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Abstract

In this article we are interested in the existence of positive classical solutions of{
−∆u+ a(x) · ∇u+ V (x)u = up + γuq in Ω

u = 0 on ∂Ω,
(1)

and {
−∆u+ a(x) · ∇u+ V (x)u = up + γ|∇u|q in Ω

u = 0 on ∂Ω,
(2)

where Ω is a smooth exterior domain in RN in the case of N ≥ 4, p > N+1
N−3 and γ ∈ R.

We assume that V is a smooth nonnegative potential and a(x) is a smooth vector field,
both of which satisfy natural decay assumptions. Under suitable assumptions on q we
prove the existence of an infinite number of positive classical solutions.

We also consider the case of N+2
N−2 < p < N+1

N−3 under further symmetry assumptions
on Ω, a and V .

2010 Mathematics Subject Classification: 35J25, 35J60 .
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1 Introduction

In this article we are interested in the following variants of the Lane-Emden and viscous
Hamilton-Jacobi equations, on exterior domains, given by{

−∆u+ a(x) · ∇u+ V (x)u = up + γuq in Ω
u = 0 on ∂Ω,

(3)

∗Funded by NSERC
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and {
−∆u+ a(x) · ∇u+ V (x)u = up + γ|∇u|q in Ω

u = 0 on ∂Ω,
(4)

where D ⊂ RN is a smooth bounded domain and Ω := RN\D. We seek positive classical
solutions which satisfy lim|x|→∞ u = 0. The assumptions on a and V are given by

(A1) : a(x) is a smooth vector field satisfing lim
R→∞

A(R) = 0 where A(R) := sup
|x|≥R

|x||a(x)|,

(A2) : V (x) ≥ 0 is a smooth potential satisfing lim
R→∞

V (R) = 0 where V (R) := sup
|x|≥R

|x|2|V (x)|.

By considering a suitable shift in a and V we can assume that 0 ∈ D.

We begin by recalling the bounded domain version of (3) in the case of a(x) = 0, V (x) = 0
and γ = 0 given by {

−∆u = up in Ω,
u = 0 on ∂Ω,

(5)

where Ω is a bounded domain in RN with N ≥ 3. Define the critical exponent ps = N+2
N−2

and

note that it is related to the critical Sobolev imbedding exponent 2∗ := 2N
N−2

= ps + 1. For
1 < p < ps, H

1
0 (Ω) is compactly imbedded in Lp+1(Ω) and hence standard methods show the

existence of a positive minimizer of

min
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|p+1dx

) 2
p+1

.

This positive minimizer is a positive solution of (5), see for instance the book [19]. For
p ≥ ps, H

1
0 (Ω) is no longer compactly imbedded in Lp+1(Ω) and so to find positive solutions

of (5) one needs to take other approach. For p ≥ ps the well known Pohozaev identity [18]
shows there are no positive solutions of (5) provided Ω is star shaped. For general domains in
the critical/supercritical case, p ≥ ps, the existence versus nonexistence of positive solutions
of (5) is a very delicate question; see for instance [4, 9, 17, 10].

1.1 The full space problem

We now recall (3) in the case of a(x) = 0, V (x) = 0 and γ = 0 in the case of Ω = RN . There
has been much work done on the existence and nonexistence of positive classical solutions of

−∆w = wp in RN . (6)

As in the bounded domain case the critical exponent ps plays a crucial role. For 1 < p < ps
there are no positive classical solutions of (6) and for p ≥ ps there exist positive classical
solutions, see [2, 3, 13, 12]. The moving plane method shows that all positive classical
solutions, satisfying certain assumptions, are radial about a point.
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In [5] it was shown that there was a positive classical solution of (3) in the case of γ = 0
and Ω = RN provided a(x) was smooth divergence free and satisfied a smallness assump-
tion and N ≥ 4 with p > N+1

N−3
. Under the further assumption that p > pJL (the so called

Joseph-Lundgren exponent; see [16], [15] and [11] regarding pJL) the solution was shown to
be stable in some suitable sense. In [1] we considered (3) and (4) in the case of Ω = RN

under the same assumptions on p, a(x) and V (x). Our approach in the existence portions of
[5] and [1] was to use a linearization argument along with a fixed point argument in various
spaces, to obtain positive solutions. Our starting point was the linear theory developed in
Dávila-del Pino-Musso [6], see the next section for details. We also mention the work of
Dávila-del Pino-Musso-Wei [7] where they examined −∆u+ V (x)u = up on RN .

The positive radial solution.
For the remainder of the paper w(r) will refer to an explicit solution of (6). For p > N+2

N−2

let w = w(r) denote the positive radial decreasing solution of (6) with w(0) = 1. The
asymptotics of w, as r →∞, are given by

w(r) = β
1
p−1 r

−2
p−1 (1 + o(1)),

where

β = β(p,N) =
2

p− 1

(
N − 2− 2

p− 1

)
> 0,

see [15] for this and for more detailed asymptotics.

1.2 The exterior problem

In Dávila-del Pino-Musso [6] they examined the problem{
−∆u = up in Ω

u = 0 on ∂Ω,
(7)

where Ω = RN\D where D is a bounded open connected domain in RN . Their interest was
in the existence of positive classical solution of (7). They obtained a continuum of positive
solutions when p > N+1

N−3
. For N+2

N−2
< p < N+1

N−3
they obtained a similar result but they

assumed a symmetry assumption on D. Define the linearized operator L(φ) := ∆φ+pwp−1φ
associated with (6). The starting point for their analysis of (7) was to obtain various mapping
properties of L on some weighted L∞ spaces RN . They then needed to extend these linear
estimates to the exterior space. For this set Lλ(φ)(x) := ∆φ(x) + pwλ(x)p−1φ(x) where
0 < λ and wλ(x) := λαw(λx) where α := 2

p−1
; note that wλ is also a solution of (6). We

omit their linear estimates on the full space and only mention their final linear estimates on
the exterior domains. For this we first define some spaces. For 0 < σ we define Yλ := {f ∈
C(Ω) : ‖f‖Yλ <∞} and Xλ,0 := {φ ∈ C(Ω) : φ = 0 on ∂Ω with ‖φ‖Xλ,0 <∞} where

‖f‖Yλ := λσ sup
|x|≤λ−1

|x|σ+2|f(x)|+ λα sup
|x|≥λ−1

|x|α+2|f(x)|,

‖φ‖Xλ,0 := λσ sup
|x|≤λ−1

|x|σ|φ(x)|+ λα sup
|x|≥λ−1

|x|α|φ(x)|.
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Notation. Here and in the rest of the paper all supremums in the various norms are
understood to be over x ∈ Ω along with the other stated assumptions. In addition recall
that we are assuming that 0 ∈ D and hence there are no issues with the weights at the
origin. We now come to their linear results.

Theorem A. (Dávila-del Pino-Musso) [6]

1. Suppose N ≥ 4, p > N+1
N−3

and 0 < σ < N − 2. Then there exists some small λ0 > 0
and some C > 0 such that for all 0 < λ < λ0, f ∈ Yλ there is some φλ ∈ Xλ,0 such
that Lλ(φλ) = f in Ω with φλ = 0 on ∂Ω and ‖φλ‖Xλ,0 ≤ C‖f‖Yλ.

2. Suppose N ≥ 3, N+2
N−2

< p < N+1
N−3

, 0 < σ < N − 2 and D satisfies (A3) (see the text
following Remark 1 for definition of (A3)). Then there exists some small λ0 > 0 and
some C > 0 such that for all 0 < λ < λ0, f ∈ Y e

λ (see Section 4 for definition of Y e
λ

and Xe
λ,i) there is some φλ ∈ Xe

λ,0 such that Lλ(φλ) = f in Ω with φλ = 0 on ∂Ω and
‖φλ‖Xλ,0 ≤ C‖f‖Yλ.

To obtain a positive solutions of (7) they then applied a fixed point argument using the
their linear theory. We also mention the work of Dávila-del Pino-Musso-Wei [8] where they
considered the exterior problem and considered both fast and slow decay solutions and they
utilized the Lyapunov-Schmidt reduction method to obtain positive solutions of (7), for
N+2
N−2

< p < N+1
N−3

under no symmetry assumptions on D.

1.3 The main results

We now state our main results.

Theorem 1. Suppose N ≥ 4, p > N+1
N−3

, q > p and (A1), (A2) are satisfied.

