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Abstract
We examine the two elliptic systems given by

Gy — Au=1rf"(u)g(v), —Av=yfu)g'(v) ing,

and
(H)z,y —Au=Arf(u)g (v), —Av=yf (w)g) in,

with zero Dirichlet boundary conditions and where A, y are positive parameters. We show that for general
nonlinearities f and g the extremal solutions associated with (G)j,, are bounded, provided £2 is a convex
domain in RN where N < 3. In the case of a radial domain, we show the extremal solutions are bounded
provided N < 10. The extremal solutions associated with (H),, , are bounded in the case where f is a
general nonlinearity, g(v) = (v + 1)4 for 1 < g < 0o and when £2 is a bounded convex domain in RN for
N < 3. Certain regularity results are also obtained in higher dimensions for (G)j, ,, and (H)j,,,, for the case
of explicit nonlinearities of the form f(u) = (u + 1)P and g(v) = (v + 1)4.

© 2014 Elsevier Inc. All rights reserved.

Keywords: Elliptic systems; Extremal solutions; Stable solutions; Regularity of solutions; Radial solutions

* The second author is pleased to acknowledge the support of a University of Alberta Start-up Grant RES0019810 and
National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RES0020463.
* Corresponding author.
E-mail addresses: Craig.Cowan@umanitoba.ca (C. Cowan), fazly @ualberta.ca (M. Fazly).

http://dx.doi.org/10.1016/j.jde.2014.08.002
0022-0396/© 2014 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jde.2014.08.002
http://www.elsevier.com/locate/jde
mailto:Craig.Cowan@umanitoba.ca
mailto:fazly@ualberta.ca
http://dx.doi.org/10.1016/j.jde.2014.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2014.08.002&domain=pdf

4088 C. Cowan, M. Fazly / J. Differential Equations 257 (2014) 4087-4107

1. Introduction
We examine the following systems:

—Au=xrf'(u)glv) £

(Gry : —Av=yfwg'(v) £,
u=v=0 a2

and

—Au=rf(u)g (v) £
(H)i.y { —Av=yf )gl) £,
u=v=0 052

where £2 is a bounded domain in RY and A, y > 0 are positive parameters. The nonlinearities f
and g will satisfy various properties but will always at least satisfy

(R) f is smooth, increasing and convex with f(0) =1 and f superlinear at oco.

We begin by recalling the scalar analog of the above systems. Given a nonlinearity f which

satisfies (R), the following equation
—Au=rf(u) £

o {8 o

is now quite well understood whenever §2 is a bounded smooth domain in RN . See, for instance,
[1-5,8,10,12,15]. We now list the properties one comes to expect when studying (Q);. It is well
known that there exists a critical parameter A* € (0, 00), called the extremal parameter, such that
for all 0 < A < A* there exists a smooth, minimal solution u; of (Q); . Here the minimal solution
means in the pointwise sense. In addition for each x € §2 the map A +— u,(x) is increasing
in (0, 1*). This allows one to define the pointwise limit u*(x) := lim;,_=» u; (x) which can be
shown to be a weak solution, in a suitably defined sense, of (Q);+. For this reason u«* is called
the extremal solution. It is also known that for A > A* there are no weak solutions of (Q);. Also
one can show the minimal solution u; is a semi-stable solution of (Q), in the sense that

/Af’(ux)wzsfww, Yy € Hy (£2).
2

2

A question that has attracted a lot of attention is the regularity of the extremal solution. It is
known that the extremal solution can be a classical solution or it can be a singular weak solution.
We now list some results in this direction:

e ([12]) u* is bounded if f satisfies (R) and N < 3.

e ([3]) u* is bounded if f satisfies (R) (can drop the convexity assumption) and §2 a convex
domain in R*.

e ([4]) u* is bounded if £2 is a radial domain in RY with N < 10 and f satisfies (R) (can drop
the convexity assumption).
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It is precisely these type of results which we are interested in extending to the case of systems.
For various results on fourth order analogs of (Q), see [7]. Before we can discuss the regularity
of the extremal solutions associated with (G);, , and (H);,, we need to introduce some notation.

Under various conditions on f and g the above systems fit into the general framework of
developed in [11], who examined a generalization of

—Au=AFu,v) £
(Pa,y —Av=yGu,v) 52,
u=v=0 082.

