [13] and [14]. Optimal results are obtained. In the case of (1.1) it is shown that there exists a
positive classical radial solution if and only if p ≥ N+4+2α

N−4 . Using this fact about radial solutions one
sees that our result given by Theorem 1.3 is optimal.

2 Proof of Theorem 1.3
We first introduce some notation. For R > 0 we define BR := {x ∈ RN : |x| < R} and we let ∂BR

denote the boundary of the ball. We begin with a Rellich-Pohozaev argument, see [6] for details.

Lemma 2.1 [6] Suppose that u is a bounded nonnegative solution of (1.1) with N ≥ 5, α > 0 and
1 < p < p4(α). Define

F(R) :=
∫

BR

|x|αup.

Then there exists C = C(N, p, α) > 0 but which is independent of R such that for all R ≥ 1

F(R)
C

≤ R1+α

∫
∂BR

up+1 +

∫
∂BR

|∆u||∇u|

+

∫
∂BR

|∇(∆u)|u −
R

2C

∫
∂BR

(∆u)2

+R
∫
∂BR

|∇(∆u)||∇u| +
∫
∂BR

|∆u||∇(x · ∇u)|.

We now eliminate and simplify some of the terms from the above lemma.
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Corollary 2.1 Suppose that u is a bounded nonnegative solution of (1.1) with N ≥ 5, α > 0 and
1 < p < p4(α). Then there is some C = C(N, p, α) > 0 such that

F(R)
C

≤ R1+α

∫
∂BR

up+1 +
1
R

∫
∂BR

|∇u|2

+

∫
∂BR

|∇∆u|u + R
∫
∂BR

|∇∆u||∇u|

+R
∫
∂BR

|D2u|2 (2.3)

for all R ≥ 1.

For future reference we label the terms on the right hand side of (2.3) as I1, I2, ...., I5, where I1 is the
first term on the right and I5 is the last. Proof. One immediately obtains the desired result by using
the following two inequalities and taking ε > 0 small,∫

∂BR

|∆u||∇u| ≤ εR
∫
∂BR

|∆u|2 +
Cε

R

∫
∂BR

|∇u|2, (2.4)∫
∂BR

|∆u||∇(x · ∇u(x))| ≤ εR
∫
∂BR

(∆u)2 +
C(ε)

R

∫
∂BR

|∇u|2 + C(ε)R
∫
∂BR

|D2u|2. (2.5)

(2.4) is obtained from Young’s inequality after inserting the factor
√

R. To show (2.5) one begins
with the inequality

|∇(x · ∇u(x))|2 ≤ C
{
|∇u(x)|2 + |x|2|D2u(x)|2

}
,

where C = C(N) > 0. This is obtained by direct calculation and some obvious estimates. Then one
has ∫

∂BR

|∆u||∇(x · ∇u(x))| ≤ εR
∫
∂BR

(∆u)2

+
C(ε)

R

∫
∂BR

|∇(x · ∇u(x))|2

≤ εR
∫
∂BR

(∆u)2 +
C(ε)

R

∫
∂BR

|∇u|2

+C(ε)R
∫
∂BR

|D2u|2.

2

To show the nonexistence of a positive solution of (1.1) one would like to show that each of
these boundary integral terms goes to zero as R → ∞. The trick in Souplet’s method, see [17] and
[18], is to view R as a parameter and then to use various Sobolev inequalities on the sphere S N−1 to
estimate these boundary integrals. One of the benefits of this is that one has improved embeddings
since they are now working on a lower dimensional object. The following lemma is just the standard
Lp regularity and interpolation results written in a scale invariant way, see for instance [8].

Lemma 2.2 1. (Lp regularity) For 1 < t < ∞ there exists C > 0 such that for all R ≥ 1 and for
all sufficiently regular v we have∫

BR\B R
2

|D4
xv|t ≤ C

∫
B2R\B R

4

|∆2v|t +
C
R4t

∫
B2R\B R

4

|v|t. (2.6)
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2. (Interpolation) For 1 ≤ t < ∞ and 1 ≤ j ≤ 3 (an integer) there exists C > 0 such that for all
R ≥ 1 and for all sufficiently regular v we have∫

BR\B R
2

|D j
xv|t ≤ CRt(4− j)

∫
B2R\B R

4

|∆2v|t +
C
R jt

∫
B2R\B R

4

|v|t. (2.7)

The next lemma follows from the rescaled test function method from [15]

Lemma 2.3 [15] Suppose that u is a positive weak supersolution of (1.1). Then there exists C > 0
such that ∫

B2R

|x|αup ≤ CRN− α
p−1−

4p
p−1

for all R ≥ 1.

Note that if p < N+α
N−4 then the exponent of R on the right hand side is negative and this is enough

to show, after sending R → ∞, that there is no positive solution (or positive weak supersolution) to
(1.1) as mentioned in the introduction.

Corollary 2.2 Suppose that N = 5, 1 < p < p4(α) = 9 + 2α and that u is a bounded positive
classical solution of (1.1).