1. Suppose γ ≥ 0 then there exists an infinite number of positive smooth solutions of (3).

2. Suppose γ < 0 and
‖(div(a)− 2V )+‖

L
N
2 (Ω)

< 2SN ,

where (div(a)−2V )+ is the positive part of div(a)−2V and SN is the optimal constant
in the critical Sobolev imbedding, see Lemma 6. Then there exists an infinite number
of smooth positive solutions of (3).

Theorem 2. Suppose N ≥ 4, p > N+1
N−3

, 2p
p+1

< q < 2 and (A1), (A2) are satisfied. Then

there exists an infinite number of positive classical solutions of (4).

Remark 1. We believe the restriction q > 2p
p+1

in Theorem 2 is somewhat natural and is

coming from the equation (4). The other restriction that q < 2 we believe is not natural and
is mainly an artifact of the choice of function space we are working in. In our prior work
[1] we examined (4) on RN and in this work we also obtained a positive solution for (4) in
the case of 2p

p+1
< q < 2. By considering alternate function spaces we were able to relax the

assumption of q < 2; we are currently unable to extend these methods to exterior domains.
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In our final result we consider (3) and (4) under the assumption that N+2
N−2

< p < N+1
N−3

. For
our results here we need to impose some conditions on D, which we label (A3): we assume
0 ∈ D ⊂ RN is smooth and bounded and for each 1 ≤ i ≤ N one has x ∈ D ⇐⇒ xi ∈ D
where xi := (x1, x2, ..., xi−1,−xi, xi+1, ..., xN).

We also define some symmetry assumptions on a and V . Define

(A4) : V (xi) = V (x) ∀x ∈ Ω,∀1 ≤ i ≤ N.

For vector fields a we write a(x) = (a1(x), ..., aN(x)) and we consider the symmetry assump-
tion where we require for all x ∈ Ω that

(A5) : for all x ∈ Ω one has aj(xi) =

{
aj(x) i 6= j
−ai(x) i = j.

Theorem 3. Suppose N ≥ 3, N+2
N−2

< p < N+1
N−3

and (A1), (A2), (A3), (A4) and (A5) are
satisfied.

1. Suppose q > p and γ ≥ 0. Then there exists an infinite number of positive smooth
solutions of (3).

2. Suppose γ < 0,
‖(div(a)− 2V )+‖

L
N
2 (Ω)

< 2SN ,

and q > p. Then there exists an infinite number of smooth positive solutions of (3).

3. Suppose 2p
p+1

< q < 2. Then there exists an infinite number of positive classical solutions

of (4).

2 Equation (3); −∆u + a(x) · ∇u + V (x)u = up + γuq

For our approach we need to adjust the spaces slightly. Define X2,λ := {φ ∈ C1(Ω) : ∆φ ∈
C(Ω) with φ = 0 on ∂Ω and ‖φ‖X2,λ

<∞} where

‖φ‖Xλ,2 := λσ sup
|x|≤λ−1

(
|x|σ|φ(x)|+ |x|σ+1|∇φ(x)|+ |x|σ+2|∆φ(x)|

)
+λα sup

|x|≥λ−1

(
|x|α|φ(x)|+ |x|α+1|∇φ(x)|+ |x|α+2|∆φ(x)|

)
.

The first result we need is to extend the linear theory of Dávila-del Pino-Musso [6] to Xλ,2.
This will follow directly from their estimates and a scaling argument.

Lemma 1. Suppose N ≥ 4 and p > N+1
N−3

. Then for 0 < σ < N − 2 there exists some
small λ0 > 0 and some C > 0 such that for all 0 < λ < λ0 and f ∈ Yλ there is some
φλ ∈ Xλ,2 such that Lλ(φλ) = f in Ω with φλ = 0 on ∂Ω and ‖φλ‖Xλ,2 ≤ C‖f‖Yλ (recall
Lλ(φ) := ∆φ+ pwλ(x)p−1φ).
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Proof. Fix R big enough such that D ⊂⊂ BR and let 0 < σ < N − 2, λ0 > 0 and C > 0 be
from the above Theorem A [6]. Fix N < t < ∞ and suppose f ∈ Yλ. Then by Theorem A
[6] there is some φλ ∈ Xλ,0 such that Lλ(φλ) = f in Ω and we have ‖φλ‖Xλ,0 ≤ C‖f‖Yλ . We
will now apply regularity results to obtain the improved estimates. We first obtain gradient
estimates and in doing so it will be convenient to introduce the following two regions:

(i) Ω2R = Ω ∩B2R, (ii) { |x| ≥ 2R},

where BR := {x ∈ RN : |x| < R}.

Before obtaining the estimates in the various regions the following collection of calculations
will be helpful. Firstly note that

|f(x)| ≤

{ ‖f‖Yλ
λσ |x|σ+2 if |x| ≤ λ−1

‖f‖Yλ
λα|x|α+2 if |x| ≥ λ−1,

and |φλ(x)| ≤

{
C‖f‖Yλ
λσ |x|σ if |x| ≤ λ−1

C‖f‖Yλ
λα|x|α if |x| ≥ λ−1.

Also note that wλ(x) ≤ λα for |x| ≤ λ−1 and wλ(x) ≤ C|x|−α for |x| ≥ λ−1, where C is
independent of λ. We now consider the gradient estimates in the two regions.

Region (i). Using boundary elliptic regularity theory there is some C = C(t, R) > 0 such
that

sup
Ω∩B2R

|∇φλ| ≤ C

(∫
Ω∩B4R

|∆φλ(x)|tdx
) 1

t

+ C

∫
Ω∩B4R

|φλ(x)|dx. (8)

By taking 0 < λ0 smaller, if necessary, we can assume that 4R < 1
λ0

and then note there

is some C = C(R,D), where Ω = RN\D, such that |f(x)|, |φλ(x)| ≤ Cλ−σ‖f‖Yλ for all
0 < λ < λ0. Recalling that φλ satisfies ∆φλ = f(x) − pwp−1

λ (x)φλ we see that |∆φλ(x)| ≤
Cλ−σ‖f‖Yλ in Ω4R. Putting these estimates into (8) we see that λσ supΩ2R

|∇φλ| ≤ C‖f‖Yλ
and hence we see that λσ supΩ2R

|x|σ+1|∇φλ| ≤ C‖f‖Yλ .

Region (ii). For this region we consider the rescaled functions given by

ψλ(y) = φλ(x+ |x|y) where |y| < 1

8
,

which is well-defined (since x+ |x|y ≥ 7|x|/4 > R) and satisfies

∆ψλ(y) + p|x|2wλ(x+ |x|y)p−1ψλ(y) = |x|2f(x+ |x|y) |y| < 1

8
.

Note that if |x+ |x|y| ≤ 1/λ, then 7|x|/8 ≤ 1/λ and |x|2wλ(x+ |x|y)p−1 ≤ λ2|x|2 ≤ 64/49; if
|x+ |x|y| ≥ 1/λ, then |x|2wλ(x+ |x|y)p−1 ≤ |x|2/|x+ |x|y|2 ≤ 64/49. The elliptic regularity
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theory gives

sup
|y|< 1

16

|∇ψλ(y)| ≤ C

(
|x|2

∫
|y|< 1

8

|f(x+ |x|y)|tdy

) 1
t

+ C

∫
|y|< 1

8

|ψλ(y)|dy

≤ C

(∫
|y|< 1

8

(
|x+ |x|y|2 |f(x+ |x|y)|

)t
dy

) 1
t

+ C

∫
|y|< 1

8

|φλ(x+ |x|y)|dy.

(9)

Now for each |x| ≥ 2R, divide |y| < 1/8 into two sets A1 and A2 such that A1 = {|y| < 1/8 :
|x+|x|y| ≤ 1/λ} and A2 = {|y| < 1/8 : |x+|x|y| > 1/λ}. Note that the dependence of A1 and
A2 on x is suppressed, and A2 can be empty if |x| ≤ 1/λ and A1 can be empty if |x| > 1/λ.