The following results are all taken from [11]. Let @ = {(A, y) : A, ¥ > 0} and we define

Uu:.= {(A, y) € Q: there exists a smooth solution (u, v) of (P);L,y}.

Firstly we assume that F'(0,0), G(0,0) > 0. A simple argument shows that if F' is superlinear
at u = oo, uniformly in v, then the set of A in I/ is bounded. Similarly we assume that G is
superlinear at v = oo, uniformly in u# and hence we get I/ is bounded. We also assume that F,
G are increasing in each variable. This allows the use of a sub/supersolution approach and one
easily sees that if (1, y) € U then so is (0, A] x (0, y]. One also sees that I/ is nonempty.

We now define 7" := 0l N Q, which plays the role of the extremal parameter A*. Various

properties of 1" are known, see [11]. Given (A*, y*) € T set o := K—: € (0, 00) and define

)\‘*
Iy = {(A,ka) : 5 <X <A*}.

We let (uy, vy) denote the minimal solution (P); 5 for % < A < A*. One easily sees that for
each x € £2 that u (x), vy (x) are increasing in A and hence we define

*(x):= li , *(x):= li ,
u*(x) xl/nf* u; (x) v (x) A}Hf* v (x)

and we call (u*, v*) the extremal solution associated with (A*, y*) € 7. Under some very minor
growth assumptions on F and G one can show that («*, v*) is a weak solution of (P);x ,+.
We now come to the issue of stability.

Theorem A. (See [11].) Let (A, y) € U and let (u,v) denote the minimal solution of (P)y .
Then (u, v) is semi-stable in the sense that there is some smooth 0 < ¢, x € HOl (£2) and 0 <n
such that

—AL =AFy(u,v)¢ +AF,(u, v) x +n¢, —Ax=yG,(u,v)¢ +yGy(u,v)x +nx, 2.
(1.1)

In this paper we prove that the extremal solution of (G);x ,+ with general nonlinearities,
either on a general domain and lower dimensions or on a radial domain and higher dimensions
are regular. Moreover, for explicit nonlinearities we prove regularity on a general domain in
higher dimensions.

The following stability inequalities play a key role in this paper and we shall refer to them
many times through proofs. We mention that in [9] the De Giorgi type results and Liouville
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theorems have been proved for a much more general gradient system and they obtained a stability
inequality which reduces to (1.2) in the particular case we are examining. Note that some of our
results will hold for a general gradient system that is examined in [9].

Lemma 1.1. For any ¢,V € HOl (82) the following inequalities hold.

(1) Let (u, v) denote a semi-stable solution of (G)y,, in the sense of (1.1). Then

/ £ g () + f Fag" )y +2 f g @py

<1/|V¢|2+1/|W|2 (12)
= . .
14

(2) Let (u, v) denote a semi-stable solution of (H);., in the sense of (1.1). Then
1 1
[ rwdw@ )2 [ Vifeow <5 [1ver+ [1ver. s

Proof. We will prove inequalities (1.2) and (1.3) for ¢, ¢ € C2°(§2) and then a standard density
argument extends the inequalities to ¢, V¥ € H(} (£2).
(1) By Theorem A there is some 0 < ¢, x such that

—AL = Af"(w)g)s +af g’ w)x and —Ax = yf g W) +yfwg'wx ins.

Consider test functions ¢, ¢ € C2°(£2) and multiply both sides of the above inequalities with qz—z

and 1/’72 to obtain
2¢2 " 2
/ v¢| / V- w ?> / W g 09 / Mg )62,

/ IVXIM / V- Vy %z / yfwg" wyv? + / yf’(u)g’(v)wzé,

2 2
note there are no issues regarding the functions %, 107 after one considers the fact that ¢ and x

are smooth and positive on the support of ¢ and . Apply Young’s inequality for the left hand
side of each inequality and add them to get

/ £ g () + v / Fag" )2 + / Flg (v)<x¢ +yy? )

§/|V¢I2+/IV¢I2~

Simple calculations show that the third term is an upper bound for

N / flw)g )y

Then, replacing ¢ with -2 7 and ¢ with } gives the desired result.
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(2) Proof is quite similar to (1). By Theorem A there is some 0 < ¢, x such that