1. Then there exists C > 0 such that ∫
B2R

u ≤ CRN− (4+α)
p−1 ,

for all R ≥ 1.

2. Suppose that ε > 0. Then there exist some Cε > 0 such that∫
B2R\B R

4

|D4
xu|1+ε ≤ CεR

N− 4p
p−1−

α
p−1 +αε,

for all R ≥ 1.

3. There exists C > 0 such that ∫
B2R\B R

4

|D3
xu| ≤ CRN− 1+α+3p

p−1 ,

for all R ≥ 1.

4. There exists C > 0 such that ∫
B2R\B R

4

|Dxu| ≤ CRN− p+3+α
p−1 ,

for all R ≥ 1.

5. There exists C > 0 such that ∫
B2R\B R

4

|D2
xu| ≤ CRN− α+2p+2

p−1 ,

for all R ≥ 1.
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Since we are only interested in a very specific range of p and N we restrict the corollary to these
values but the corollary does infact hold for more general p and N. Proof. 1. Here we use the result
from Lemma 2.3 and Hölder’s inequality.
2. We use the Lp regularity result to see∫

BR\B R
2

|D4
xu|1+ε ≤ C

∫
B2R\B R

4

(∆2u)ε(∆2u) +
C

R4(1+ε)

∫
B2R\B R

4

u1+ε

and since u is bounded we have the right hand side bounded by

CRαε

∫
B2R\B R

4

|x|αup +
C

R4(1+ε)

∫
B2R\B R

4

u.

One now uses Lemma 2.3 and 1 from the current corollary to obtain the desired result. For the
remainder of the proofs one uses the estimates from 1 and 2 and the interpolation inequality. 2

We now introduce the various notations we will be using on the sphere. Given nonzero x ∈ RN

we will use spherical coordinates r = |x| and θ = x
|x| ∈ S N−1. We will write v(x) = v(r, θ). Also unless

otherwise stated Lp norms will be over the unit sphere S N−1, so given some function v defined on

S N−1 we have ‖v‖p :=
{∫

S N−1 |v|pdθ
} 1

p . We will let

‖v(R)‖pp :=
∫

S N−1
|v(R, θ)|pdθ.

Another key idea from [18] is to turn the volume estimates from Lemma 2.3 and Corrolary 2.2 into
estimates which are valid over spheres of increasing radii Rm → ∞. To illustrate the idea we assume
that we have estimates of the form ∫

BR\B R
2

fi(x)dx ≤ CiRN−αi ,

for i = 1, 2, ..., n and where 0 ≤ fi. The goal is to find a sequence Rm → ∞ such that

gi(Rm) :=
∫

S N−1
fi(Rm, θ)dθ,

satisfies
gi(Rm) ≤ CR−αi

m ,

for all 1 ≤ i ≤ n. So note that we can write∫ R

R
2

rN−1gi(r)dr =

∫
BR\B R

2

fi(x)dx ≤ CiRN−αi .

We now define the sets
Γi(R) :=

{
r ∈ (

R
2
,R) : gi(r) ≥ KR−αi

}
,

where we will pick K > 0 later, and note that we have∫
Γi(R)

rN−1gi(r)dr ≤
∫

BR\B R
2

fi(x)dx ≤ CiRN−αi
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and the left side has a lower bound given by

|Γi(R)|RN−αi−1 K
2N−1 .

This shows that

|Γi(R)| ≤
Ci2N−1

K
R,

and by taking K > 0 big one has, by looking at the measure, that there exists some R̃ such that

R̃ ∈
(R

2
,R

)
\ ∪n

i=1 Γi(R).

From this one can conclude that

gi(R̃) ≤ K(2αi + 2−αi )R̃−αi ,

and so there is some C > 0 and 1 ≤ Rm → ∞ such that gi(Rm) ≤ CR−αi
m for all 1 ≤ i ≤ n.

The following lemma is immediate after using the above procedure along with the estimates from
Corollary 2.2.

Lemma 2.4 Let ε > 0 be small. Then there exists some K > 0 and 1 ≤ Rm → ∞ such that

‖D3
xu(Rm)‖1 ≤ KR

−α−3p−1
p−1

m , (2.8)

‖Dxu(Rm)‖1 ≤ KR
−3−α−p

p−1
m , (2.9)

‖u(Rm)‖1 ≤ KR
−4−α
p−1

m , (2.10)

‖D4
xu(Rm)‖1+ε

1+ε ≤ KR
−4p−α

p−1 +αε

m , (2.11)

‖D2
xu(Rm)‖1 ≤ KR

−α−2p−2
p−1

m . (2.12)

Note that we can rewrite (2.11) as

‖D4
xu(Rm)‖1+ε ≤ KR

−4p−α
p−1 +a(ε)

m ,

where

a(ε) =

(
4p + α

p − 1
+ α

)
ε

1 + ε
.

Note that a(ε) > 0 all ε > 0 and a(ε)→ 0 as ε→ 0.