Then |x+ |x|y||2|f(|x+ |x|y)| ≤ ‖f‖Yλ
λσ |x+|x|y||σ ≤

C‖f‖Yλ
λσ |x|σ for y ∈ A1 and |x+ |x|y|2|f(|x+ |x|y)| ≤

C‖f‖Yλ
λα|x+|x|y||α ≤

‖f‖Yλ
λα|x|α for y ∈ A2. Similarly, we get |φλ(x + |x|y)| ≤ C‖f‖Yλ

λσ |x|σ for y ∈ A1 and

|φλ(x+ |x|y)| ≤ C‖f‖Yλ
λα|x|α for y ∈ A2. Using these estimates we have, for 2R ≤ |x| ≤ 1/λ,(∫

|y|< 1
8

(
|x+ |x|y|2 |f(x+ |x|y)|

)t
dy

)1/t

≤
(∫

A1

(
|x+ |x|y|2 |f(x+ |x|y)|

)t
dy

)1/t

+

(∫
A2

(
|x+ |x|y|2 |f(x+ |x|y)|

)t
dy

)1/t

≤ C‖f‖Yλ
λσ|x|σ

+
C‖f‖Yλ
λα|x|α

≤ C‖f‖Yλ
λσ|x|σ

,

where in the last equality we used 8/9 ≤ |x|λ ≤ 1 for y ∈ A2. Similarly we get
∫
|y|< 1

8
|φ(x+

|x|y)|dy ≤ C|f |Yλ
λσ |x|σ for 2R ≤ |x| ≤ 1/λ. The same argument together with 1 ≤ |x|λ ≤ 8/7 for

|x| > 1/λ and x ∈ A1 yields, for |x| > 1/λ,(∫
|y|< 1

8

(
|x+ |x|y|2 |f(x+ |x|y)|

)t
dy

)1/t

≤ C|f |Yλ
λα|x|α

,

∫
|y|< 1

8

|φ(x+ |x|y)|dy ≤ C|f |Yλ
λα|x|α

.

Therefore, it follows from (9) that

sup
|y|< 1

16

|∇ψλ(y)| ≤

{
C|f |Yλ
λσ |x|σ if 2R ≤ |x| ≤ 1/λ,
C|f |Yλ
λα|x|α if |x| > 1/λ.

From this we get

λσ sup
2R<|x|≤ 1

λ

|x|σ+1|∇φλ(x)| ≤ C‖f‖Yλ , λα sup
|x|> 1

λ

|x|1+α|∇φλ(x)| ≤ C‖f‖Yλ .

Combining the estimates in Regions 1 and 2 gives the desired estimate for |∇φλ|:

λσ sup
|x|≤ 1

λ

|x|σ+1|∇φλ(x)|+ λα sup
|x|> 1

λ

|x|1+α|∇φλ(x)| ≤ C‖f‖Yλ .

The norm estimates involving the term |∆φλ| come directly from the equation.
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The right inverse of Lλ. For N, p, σ and λ0 as in Lemma 1 we define the right inverse of
Lλ to be F λ where F λ(f) = φλ where f and φλ are as in the lemma. Define X̃λ,2 := Ran(Fλ).
Using the continuity of F λ and Lλ one can easily prove that X̃λ,2 is a closed subspace of Xλ,2.
Now note that Lλ : X̃λ,2 → Yλ is, continuous, one to one and onto and hence its Fredholm
index is zero.

2.1 The linear theory of Lλ(φ) := Lλ(φ)−a(x) ·∇φ−V (x)φ : Xλ,2 → Yλ

To examine (3) and (4) we need to obtain a linear theory for Lλ where Lλ(φ)(x) := ∆φ(x) +
pwλ(x)p−1φ(x) − a(x) · ∇φ(x) − V (x)φ(x) = Lλ(φ)(x) − T (x). Our approach will to be to
view Lλ as a compact perturbation of Lλ and then to use Fredholm theory. We begin with
showing that T is a compact operator.

Lemma 2. T : Xλ,2 → Yλ is a compact operator for each 0 < λ.

Proof. Fix 0 < λ and set T (φ) = T 1(φ) + T 2(φ) where T 1(φ)(x) = a(x) · ∇φ(x) and
T 2(φ)(x) = V (x)φ(x). We show T 1 is compact and the proof that T 2 is compact follows the
same approach. Let {φm}m denote a bounded sequence in Xλ,2, bounded by say C0, and note

that elliptic regularity shows that {φm}m is bounded in C
1, 3

4
loc (Ω∪∂Ω). By a compactness and

diagonal argument there is some subsequence {φmk}k which is convergent in C
1, 1

2
loc (Ω ∪ ∂Ω).

Let R > 1
λ

and then note

‖T 1(φmk)− T 1(φmn)‖Yλ = λσ sup
|x|≤λ−1

|x|2+σ|a(x) · ∇(φmk(x)− φmn(x))|

+λα sup
|x|≥λ−1

|x|α+2|a(x) · ∇(φmk(x)− φmn(x))|.

We now break this second term into a supremum for λ−1 ≤ |x| ≤ R and |x| ≥ R. We then
get an inequality of the form

‖T 1(φmk)− T 1(φmn)‖Yλ ≤ C(λ) sup
|x|≤R

|∇(φmk(x)− φmn(x))|

+ sup
|x|≥R

(|a(x)||x|)
(
|x|α+1|∇φmk(x)−∇φmn(x)|

)
,

≤ C(λ) sup
|x|≤R

|∇(φmk(x)− φmn(x))|

+A(R)‖φmk − φmn‖Xλ,2
≤ C(λ) sup

|x|≤R
|∇(φmk(x)− φmn(x))|

+A(R)2C0.

Hence we see that lim supk,n→∞ ‖T 1(φmk)−T 1(φmn)‖Yλ ≤ 2C0A(R) and then sending R→∞
shows that {T 1(φk)}k is Cauchy in Yλ and hence T 1 : Xλ,2 → Yλ is compact.

As noted above Lλ : X̃λ,2 → Yλ has Fredholm index zero and since T is compact we can
apply Fredholm theory to see that Lλ = Lλ − T : X̃λ,2 → Yλ is also Fredholm index zero.
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The following Proposition is the key linear result needed later when we prove existence of
solutions to (3) and (4) using a fixed point argument. Additionally our approach for this
perturbed linearized operator Lλ theory differs from [7] (where they studied −∆u+V (x)u =
up in RN) in the sense that we utilize some Liouville theorems (of course we utilize their
([6, 7]) linear theory regarding Lλ as mentioned before).

Proposition 1. Let N ≥ 4, p > N+1
N−3

, 0 < σ < N−2 and suppose (A1) and (A2) are satisfied.
Then there is some λ0 > 0 small and C > 0 such that for all 0 < λ < λ0 and all f ∈ Yλ
there is some φλ ∈ X̃λ,2 such that Lλ(φλ) = f in Ω. Moreover we have ‖φλ‖Xλ,2 ≤ C‖f‖Yλ.

Proof. Suppose N ≥ 4 and p > N+1
N−3

and let 0 < σ < N−2 and λ0 > 0 be small from Lemma
1.

We now suppose the conclusion of the proposition is false and so there is some λm ↘ 0 such
that either kernel Lλm : X̃λm,2 → Yλm is non-empty or its empty but there is some fm ∈ Yλm
with ‖fm‖Yλm → 0 and φm ∈ X̃λm,2 such that Lλm(φm) = fm and ‖φm‖Xλm,2 = 1. So in

either case we can assume there is some fm ∈ Yλm with ‖fm‖Yλm → 0 and some φm ∈ X̃λm,2

with ‖φm‖Xλm,2 = 1 such that Lλm(φm) = fm in Ω with φm = 0 on ∂Ω.

So we have

∆φm(x) + pwλm(x)p−1φm(x)− a(x) · ∇φm(x)− V (x)φm(x) = fm(x) in Ω,

with φm = 0 on ∂Ω. Now set f̂m(x) := λσmfm(x) and set φ̂m(x) = λσmφm(x). Then f̂m → 0
uniformly on any BR ∩ Ω. Also we have

|φ̂m(x)| ≤
‖φm‖Xλm,0
|x|σ

for all |x| ≤ 1
λm

. So we have{
∆φ̂m + pλ2

mw(λmx)p−1φ̂m − a(x) · ∇φ̂m − V (x)φ̂m(x) = f̂m in Ω,

φ̂m = 0 on ∂Ω.
(10)

Let Rk ↗ ∞ and set Ωk := Ω ∩ BRk . Using (10) and elliptic boundary regularity shows

that φ̂m is bounded in C1,δ(Ωk) for all k and large m for some 0 < δ < 1. By a compactness
and diagonal argument there is some subsequence, which we won’t rename, {φ̂m}m, that
converges in C1,δ(Ωk), for each k, to some function φ̂ : Ω→ R which satisfies |φ̂(x)| ≤ |x|−σ
on Ω and


∆φ̂(x)− a(x) · ∇φ̂(x)− V (x)φ̂(x) = 0 in Ω,

φ̂ = 0 on ∂Ω,

lim|x|→∞ φ̂(x) = 0.