A§ 7 / 4 X AX " { 7 / .
< >Af (w)g () +Arf(u)g (U)E and — ~ >yf (u)g(v); +yf (wg'(v) in$,

and we now multiply the first equation by ¢ and the second by 2 and add the equations and
integrate over £2. In addition we use the fact that

- < \V4

[ =50 = [1ver.
2

forany E >0and ¢ € HO1 (£2). Doing this one obtains

/ Fwg (> +yv?) + / Mg 08 + yf”(u)g(v)w% < / VoP + VYL
2 2

2

Again some simple algebra shows that

N f V@) f w)g)g" )y,
2

is a lower bound for the second integral. Using this lower bound and replacing ¢ with % and ¥

with 7 finishes the proof. O

In Section 2, we explore the regularity of extremal solutions for systems (G);. , and (H);
with general nonlinearities and, in then Section 3 we consider explicit nonlinearities. We finish
the current section by this point that in [6] the system

—Au=2xre’ £
(EDxy —Av=ye" £,
u=v=0 952,

was examined. It was shown that if £2 is a bounded domain in RY where N < 9, then the extremal
solution (u*, v*) associated with (A*, y*) € T is bounded if

N-2 y* 8

< < —.
8 A¥ N -=2

Note that as one gets closer to the diagonal parameter range y = A that better regularity results are
obtained. At the diagonal the system can be shown to reduce to the scalar equation —Au = Le*.
This phenomena will also be present in Section 3 where we consider explicit nonlinearities.

2. General nonlinearities

We begin by examining (G);, , in the case of general nonlinearities and we show the extremal
solutions are bounded in low dimensions and our methods of proof are close to [12].
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Theorem 2.1. Suppose that 2 is a bounded smooth convex domain in RN where N <3 and
suppose f and g both satisfy condition (R). We also assume that f'(0) > 0 and g’'(0) > 0. In
addition we assume that ', g’ are convex and there is some & > 0 such that

liminf £ (u) = oo, liminfg” (v) = oo. 2.1
u—>0o0 vV—> 00
Let (\*, y*) € Y. Then the associated extremal solution of (G);» = is bounded.

For radial domains we obtain similar results but in higher dimensions and our methods of
proof follow very closely to [4] and [14].

Theorem 2.2. Let 2 = By, N > 3, and f and g both satisfy condition (R) and in addition we
assume that there is some & > 0 such that

liminf f”(u) = oo, liminf g” (v) = oc.
u— 00 vV—>00
Let (A\*, y*) € T and let (u*, v*) denote the extremal solution associated with (G)yx ,+. Then

(1) if N < 10, then u*, v* € L*°(By),
(2) if N =10, then u*(r), v*(r) < Cyx +(1 +|logr]) for r € (0, 1],

(3) if N > 10, then u*(r), v(r) < cA*,V*,Nr—%VN—l”forr € (0,1].

We are unable to prove the analogous version for the system (H),_,, and hence we restrict our
attention to the special case.

Theorem 2.3. Suppose 2 a bounded smooth convex domain in R? and 1 < g < co. Assume
f satisfies (R) and we also assume that f” > C > 0. Let (A\*,y*) € T. Then the associated
extremal solution of (H )« ,+ for g(v) = (1 +v)? is bounded.

We fix the notation 4 (¢) := g + /g (¢ — 1) which will play an important role in the proof of
the above theorem and theorems to follow. The following lemma is used to prove Theorem 2.1
where a convex domain is assumed but we prove the lemma for general domains.

Lemma 2.1. Suppose $2 is a bounded domain in RN and f and g satisfy the conditions from

Theorem 2.1 and define a := f'(0) > 0, b := g'(0) > 0. Let (A\*, y*) € T and let (u*, v*) denote
the extremal solution associated with (G)yx ,+. Then there is some C < 00 such that

O [ 1)) ) ) - =c
@ [ —a @ty ze @ [ 0)-ne ) ) <c

Remark 2.1. Let f;, g; denote smooth increasing nonlinearities with f;(0), g;(0) > 0 and we
also assume

o ga(v)
liminf = liminf =00
u—00 u V—>00 v

(2.2)
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Let (u, vy ) denote a sequence of smooth solutions of (P)y,, s2,,» Where 0 < o < oo is fixed and
Am 1s restricted to a compact subset of (0, o0) and F (u, v) = f1(u)g1(v), G(u,v) = fo(u)g2(v).
Then we have the estimate

f.fl (”m)gl(vm)S+/f2(“m)g2(vm)8 <C,

where 8 (x) := dist(x, 3§2). Applying regularity theory shows that ,,, v,, are bounded in L' (£2).