Completion of the proof for Theorem 1.3. Let α > 0, N = 5 and take 1 < p < p4(α) = 9 + 2α.
We suppose there exists a positive bounded solution u of (1.1) and we choose 0 < ε small (we pick
precisely later). Let 1 ≤ Rm → ∞ be as promised in Lemma 2.4. We now find upper bounds for
each term Ii from Corrolary 2.1 using a combination of Sobolev embeddings on the unit sphere,
Hölder’s inequality and the decay estimates from Lemma 2.4. We omit the index m in what follows,
so R = Rm. We also omit any constants that are independent of R ≥ 1. All spaces and norms are
over the unit sphere.
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1. (Estimate for I1). First note that (I1(R))
1

p+1 ≤ R
N+α
p+1 ‖u(R)‖p+1 ≤ R

N+α
p+1 ‖u(R)‖∞. We have the

Sobolev embedding W4,1+ε → L∞ and so for any sufficiently regular v defined on the unit
sphere we have ‖v‖∞ ≤ ‖D4

θv‖1+ε + ‖v‖1. Taking v = u(R) gives

‖u(R)‖∞ ≤ ‖D4
θu(R)‖1+ε + ‖u(R)‖1 ≤ R4‖D4

xu(R)‖1+ε + ‖u(R)‖1,

and we now use the decay estimates from Lemma 2.4 to see that

(I1(R))
1

p+1 ≤ R
N+α
p+1

(
R
−4−α
p−1 +a(ε)

+ R
−4−α
p−1

)
.

Now recalling that R > 1 and that a(ε) > 0 we see that (I1(R))
1

p+1 ≤ Ra1(ε), where

a1(ε) :=
p − 2α − 9

(p + 1)(p − 1)
+ a(ε),

and we note this can be made negative by taking ε > 0 sufficiently small.

2. (Estimate for I2). Firstly we have (I2(R))
1
2 ≤ R

N−2
2 ‖Dxu(R)‖2 and we have the Sobolev em-

bedding W2,1 → L2. Hence ‖v‖2 ≤ ‖D2
θv‖2 + ‖v‖1 and taking v = Dxu(R) gives ‖Dxu(R)‖2 ≤

R2‖D3
xu(R)‖1 + ‖Dxu(R)‖1. Using the estimates from Lemma 2.4 gives

(I2(R))
1
2 ≤ R

3
2−

α+p+3
p−1 ,

and note exponent on R is negative precisely when p < 9 + 2α.

3. (Estimate for I3). First note that I3(R) ≤ RN−1‖u(R)‖∞‖D3
xu(R)‖1. Using the estimates from

Lemma 2.4 and the L∞ estimate from 1 we arrive at I3(R) ≤ Ra2(ε) where

a2(ε) :=
p − 2α − 9

p − 1
+ a(ε),

which we note can be made negative by taking ε > 0 sufficiently small.

4. (Estimate for I5). Note that (I5(R))
1
2 ≤ R

N
2 ‖D2

xu(R)‖2. Also note that W2,1 → L2 so

‖D2
xu(R)‖2 ≤ R2‖D4

xu(R)‖1 + ‖D2
xu(R)‖1,

and replacing the term ‖D4
xu(R)‖1 with ‖D4

xu(R)‖1+ε one arrives at

(I5(R))
1
2 ≤ R

N
2 R

−2p−2−α
p−1 +a(ε)

= Ra2(ε),

where a2(ε) is defined as above and is negative for small ε.

5. (Estimate for I4). First note that by Hölder’s inequality we have I4(R) ≤ RN‖D3
xu(R)‖ 4

3
‖Dxu(R)‖4.

Sobolev embedding gives W1,1 → L
4
3 and so

‖D3
xu(R)‖ 4

3
≤ ‖DθD3

xu(R)‖1 + ‖D3
xu(R)‖1 ≤ R‖D4

xu(R)‖1+ε + ‖D3
xu(R)‖1.

Also we have W2, 4
3 → L4 and so

‖Dxu(R)‖4 ≤ R2‖D3
xu(R)‖ 4

3
+ ‖Dxu(R)‖1.
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Using the estimates from Lemma 2.4 gives

‖D3
xu(R)‖ 4

3
≤ R

−3p−α−1
p−1 +a(ε), ‖Dxu(R)‖4 ≤ R

−p−α−3
p−1 +a(ε).

Putting this together gives I4(R) ≤ Ra3(ε) where

a3(ε) :=
p − 9 − 2α

p − 1
+ 2a(ε),

and note this is negative for sufficiently small ε > 0.

So by taking ε > 0 but sufficiently small such that a1(ε), a2(ε), a3(ε) < 0 and letting Rm denote the
sequence promised by Lemma 2.4 we see that∫

BRm

|x|αup+1 ≤ C
5∑

i=1

Ii(Rm),

but Ii(Rm) → 0 as m → ∞ and so we see that
∫
RN |x|αup+1dx = 0 contradicting the fact that u is

positive. 2
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