(11)

By the strong maximum principle applied to the subdomain ΩR, for R large, we can conclude
that supΩR

|φ̂| ≤ sup∂ΩR
|φ̂| but after considering the decay of φ̂ we can conclude that φ̂ = 0

in Ω. Hence we can conclude that φ̂m → 0 = φ̂ in C1,δ(Ωk) for each k ≥ 1.
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Now recall that φm satisfies
Lλm(φm) = fm + a · ∇φm + V φm in Ω,

φm = 0 on ∂Ω,
lim|x|→∞ φm = 0.

(12)

By Lemma 1 there is some C > 0 such that for all 0 < λ < λ0 we have

C‖φm‖Xλm,2 ≤ ‖fm‖Yλm + ‖a · ∇φm + V φm‖Yλm .
We now examine this last term. Fix R > 0 large, then

‖a · ∇φm + V φm‖Yλm ≤ λσm sup
|x|≤λ−1

m

|x|σ+2 (|a(x)||∇φm(x)|+ V (x)|φm(x)|)

+λαm sup
|x|≥λ−1

m

|x|α+2 (|a(x)||∇φm(x)|+ V (x)|φm(x)|)

=: Im + Jm.

A computation shows that

Jm ≤ λα sup
|x|≥λ−1

m

|x||a(x)||x|α+1|∇φm(x)|

+λα sup
|x|≥λ−1

m

|x|2V (x)|x|α|φm(x)|

≤
(
A(λ−1

m ) + V (λ−1
m )
)
‖φm‖Xλm,1

≤ A(λ−1
m ) + V (λ−1

m )→ 0.

Fix R big and decompose Im = I1
m+ I2

m where I1
m will be the inner portion and I2

m the outer.
Then

I2
m := λσm sup

R≤|x|≤λ−1
m

|x|2+σ (|a(x)||∇φm(x)|+ V (x)|φm(x)|)

≤ λσm sup
R≤|x|≤λ−1

m

(
|x||a(x)||x|1+σ|∇φm(x)|+ |x|2V (x)|x|σ|φm(x)|

)
≤ A(R) + V (R).

We now come to the I1
m term.

I1
m = λσm sup

|x|≤R
|x|2+σ (|a(x)||∇φm(x)|+ V (x)|φm(x)|)

≤ sup
z∈RN

|z||a(z)| sup
|x|≤R

λσm|x|1+σ|∇φm(x)|

+ sup
z∈RN

|z|2V (z) sup
|x|≤R

|x|σλσm|φm(x)|

≤ CR1+σ sup
ΩR

(
|∇φ̂m(x)|+ |φ̂m(x)|

)
→ 0

for each fixed R big as m→∞. So combining the above results we have

C‖φm‖Xλm,2 ≤ ‖fm‖Yλm + A(λ−1
m ) + V (λ−1

m ) + A(R) + V (R) + I1
m,

and from this we can contradict the fact that ‖φm‖Xλm,2 = 1 by taking R sufficiently big and
then sending m→∞.
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2.2 Equation (3); the fixed point argument

Instead of solving (3) directly we will first find a nonzero solution of{
−∆u+ a(x) · ∇u+ V (x)u = |u|p + γ|u|q in Ω

u = 0 on ∂Ω,
(13)

and then argue the solution must be positive.

Let D ⊂⊂ BR0 and let R0 ≤ R ≤ 4R ≤ 1
λ
. Let ζ denote a smooth radial cut-off with

ζ = 0 in BR and ζ = 1 on Bc
2R. Then we have |∇ζ| ≤ CR−1 and |∆ζ| ≤ CR−2 where C is

independent of R.

We look for solutions to (13) of the form u = ζ(x)wλ(x) + φ(x). Then we need φ to satisfy

Lλ(φ) = |wλ + φ|p − |ζwλ + φ|p

−
(
|wλ + φ|p − pwp−1

λ φ− wpλ
)

−γ|wλζ + φ|q

+a(x) · ∇(ζwλ) + V wλζ

+∆wλ −∆(ζwλ)

= I1(φ) + I2(φ) + I3(φ) + I4(φ) + I5(φ) in Ω, (14)

with φ = 0 on ∂Ω. To obtain a solution φ we apply a fixed point argument and towards this
we define the nonlinear mapping Jλ(φ) = ψλ where ψλ satisfies

Lλ(ψλ) =
5∑

k=1

Ik(φ) in Ω, ψλ = 0 on ∂Ω. (15)

Of course to find a solution ψλ we will require N, p, σ, λ0 to be as in Proposition 1 and
0 < λ < λ0. In addition we will be taking σ > 0 smaller, if necessary, to ensure various
quantities are of a specific sign. Also we will need the right hand side of (15) to belong to
Yλ. In a moment we will apply a fixed point argument on the closed ball Br of radius r,
centered at the origin, in Xλ,2. We will end up taking R, related to the cut off ζ, to be given
by R = ε

λ
and r = βλα where ε, β > 0 will be chosen small to be determined later. Once

these parameters are fixed we will take λ small. We now collect the various estimates which
will be needed to show that Jλ is a contraction on Br. We begin with the following lemma.

Lemma 3. Into. (Estimates on ‖Ik(φ)‖Yλ). Let φ ∈ Br ⊂ Xλ,2. Then we have

‖I1(φ)‖Yλ ≤ CRσ+2λαp+σ + CR2+σ(2−p)rp−1λα+σ(2−p), (16)

‖I2(φ)‖Yλ ≤ Cr2λ2−α + Cr2λ−α + Crpλ−2, (17)

‖I3(φ)‖Yλ ≤ C

(
λθ1 +

rq

λ2+α

)
λα, (18)

‖I4(φ)‖Yλ ≤ C

(
A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1)

)
λα, (19)

‖I5(φ)‖Yλ ≤ Cλσ
(
R2+σλ2 +Rσ

)
λα. (20)
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Proof. We begin by listing some computations: λσ|x|σ|φ(x)| ≤ r for |x| ≤ λ−1,
λα|x|α|φ(x)| ≤ r for |x| ≥ λ−1. Recalling wλ(x) = λαw(λx) one has:
wλ(x) ≤ λα for |x| ≤ λ−1 and wλ(x) ≤ C|x|−α for |x| ≥ λ−1.

Estimate of ‖I1(φ)‖Yλ. From part 3 of Lemma 7 we have

|I1(φ)| :=
∣∣∣|wλ + φ|p − |ζwλ + φ|p

∣∣∣ ≤ C
(
wp−1
λ + |φ|p−1

)
(1− ζ)wλ.

From this we see

sup
|x|≤λ−1

|x|2+σ|I1(φ)| ≤ sup
|x|≤2R

C|x|σ+2wpλ + C sup
|x|≤2R

|x|σ+2wλ|φ|p−1.

So we have

sup
|x|≤λ−1

|x|σ+2|I1(φ)| ≤ CRσ+2λαp + CR2+σ(2−p)rp−1λα−σ(p−1).

Now noting the fact that I1(φ) = 0 for |x| ≥ 2R gives

‖I1(φ)‖Yλ ≤ CRσ+2λαp+σ + CR2+σ(2−p)rp−1λα+σ(2−p).

Estimate of ‖I2(φ)‖Yλ. From Lemma 7 we have∣∣∣|wλ + φ|p − pwp−1
λ φ− wpλ

∣∣∣ ≤ Cwp−2
λ φ2 + C|φ|p.

A computation shows that

sup
|x|≤λ−1

|x|2+σwp−2
λ φ2 ≤ Cr2λα(p−2)−σ−2 = Cr2λ−α−σ, and

sup
|x|≥λ−1

|x|2+αwp−2
λ φ2 ≤ Cr2

λ2α
.

Hence we have
‖wp−2

λ φ2‖Yλ ≤ Cr2λ−α.

Similarly
sup
|x|≤λ−1

|x|2+σ|φ|p ≤ Crpλ−2−σ and sup
|x|≥λ−1

|x|2+α|φ(x)|p ≤ rpλ−αp,

and hence ‖|φ|p‖Yλ ≤ Crpλ−2. Combining these estimates gives

‖I2(φ)‖Yλ ≤ Cr2λα(p−2) + Cr2λ−α + Crpλ−2.

Estimate of ‖I3(φ)‖Yλ. First note that we have |ζwλ + φ|q ≤ Cζqwqλ + C|φ|q. For |x| ≤ 1
λ
.

sup
|x|≤λ−1

|x|σ+2wqλ|ζ|
q ≤ Cλαq−σ−2.