On occasion we will restrict our attention to smooth convex domains where many of the proofs
are much more compact. One can use the moving plane to obtain uniform estimates for arbitrary
positive solutions of our system in a convex domain; see [13]. One first uses the results from [13]
to obtain estimates valid near 9£2. Suppose (u,, v,,) are as above. For ¢ > 0 small define £2, :=
{x € 2 :58(x) < ¢}. Using results from [13] shows there is some small ¢ > 0 (depending only
on §2) and 0 < C such that supg_uy +supgo v < Cllumli1(@)+ Cllvmll L1 (o) and since up, vy
are bounded in L' (£2) we see that u,, and v,, are bounded in £2,. Using the maximum principle
there is some Cp > 0 such that u,,, v, > C| in the compliment of £2..

Proof. All integrals are over §2 unless otherwise stated. Our approach will be to obtain uniform
estimates for any minimal solution (u, v) of (G);, on the ray I'; and then one sends A /' A* to
obtain the same estimate for (1*, v*). Let (4, v) denote a smooth minimal solution of (G),,,, on
the ray I', and put ¢ := f'(u) — a and ¥ := g’(v) — b into (1.2) to obtain

/ S e )(f ) —a)’ + / fs" ) (g @) —b)*
+2 / F'wg' @)(f ) —a)(g' @) —b)
1 / 1" 1 / "
< va(f () —a) f"(u) - Vu+ ;/V(g () —b)g"(v) - V. (2.3)
Integrating the right-side of (2.3) by parts shows that
[ 9w =) w - vu== [ (00 = a) @i + [ (5w - a) -,
/ V(g'(v) = b)g"(v) - Vv =~ /(g’(v) —b)g" ()| Vv[* + /(g/(v) —b)g" (v)(~Av).

In addition the other term in (2.3) involving v is of the similar form. We use the equation (G);, ,
to replace —Au and —Av in the last equalities and simplify to get

1 1
S / (') —a) ") Vel £ f (¢'@) = b)g" W)V
+2 / f'@g' @)(f ) —a)(s'w) = b)

<a / F7(f' ) — a)g(v) + b / ¢ (0)(g'(v) = b) f ().
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We now define iy (u) := fou(f’(t) —a) f"(t)dt and hy(v) ;= fov(g’(t) — b)g"'(t)dt. Subbing
this into the previous inequality and integrating by parts and using (G);. , again we arrive at

/ i) £ () (v) + / ha(0) £ ()’ (0) +2 / £ ) (@) —a)(g' ) — b)
<a / F @ (f/w) - a)g) +b f ¢ (0)(g' ) — b) fw). (2.4)

Now suppose u > « > 0. Then we have

u

() = / (F/() —a) " (Odt = (@) —a) (f"(w) — £"(@)).

o

and so using the condition on f”(u) we see that

)
> —
limint Zrey = £/ @ —a.
for any o > 0. But since f is convex and superlinear at infinity we see that lim,,_, oo —jﬁ},((';)) = 00.
Similarly limy— o0 ﬁ = 0.

We now estimate the integral [ f”(u)g(v)(f’(u) — a). There is some T > 1 large such that
for all u > T we have iy (u) > 100(a + 1) f”(u) for all u > T. Then we have

/f”(u)g(v)(f’(u) —a)

1
- f + / < T / hi g ) (f' () —a) + / / £ g ) (f' @) —a).

u>T u<T u<T

We now estimate this last integral. Let 7" be as above and fixed and we let k > 1 denote a natural
number.

/ F g (@) —a) = / + / —C,T) + / £ g )( ') —a)
u<T u<T,v<kT u<T,v>kT u<T,v>kT

and we now estimate this last integral. One easily sees that this last integral is bounded above by

£ 5(v) , , e
- —-b .
2 P b W - | VA= 0gw

Combining this all together we see that for all sufficiently large 7 and all 1 < k there is some
constant C(k, T') such that
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ff"(u)g(v)(f/(u)— a) < D /hl(u)f (u)g(w) +C(k, T)

- 100( +

+ sup 1" () sup g(v)
u<T f (”) v>kT (g (U) b)g/(v)

x / (f'w)—a)(g' ) —b) f wg' ).