12



Taking σ > 0 sufficiently small such that σ+2−σq > 0, we then have sup|x|≤λ−1 |x|2+σ|φ|q ≤
Crq

λ2+σ . We now consider the case of |x| ≥ 1
λ
. Since q > p we have that θ1 := αq − 2 − α > 0

and then note that
sup
|x|≥λ−1

|x|2+αζqwλ(x)q ≤ Cλθ1 .

Also we have

sup
|x|≥λ−1

|x|2+α|φ|q ≤ sup
|x|≥λ−1

rq

λαq|x|αq−2−α ≤ Crqλ−2−α,

for θ1 > 0. So for θ1 > 0 we have

‖I3(φ)‖Yλ ≤ C

(
λθ1 +

rq

λ2+α

)
λα.

Estimate of ‖I4(φ)‖Yλ. First we note that

|I4(φ)| ≤ |a||∇ζ|wλ + |a|ζ|∇wλ|+ V wλζ,

and we now estimate these three terms individually, but we first recall some estimates:
|∇ζ| ≤ CR−1 for R ≤ |x| ≤ 2R and |∇wλ(x)| = λα+1|∇w(λx)| ≤ Cλα+2|x| for all |x| ≤ λ−1.
In addition we have |∇wλ(x)| ≤ C|x|−α−1 for all |x| ≥ λ−1. With these estimates in mind,
and after recalling the support of ζ, and the decay estimates on a and V , one sees

sup
|x|≤λ−1

|x|2+σ|a||∇ζ|wλ ≤ C
A(R)

R
λα−1−σ, and sup

|x|≤λ−1

|x|2+σ|a(x)|ζ|∇wλ| ≤ CA(R)λα−σ.

Similarly we see sup|x|≤λ−1 |x|2+σV ζwλ ≤ CV (R)λα−σ. We now consider the case of |x| ≥ 1
λ
.

A computation shows

sup
|x|≥λ−1

|x|2+α|a|ζ|∇wλ| ≤ sup
|x|≥λ−1

C|x||a(x)| ≤ CA(λ−1), and sup
|x|≥λ−1

|x|2+α|a|ζV ≤ CV (λ−1).

Combining the estimates gives

‖I4(φ)‖Yλ ≤ C

(
A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1)

)
λα.

Estimate of ‖I5(φ)‖Yλ.

I5(φ) = ∆wλ − (∆ζ)wλ − 2∇ζ · ∇wλ − ζ∆wλ

and so
I5(φ) = (ζ − 1)wpλ − (∆ζ)wλ − 2∇ζ · ∇wλ.

First consider |x| ≤ 1
λ
. A computation shows

sup
|x|≤λ−1

|x|σ+2|ζ − 1|wpλ ≤ CR2+σλαp, and sup
|x|≤λ−1

|x|2+σ|∆ζ|wλ ≤ CRσλα.

Similarly we show sup|x|≤λ−1 |x|2+σ|∇ζ||∇wλ| ≤ CR2+σλα+2. Note that I5(φ) = 0 for |x| ≥ 1
λ

after the considering the support of ζ. Combining the estimates gives

‖I5(φ)‖Yλ ≤ Cλσ
(
R2+σλαp−α +Rσ +R2+σλ2

)
λα.
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We now collect the various facts for showing that Jλ is a contraction on Br ⊂ Xλ,2.

Lemma 4. Contraction. (Estimates on ‖Ik(φ̂) − Ik(φ)‖Yλ). Let φ̂, φ ∈ Br ⊂ Xλ,2. Then
we have

‖I1(φ̂)− I1(φ)‖Yλ ≤ C
(
2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2

)
‖φ̂− φ‖Xλ,2 , (21)

‖I2(φ̂)− I2(φ)‖Yλ ≤ C(λ−αr + λ−2rp−1)‖φ̂− φ‖Xλ,2 , (22)

‖I3(φ̂)− I3(φ)‖Yλ ≤ C(λθ1 + λ−2rq−1)‖φ̂− φ‖Xλ,2 . (23)

Proof. Let φ̂, φ ∈ Br ⊂ Xλ,2. Then as in the proof of the previous lemma we have
λσ|x|σ|φ(x)| ≤ r for |x| ≤ λ−1, λα|x|α|φ(x)| ≤ r for |x| ≥ λ−1 along with the analogous
statement of φ̂. Additionally we have wλ(x) ≤ λα for |x| ≤ λ−1 and wλ(x) ≤ C|x|−α for
|x| ≥ λ−1.

Estimate of ‖I1(φ̂)− I1(φ)‖Yλ. Note we can write

I1(φ̂)− I1(φ) = |wλ + φ̂|p − |wλ + φ|p + |ζwλ + φ|p − |ζwλ + φ̂|p,

and note for |x| ≥ 2R this quantity is zero. So we can estimate

‖I1(φ̂)− I1(φ)‖Yλ ≤ λσ sup
|x|≤2R

|x|2+σ
∣∣∣|wλ + φ̂|p − |wλ + φ|p

∣∣∣
+λσ sup

|x|≤2R

|x|2+σ
∣∣∣|ζwλ + φ̂|p − |ζwλ + φ|p

∣∣∣.
By Lemma 7 we have∣∣∣|wλ + φ̂|p − |wλ + φ|p

∣∣∣ ≤ C
(
wp−1
λ + |φ|p−1 + |φ̂|p−1

)
|φ̂− φ|.

From this we see

λσ sup
|x|≤2R

|x|2+σ
∣∣∣|wλ + φ̂|p − |wλ + φ|p

∣∣∣ ≤ sup
|x|≤2R

|x|2
(
wp−1
λ + |φ|p−1 + |φ̂|p−1

)
‖φ̂− φ‖Xλ,2 .

A computation shows that sup|x|≤2R |x|2|φ|p−1 ≤ λ−σ(p−1)rp−1R2−σ(p−1) and similarly for the

φ̂ term. A computation also shows that sup|x|≤2R |x|2w
p−1
λ ≤ 4R2λ2. Hence we can conclude

that

λσ sup
|x|≤2R

|x|2+σ
∣∣∣|wλ + φ̂|p − |wλ + φ|p

∣∣∣ ≤ (2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2
)
‖φ̂− φ‖Xλ,2 .

The term involving the cut-off gives a similar estimate and hence we see that

‖I1(φ̂)− I1(φ)‖Yλ ≤ C
(
2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2

)
‖φ̂− φ‖Xλ,2 .

Estimate of ‖I2(φ̂)− I2(φ)‖Yλ. Using Lemma 7 we have

|I2(φ̂)− I2(φ)| ≤ C
(
wp−2
λ (|φ|+ |φ̂|) + |φ|p−1 + |φ̂|p−1

)
|φ̂− φ|.
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From this we have

λσ sup
|x|≤λ−1

|x|σ+2|I2(φ̂)− I2(φ)| ≤ CKin
2 ‖φ̂− φ‖Xλ,2 ,

where
Kin

2 := sup
|x|≤λ−1

|x|2
(
wp−2
λ (|φ|+ |φ̂|) + |φ|p−1 + |φ̂|p−1

)
.

We now estimate these terms inKin
2 . A computation shows sup|x|≤λ−1 |x|2wp−1

λ |φ| ≤ λα(p−2)−2r =
λ−αr. A similar calculation shows that sup|x|≤λ−1 |x|2|φ|p−1 ≤ rp−1λ−2. Hence we see that

Kin
2 ≤ 2λ−αr + 2rp−1λ−2.

We now estimate the portion where |x| ≥ 1
λ
. An identical argument shows that

λα sup
|x|≥λ−1

|x|2+α|I2(φ̂)− I2(φ)| ≤ CKout
2 ‖φ̂− φ‖Xλ,2 ,

where Kout
2 is defined exactly as Kin

2 , except the supremum is now over |x| ≥ 1
λ
, ie.

Kout
2 := sup

|x|≥λ−1

|x|2
(
wp−2
λ (|φ|+ |φ̂|) + |φ|p−1 + |φ̂|p−1

)
.

We now estimate the individual terms of Kout
2 . First note that

sup
|x|≥λ−1

|x|2wp−2
λ |φ| ≤ sup

|x|≥λ−1

|x|2Cr
|x|α(p−2)λα|x|α

≤ Cλ−αr.

Similarly one sees that sup|x|≥λ−1 |x|2|φ|p−1 ≤ λ−2rp−1. Combining these estimates gives
Kout

2 ≤ C(λ−αr + λ−2rp−1). From this we see that

‖I2(φ̂)− I2(φ)‖Yλ ≤ C(λ−αr + λ−2rp−1)‖φ̂− φ‖Xλ,2 .

Estimate of ‖I3(φ̂)− I3(φ)‖Yλ. Recall I3(φ) = −γ|ζwλ + φ|q. So we have

|γ|−1|I3(φ̂)− I3(φ)| =
∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q

∣∣∣.
By Lemma 7 we have∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q

∣∣∣ ≤ C
(
ζq−1wq−1

λ + |φ|q−1 + |φ̂|q−1
)
|φ̂− φ|.

We first consider |x| ≤ 1
λ
. A computation gives

λσ sup
|x|≤λ−1

|x|2+σ
∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q

∣∣∣ ≤ CKin
3 ‖φ̂− φ‖Xλ,2 ,

where Kin
3 = sup|x|≤λ−1 |x|2

(
ζq−1wq−1

λ + |φ|q−1 + |φ̂|q−1
)
. We now estimate these terms in-

dividually. First note that sup|x|≤λ−1 |x|2ζq−1wq−1
λ ≤ |x|2λα(q−1) ≤ λθ1 where, as before,
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θ1 = α(q − 1) − 2 and this is positive provided q > p. A similar calculation shows that
sup|x|≤λ−1 |x|2|φ|q−1 ≤ λ−2rq−1. From this we see that Kin

3 ≤ λθ1 + 2λ−2rq−1. Now consider

|x| ≥ 1
λ
. A computations shows

λα sup
|x|≥λ−1

|x|2+α
∣∣∣|ζwλ + φ̂|q − |ζwλ + φ|q

∣∣∣ ≤ CKout
3 ‖φ̂− φ‖Xλ,2

where, as before, we are defining Kout
3 exactly as Kin

3 except the supremum is now over

|x| ≥ 1
λ
, ie. Kout

3 = sup|x|≥λ−1 |x|2
(
ζq−1wq−1

λ + |φ|q−1 + |φ̂|q−1
)
. A computation shows

sup|x|≥λ−1 |x|2wq−1
λ ≤ Cλθ1 . Similarly we have sup|x|≥λ−1 |x|2|φ|q−1 ≤ rq−1λ−2. So we have

Kout
3 ≤ Cλθ1 + 2rq−1λ−2. Combining with the above estimates gives

‖I3(φ̂− I3(φ)‖Yλ ≤ C(λθ1 + λ−2rq−1)‖φ̂− φ‖Xλ,2 .

Proof of Theorem 1. We begin by finding a nonzero solution u of (13) and for this we
don’t need to distinguish the cases of γ positive or negative. Fix N, p, σ, λ0 as Proposition
1. Take 0 < λ < λ0 and given φ ∈ Br ⊂ Xλ,2 define ψλ = Jλ(φ) as defined in (15). We will
now show that Jλ is a contraction on Br. Set r := βλα and R := ε

λ
where β, ε > 0 will be

chosen later; and recall that R is related to the cut off ζ.

Into. Let φ ∈ Br ⊂ Xλ,2. Then by Proposition 1 we have

C‖Jλ(φ)‖Xλ,2 = C‖ψλ‖Xλ,2 ≤
5∑

k=1

‖Ik(φ)‖Yλ .

We now compute each of these terms with these choices of r and R. By Lemma 3 we have

‖I1(φ)‖Yλ
Cr

≤ εσ+2β−1 + ε2+σ(2−p)βp−2,
‖I2(φ)‖Yλ

Cr
≤ βλ2 + β + βp−1,

‖I3(φ)‖Yλ
Cr

≤ λθ1(β−1 + βq−1),
‖I5(φ)‖Yλ

Cr
≤ (2ε2+σ + εσ)β−1,

and

‖I4(φ)‖Yλ
Cr

≤
(
(1 + ε−1)A(λ−1ε) + A(λ−1) + V (λ−1ε) + V (λ−1)

)
β−1.

Using these estimates one sees that Jλ(Br) ⊂ Br provided we first fix β > 0 sufficiently
small, then fix ε > 0 sufficiently small and then take λ > 0 small.

Contraction. Let φ̂, φ ∈ Br and we let ψ̂λ = Jλ(φ̂) and ψλ = Jλ(φ). Then by (14) we have

‖Jλ(φ̂)− Jλ(φ)‖Xλ,2 ≤ C
3∑

k=1

‖Ik(φ̂)− Ik(φ)‖Yλ .
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We now take R = ε
λ

and r = βλα and use Lemma 4 to see

‖Jλ(φ̂)− Jλ(φ)‖Xλ,2
C‖φ̂− φ‖Xλ,2

≤ βp−1ε2−σ(p−1) + ε2 + β + βp−1 + λθ1(1 + βq−1). (24)

Note that the same procedure for picking β, ε, λ that we used to show that Jλ(Br) ⊂ Br also
shows that Jλ a contraction on Br. Hence we can apply Banach’s fixed point theorem to see
there is some φ ∈ Br = Bβλα such that Jλ(φ) = φ in Ω with φ = 0 on ∂Ω. Hence we have
u = ζwλ + φ satisfies (13). Also note that there is some β0 > 0 such that w(λx) ≥ β0

λα|x|α for

all λ|x| ≥ 1. Also recall that for all |x| ≥ 1
λ

we have λα|x|α|φ(x)| ≤ βλα and hence we have

|x|αu(x) ≥ β0 − β,

for |x| ≥ 1
λ
. Hence by taking β > 0 small we see that u > 0 for |x| ≥ 1

λ
. We now separate

the cases of positive and negative γ.

Case 1, γ ≥ 0. In this case we have

−∆u+ a(x) · ∇u+ V (x)u = |u|p + γ|u|q in Ω

with u = 0 on ∂Ω and u > 0 for large |x|. We can then apply the maximum principle and
the strong maximum principle to see that u > 0 in Ω.

Case 2, γ < 0. Recall how we picked the parameters. We fixed β > 0 small and then took
ε > 0 small and then were able to take λ > 0 as small as we wish. With this in mind let
λm ↘ 0 and let um = ζmwλm + φm denote a solution of (13) and as mentioned above we
have um > 0 for |x| ≥ 1

λm
. Note ζm is just the cut off from before but we are indicating the

dependence on m. Our goal is to show that for large enough m that um ≥ 0 in Ω. So towards
a contradiction suppose that for all large m we have {x ∈ Ω : um(x) < 0} is non-empty and
let Ωm denote a maximal connected component. So we have Ωm ⊂ Ω ∩ Bλ−1

m
. So um is a

negative solution of{
−∆um + a(x) · ∇um + (V (x)− |γ||um|q−1)um = |um|p in Ωm

um = 0 on ∂Ωm.
(25)

We now use a slight variation of the maximum principle given in Lemma 6, to show um ≥ 0.
Multiply (25) by (um)− ∈ H1

0 (Ωm) and integrate by parts to arrive at

2

∫
Ωm

|∇(um)−|2 ≤
∫

Ωm

(
div(a)− 2V + 2γ|um|q−1

)
(um)2

− ≤
∫

Ω

Cm(x)(um)2
−dx

where Cm(x) := (div(a) − 2V )+ + 2|γ||um|q−1. We apply Hölder’s inequality on the right
to see the right hand side is bounded above by ‖Cm‖

L
N
2 (Ωm)

‖(um)−‖2
L2∗ (Ωm)

. We apply the

critical Sobolev inequality, SN‖ψ‖2
L2∗(Ωm) ≤ ‖∇ψ‖2

L2(Ωm), on the left with ψ = (um)−, and
regroup to see (

2SN − ‖Cm‖
L
N
2 (Ωm)

)
‖(um)−‖2

L2∗ (Ωm) ≤ 0.
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If we can show 2SN −‖Cm‖
L
N
2 (Ωm)

> 0 then we see that um ≥ 0 in Ωm giving us the desired

contradiction. We now examine this term in more detail. Note

‖Cm‖
L
N
2 (Ωm)

≤ ‖(div(a)− 2V )+‖
L
N
2 (Ωm)

+ 2|γ|‖um‖q−1

L
N(q−1)

2 (Ωm)

≤ ‖(div(a)− 2V )+‖
L
N
2 (Ω)

+ 2|γ|‖um‖q−1

L
N(q−1)

2 (Ωm)
.