Using the same argument one can show for all sufficiently large T and for all 1 < k there is some
C(k, T) such that

- mfhz(v)g W fu)+Ck,T)
g”(v) f@)

T W) e @) —a) f )

X / (f'w)—a)(g' (v) = b) f'wg' ().

/g”(v)f(u)(g/(v) —b) <

Since f”, g” — oo we see that

lim sup L =0,

k—00 > kT (f (M) - a)f/(u)

and similarly for the other term. Hence by taking k sufficiently large we can substitute everything
back into (2.4) and see that all the integrals in (2.4) are bounded independent of .. O

Proof of Theorem 2.1. We assume that N = 3 and £2 is convex domain in R3. The case of
N = 1,2 is easier and we omit their proofs. We suppose that (A*, y*) € 7" and (u*, v*) is the

associated extremal solution of (G);x ,+. Set o = K—: Using Remark 2.1 along with Lemma 2.1
we see that f'(u*)g’'(v*) € Lz(.Q). Note that this and the convexity of g show that

f'w)?gwh)?
W12

From Lemma 2.1 and Remark 2.1 we have —Au*, —Av* € L' and hence we have u*, v* € L3-,
i.e. L? for any p < 3. We now use the domain decomposition method as in [12]. Set

F@H?ew? ., s2ma , m2-a
Q] = {XWE‘]"(M )2 g(v )2 }’
}.

QI

2= 02\, ={x: f'(u*)g(v*) < (v +1)

where 0 < « is to be picked later. First note that

1% *\)\2—o f/(u*)zg(v*)z
J (e = [ LR <
2 Q
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Similarly we have

f(f’(u*)g(v*))” < /(v* )%

2,

Taking o = % and using the L3~ bound 0611 v shows that f'(u*)g(v*) € L%, (£2). By a symmetry
argument we also have f(u*)g’(v*) € L5-(£2).

By elliptic regularity we have u*, v* € WZ’%f and this is contained in L% (£2) after con-
sidering the Sobolev imbedding theorem. Using these estimates and again using the domain
decomposition £2; and £2, but taking o = % gives that f'(u®)g(v*) € L%— (£2) and by symmetry
we have the same for f(u*)g’(v*). Elliptic regularity now shows that u*, v* € w? 3 and this is
contained in L? for any p < co. One last iteration with o = le shows that f/(u*)g(v*) € L% (£2)

and after considering elliptic regularity and the Sobolev imbedding we have u™* is bounded. By
symmetry we see v* is also bounded. O

Proof of Theorem 2.3. Let (A*, y™) € 7" and let («*, v*) denote the extremal solution associated
with (H)y+ ,+. We let (4, v) denote a minimal solution on the ray I'; where o = K—: Without
loss of generality we can assume A = o = 1 to simplify the calculations. Note the assumption on
S/ shows there is some & > 0 such that If 'l(fg — 00 as u — 00. Using this along with the fact that

g > 1 and Remark 2.1 shows that Au*, Av* € L1(2). Seta:= f(u) —land B:=(v+ 1) — 1
where 1 <t <11(q) :=¢q + +/q(g — 1) into the stability inequality to obtain

2
<6] _ 2tt_ 1)/f/(u)(v + 1)2t+q—l +/(f(u) _ 1)f//(u)|Vu|2

+2Jq@ D) / JI@ @@+ DI (@) — 1) (w+ 1 — 1)
<2 / f@ '@+ 177" +2g / fl) (v + D!

We label these integrals as [; for 1 <i <5 from left to right. The condition on ¢ ensures the
coefficient in front /; is positive. We can rewrite

u

Izzfth(u)f(u)(v—i—l)q_l, where hl(u)=/(f(r)— 1) f" (v)dr.