Now recall that we are assuming ‖(div(a)−2V )+‖
L
N
2 (Ω)

< 2SN and hence it will be sufficient

to show that ‖um‖
L
N(q−1)

2 (Ωm)
→ 0 as m→∞. Recall that um = ζmwλm+φm and Ωm ⊂ Bλ−1

m

in RN and hence we have wλm ≤ λαm in Ωm. Hence we have

‖um‖
L
N(q−1)

2 (Ωm)
≤ λαm|Ωm|

2
N(q−1) + ‖φm‖

L
N(q−1)

2 (Ωm)
,

and note λαm|Ωm|
2

N(q−1) ≤ CNλ
2
p−1
− 2
q−1

m → 0 since q > p. Now since φm ∈ Bβλαm ⊂ Xλm,2 we
see |φm(x)| ≤ β|x|−σλα−σm in Ωm and hence∫

Ωm

|φm(x)|
N(q−1)

2 dx ≤ C(N, β, σ)λ
N(α−σ)(q−1)

2
m

∫ λ−1
m

ρ

sN−1−σN(q−1)
2 ds

where ρ > 0 is sufficiently small such that Bρ ⊂ D. By taking σ > 0 sufficiently small and

since q > p we see then that
∫

Ωm
|φm(x)|

N(q−1)
2 dx→ 0 which gives us the desired conclusion.

Hence by contradiction we have um ≥ 0 is a C2,δ nonzero solution of (13), for sufficiently
large m, and hence we can apply the strong maximum principle to see that um > 0 in Ω.

So we have shown the existence of a solution of (3) of the form uλ(x) = ζλ(x)wλ(x) + φλ(x)
for sufficiently small λ; here ζ = ζλ was the appropriate cut off that depended on R (and
recall R now depends on λ). As pointed out in [6] and (more details were given in [8]) one
has supΩ uλ → 0 as λ↘ 0 and recall that uλ > 0 and so we see this implies that there is an
infinite number of solutions of (3). We now give some details. First note that for all x ∈ Ω
we have 0 < uλ(x) ≤ λαw(λx) + |φλ(x)| ≤ λα + |φλ(x)|. Now recall that φλ ∈ Br = Bβλα in
Xλ,2 we have

sup
x∈Ω,|x|≥λ−1

|φλ(x)| ≤ βλα, sup
x∈Ω,|x|≤λ−1

|φλ(x)| ≤ C(Ω, σ)βλα−σ

where C(Ω, σ) is some positive constant. Note we need to take σ > 0 small enough such
that α−σ > 0. Combining these computations shows that supΩ |φλ| → 0 as λ↘ 0. So from
this we see supΩ uλ → 0 as λ↘ 0.

2

3 Equation (4); −∆u + a(x) · ∇u + V (x)u = up + γ|∇u|q

We now find a positive solution of (4), but as usual, we instead will find a positive classical
solution of {

−∆u+ a(x) · ∇u+ V (x)u = |u|p + γ|∇u|q in Ω
u = 0 on ∂Ω,

(26)
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and then argue the solution must be positive. The approach we take is exactly the same as
in the previous section: let D ⊂⊂ BR0 and R0 ≤ R ≤ 4R ≤ 1

λ
and ζ denote a smooth radial

cut-off with ζ = 0 in BR and ζ = 1 on Bc
2R. Then we have |∇ζ| ≤ CR−1 and |∆ζ| ≤ CR−2

where C is independent of R.

We look for solutions to (26) of the form u = ζ(x)wλ(x) + φ(x). Then we need φ to satisfy

Lλ(φ) = |wλ + φ|p − |ζwλ + φ|p

−
(
|wλ + φ|p − pwp−1

λ φ− wpλ
)

−γ|∇(wλζ) +∇φ|q

+a(x) · ∇(ζwλ) + V wλζ

+∆wλ −∆(ζwλ)

= I1(φ) + I2(φ) + I3(φ) + I4(φ) + I5(φ) in Ω, (27)

with φ = 0 on ∂Ω. Note that each term Ik agrees with the previous section except the term
I3. To obtain a solution φ we apply a fixed point argument and towards this we define the
nonlinear mapping Jλ(φ) = ψλ where ψλ satisfies

Lλ(ψλ) = |wλ + φ|p − |ζwλ + φ|p

−
(
|wλ + φ|p − pwp−1

λ φ− wpλ
)

−γ|∇(wλζ) +∇φ|q

+a(x) · ∇(ζwλ) + V wλζ

+∆wλ −∆(ζwλ)

= I1(φ) + I2(φ) + I3(φ) + I4(φ) + I5(φ) in Ω. (28)

So we first find a positive classical solution of (26) by showing Jλ is a contraction on Br ⊂ Xλ,2

for suitable r > 0 and small 0 < λ, as was the earlier approach. Let 0 < λ0 be small and
C > 0 such that Lλ : Xλ,2 → Yλ has a right inverse bounded by C for all 0 < λ < λ0.

Into. Let 0 < λ < λ0 and φ ∈ Br. Then we have

‖Jλ(φ)‖Xλ,2 ≤ C
5∑

k=1

‖Ik(φ)‖Yλ ,

and now recall that Lemma 3 gives the estimates

‖I1(φ)‖Yλ ≤ CRσ+2λαp+σ + CR2+σ(2−p)rp−1λα+σ(2−p), (29)

‖I2(φ)‖Yλ ≤ Cr2λ2−α + Cr2λ−α + Crpλ−2, (30)

‖I4(φ)‖Yλ ≤ C

(
A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1)

)
λα, (31)

‖I5(φ)‖Yλ ≤ Cλσ
(
R2+σλ2 +Rσ

)
λα. (32)

We now calculate the I3 estimates. By Lemma 7 there is some C > 0 such that

|I3(φ)| ≤ Cζq|∇wλ|q + Cwqλ|∇ζ|
q + C|∇φ|q, (33)
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and hence we have

‖I3(φ)‖Yλ ≤ C‖ζq|∇wλ|q‖Yλ + C‖wqλ|∇ζ|
q‖Yλ + C‖|∇φ|q‖Yλ . (34)

Taking 0 < σ small enough we have σ+ 2 > q(σ+ 1). Computations show that ‖|∇φ|q‖Yλ ≤
2rqλq−2, ‖wqλ|∇ζ|q‖Yλ ≤ CRσ+2−qλσ+αq and ‖ζq|∇wλ|q‖Yλ ≤ Cλq(α+1)−2.

Combining the results gives

‖I3(φ)‖Yλ ≤ Cλq(α+1)−2 + CRσ+2−qλσ+αq + Crqλq−2. (35)

Contraction. Let φ, φ̂ ∈ Br and ψ̂λ = Jλ(φ̂) and ψλ = Jλ(φ). Then we have

Lλ(ψ̂λ − ψλ) =
3∑

k=1

(Ik(φ̂)− Ik(φ)),

where I1, I2 and I3 are as above. From Lemma 4 we have

‖I1(φ̂)− I1(φ)‖Yλ ≤ C
(
2λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2

)
‖φ̂− φ‖Xλ,2 , (36)

‖I2(φ̂)− I2(φ)‖Yλ ≤ C(λ−αr + λ−2rp−1)‖φ̂− φ‖Xλ,2 . (37)

We now need to examine I3 term. By Lemma 7 we have

|I3(φ̂)− I3(φ)| ≤ C
(
|∇(wλζ)|q−1 + |∇φ|q−1 + |∇φ̂|q−1

)
|∇φ̂−∇φ|.

Using this we can rearrange it to see that

‖I3(φ̂)− I3(φ)‖Yλ ≤ C(Kin +Kout)‖φ̂− φ‖Xλ,2 ,

where
Kin := sup

|x|≤λ−1

|x|
(
|∇(wλζ)|q−1 + |∇φ|q−1 + |∇φ̂|q−1

)
,

and where Kout is Kin but with the supremum taken over |x| ≥ λ−1. We now estimate Kin

and Kout. Using the support of ζ and estimates for |∇wλ| we see

Kout

C
≤ sup
|x|≥λ−1

|x|
(

1

|x|(α+1)(q−1)
+ |∇φ|q−1 + |∇φ̂|q−1

)
.

A computation shows that

Kout ≤ Cλ(α+1)(q−1)−1 + Crq−1λq−2.

A further computation shows that

Kin

C
≤ λ(α+2)(q−1)−q +

λα(q−1)

Rq−2
+ rq−1λq−2.

Combining the above results show that

‖I3(φ̂)− I3(φ)‖Yλ
C‖φ̂− φ‖Xλ,2

≤ λ(α+1)(q−1)−1 + rq−1λq−2 +
λα(q−1)

Rq−2
.
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Now let φ̂, φ ∈ Br ⊂ Xλ,2 and set ψ̂λ = Jλ(φ̂) and ψλ = Jλ(φ). After considering (29)-(35)
one sees that for Jλ(Br) ⊂ Br it is sufficient that

Rσ+2λαp+σ +R2+σ(2−p)rp−1λα+σ(2−p) + r2λ2−α + r2λ−α + rpλ−2

+λq(α+1)−2 +Rσ+2−qλσ+αq + rqλq−2

+

(
A(R)

Rλ
+ A(R) + V (R) + A(λ−1) + V (λ−1

)
λα

+λσ
(
R2+σλ2 +Rσ

)
λα ≤ r

C2 + 1
. (38)

For Jλ to be a contraction on Br with Lipschitz constant at most 3
4

it is sufficient

λ−σ(p−1)rp−1R2−σ(p−1) + 4R2λ2 + λ−αr + λ−2rp−1

+λ(α+1)(q−1)−1 + rq−1λq−2 +
λα(q−1)

Rq−2
≤ 3

4(C + 1)
. (39)

We are now in a position to pick the parameters. As before we take ε, β > 0 (to be determined
later) and we take r := βλα and R := ε

λ
and eventually we will take λ > 0 small.

Substituting these values in shows that to satisfy (38) it is sufficient that

εσ+2 + εσ + ε2+σ(2−p)βp−1 + β2(λ2 + 1) + βp + λq(α+1)−2−α(1 + εσ+2−q + βq)

+

(
A(ελ−1)

ε
+ A(ελ−1) + V (ελ−1) + A(λ−1) + V (λ−1

)
≤ β

C2 + 1
. (40)

Also note the left hand side of (39) is controlled by a constant times

βp−1ε2−σ(p−1) + ε2 + β + βp−1 + λq(α+1)−α−2
(
1 + ε2−q + βq−1

)
, (41)

and hence (39) is satisfied provided this can be made arbitrarily small.

To satisfy (40) and to make (41) sufficiently small one first fixes β > 0 small, then fixes
ε > 0 small and finally takes λ > 0 sufficiently small. One can then apply the contraction
mapping principle to obtain a solution φ ∈ Br = Bβλα ⊂ Xλ,2 of (27). We then have
u(x) = ζ(x)wλ(x) + φ(x) is a solution of (26). To see u is not identically zero note that for
|x| ≥ λ−1 we have u(x) = λαw(λx) + φ(x) ≥ λαw(λx)− β|x|−α. Recall there is some β0 > 0
such that |x|αw(x) ≥ β0 for all |x| ≥ 1. So for fixed λ and sufficiently large |x| we have

u(x) ≥ λαβ0

2λα|x|α
− β

|x|α
,

so hence for sufficiently small β and large |x| we see u(x) > 0. We can then apply the
maximum principle to see that u is a positive solution of (26) and hence a solution of (4).
To obtain an infinite number of solutions we argue as in the previous section.

4 Equations (3) and (4) for N+2
N−2 < p < N+1

N−3

In this section we prove Theorem 3. Since the approach is very similar to the case of p > N+1
N−3

we will be fairly brief. We will always assume that D satisfies (A3) (see the text following
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Remark 1 for definition of (A3)). We define the subspace Y e
λ of Yλ by

Y e
λ :=

{
f ∈ Yλ : f(xi) = f(x) for all x ∈ Ω and 1 ≤ i ≤ N

}
,

where, as before, Ω := RN\D. It is clear that Y e
λ is a closed subspace of Yλ. We similarly

define Xe
λ,0 and Xe

λ,2 to be the closed subspaces of Xλ,0 and Xλ,2 (respectively) which contain
functions φ with this same symmetries as functions in Y e

λ . We now recall the definitions
Lλ(φ)(x) := ∆φ(x) + pwλ(x)p−1φ(x) and Lλ(φ)(x) := Lλ(φ)(x)− a(x) · ∇φ(x)− V (x)φ(x).

We now need to develop the needed linear theory on these spaces of symmetric functions.
Firstly recall Theorem A, 2) gives us the existence of a continuous right inverse for Lλ as a
mapping on Xe

λ,0 to Y e
λ . Using the same approach as we in the proof of 1 one is able to show

the analogue of Lemma 1, for the symmetric functions, given by

Lemma 5. Suppose N ≥ 3, N+2
N−2

< p < N+1
N−3

and D satisfies (A3). Then for 0 < σ < N − 2
there exists some small λ0 > 0 and some C > 0 such that for all 0 < λ < λ0 and f ∈ Y e

λ there
is some φλ ∈ Xe

λ,2 such that Lλ(φλ) = f in Ω with φλ = 0 on ∂Ω and ‖φλ‖Xλ,2 ≤ C‖f‖Yλ.

We can now construct the right inverse of Lλ exactly as we did following the proof of Lemma
1. So there is some closed subspace X̃e

λ,2 of Xe
λ,2 such that Lλ : X̃e

λ,2 → Y e
λ is continuous, one

to one and onto and hence its Fredholm index is zero.

We now would like to extend the above linear theory to the operator Lλ. A computation
shows that the symmetry assumptions (A4) and (A5) imposed on V and a (along with the
decay assumptions (A1) and (A2)) shows that Lλ(X

e
λ,2) ⊂ Y e

λ . So we have Lλ : Xe
λ,2 → Y e

λ

is a continuous linear operator. From this we see that Lλ : X̃e
λ,2 → Y e

λ is a Fredholm index
zero linear map. We can now argue exactly as in the proof of Proposition 1 to obtain the
analogues result given by:

Proposition 2. Suppose N ≥ 3, N+2
N−2

< p < N+1
N−3

and (A1), (A2), (A3), (A4), (A5) are
satisfied. Then for 0 < σ < N − 2 there exists some small λ0 > 0 and some C > 0 such
that for all 0 < λ < λ0 and f ∈ Y e

λ there is some φλ ∈ Xe
λ,2 such that Lλ(φλ) = f in Ω with

φλ = 0 on ∂Ω and ‖φλ‖Xλ,2 ≤ C‖f‖Yλ.

This gives us all the needed linear theory and we now would like to apply fixed point argu-
ments to solve the nonlinear problems. The main difference now will be that we will replace
Xλ,2 with Xe

λ,2 in the various fixed point arguments.

Proof of Theorem 3, 1) and 2). We begin by considering (3). Given φ ∈ Xe
λ,2 consider

Jλ(φ) := ψλ ∈ Xe
λ,2 where ψλ satisfies (15); to see this is possible note that the right hand

side of (15) is an element of Y e
λ . We can now argue exactly as before to obtain a fixed point

of Jλ, on a suitable closed ball in Xe
λ,2, provided q > p, and again we need to split up the

cases of γ ≥ 0 and γ < 0. Omitting the details one obtains a positive solution of (3) and we
then argue as before to obtain an infinite number of solutions. 2

The proof of Theorem 3, 3) is very similar to part 1) and 2) and so we omit the details.

5 Appendix

We now recall the particular maximum principle but this requires we recall the best constant
SN associated with the critical Sobolev imbedding H1

0 ⊂ L2∗ which is independent of the
domain; SN‖φ‖2

L2∗ ≤ ‖∇φ‖2
L2 for all φ ∈ H1

0 .
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Lemma 6. Maximum Principle. [14] Suppose w ∈ H1
0 (Ω) is a weak solution of −∆w(x)−

C(x)w = f(x) ≥ 0 in Ω where ‖C+‖
L
N
2 (Ω)

< SN . Then w ≥ 0 in Ω.

Proof. Their proof involves multiplying the equation by w− (the negative part of w) and
integrating by parts and applying Hölder’s inequality.

Lemma 7. Suppose p > 1. There exists a constant C > 0 such that the following hold:

1. For all numbers w > 0, φ ∈ R, and φ̂,∣∣∣|w + φ|p − pwp−1φ− wp
∣∣∣ ≤ C

(
wp−2φ2 + |φ|p

)
,

and∣∣∣|w + φ̂|p − |w + φ|p − pwp−1(φ̂− φ)
∣∣∣ ≤ C

(
wp−2(|φ|+ |φ̂|) + |φ|p−1 + |φ̂|p−1

)
|φ̂− φ|;

2. For all x, y, z ∈ Rn,∣∣∣|x+ y|p − |x+ z|p
∣∣∣ ≤ C

(
|x|p−1 + |y|p−1 + |z|p−1

)
|y − z|.
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