0

One easily sees that hl,gz; — 00 as u — 00. Let T be sufficiently large such that 4 (u) > 10 f/(u)

for all u > T. Then one easily sees that

/ fa '@+ < 1—10 () f () + DT+ £1(T) / fa)@+ DI



C. Cowan, M. Fazly / J. Differential Equations 257 (2014) 4087—4107 4097

We also have

/f/(u)(v+1)q+t—lSTq+l—l/f/(u)+%/f/(u)(v+1)q+21_l’

and so after combining the estimates we have

t2 2q , B 4q ~
(q_Zt—l ‘F)/f(“)(”“)"”’ 1+gfh1(u)f(u)(v+1)q 1

+2vq(q — 1)f\/f(u)f”(u)(v+1)"_l(f(u) —1)(w+D"=1)
SZQf’(T)/f(M)(erl)”*l+261T’”171/f’(u)-

Passing to the limit shows this inequality holds with (u*, v*) in place of (u, v). But these last two
integrals are finite and hence we have an estimate provided the first coefficient is positive, which
is indeed the case provided we take T bigger if necessary. Hence each of the following integrals
is finite

/f )q+2t L (i) /f (0" + 1) -1,
(lll) /f % )q"rt—l’

forall 1 <t <ty(q).
Now note that —A(f (u)) = — f" (u)|Vu|? + g f'(u) f ) (v + 1)?~" and since f is convex
and since f'(u) f(u)(v + 1)?~! is uniformly bounded in L!(£2) along the ray I', shows that

N
f (u) is uniformly bounded in L¥-2- = L3-; and hence f(u*) € L3-.
We now use (i) and (iii) to show that «* is bounded. To do so, set 0 < € < 3/2 define

3 3 3(r—1 3
}>l, a::g>0 and p=§+e.

T > max
{2 "3/2—¢ 27

From the definition of &, we have t/'a = %, where 7’/ and T are conjugates meaning that % +
% = 1. It is straightforward to see that (p — @) < 3 since T > %, and also pt’ < 3 since
T > 3/2%6 Elementary calculations show that the function L(g) :=1+ % is decreasing in

g >1land L(g) >3 for g > 1. Asaresult, pt’ < L(g) =1+ tq*%f. Therefore, (¢ — 1)pt’ <
q +t+(q) — 1. From the Holder’s inequality we have

/f(u*)p(v*+1)(q_l)p=/f(u*)p_af(u*)a(v*+1)(q_l)p

< </f(u>k)([7—a)r)%</f( )%(v 1) "plg— 1))
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but the right hand side is finite and hence by elliptic regularity we have u* is bounded. We
now show that v* is bounded. First note that we have f (v* + DH+T-1 < 0 for any 1 <1t <
7+(¢) and hence one has [(v* + 1)4*! < o0o. Since u* is bounded this shows that v* € HOl (£2).
Now to complete the proof of v* being bounded it is sufficient to show (since u* is bounded)
that (v* + 1) € L4~DP(£2) for some p > % but this easily follows after considering the above
estimate. O

Proof of Theorem 2.2. Step 1. Let (1, v) denote a smooth minimal solution of (G)j_, on the

.
ray I, where o := K—* Then taking a derivative of (G);, , with respect to r gives

{ —Auy + 2, = 0" W )uy + Af (w)g' W)y, forO<r <1,
(2.5)

—Av, + X = Lo, =y f w)g Wu, +yfwg’ v, for0<r<1.

Multiply the first and the second equations of (2.5) with u,¢? and v,¢> where ¢ € C%1(B;) N
Hj (B)) gives

[ 19 v v 4 S = [ g + s g @ d?
[ 19602+ 3902 v+ E2 = [y g s 4 yfwg ket 20
On the other hand, testing (1.2) on ¢ — 1, and ¥ — v, where ¢ is as above, we get
[ rrwsenier + [ rawg wnied +2 [ rwg e’
< %f|wr¢)|2 + % /|V(vr¢>|2.

Expanding the right hand side we get

1 1 1 1
X[<|vu,|2¢2 +u?|Vo|* + §V¢2 : w%) + ;/(le,|2¢2 +02|Vo|* + Ewﬂ : w})

Applying (2.6) the above will be

L N T 1/2 2 _N-1 /2¢_2_u/ 9
L [iver e [uver - = [wf -2 [
+2 / £w)g Wyuyve¢* + / fag" Wvie® + / £ g e,

Therefore one obtains, after substituting r¢ for ¢,

oo [y = (55 e

for all ¢ € C%!(By) N Hy (B)). Note that there is no f and g in this estimate.

2.7)
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Step 2. We show that (2.7) implies that u*, v* € Hé (B1). Firstly we argue there is some
Cgr > 0 such that for any 0 < R < 1 we have sup,. z(u(r) + v(r)) < Cg and Cp is independent
of A (and hence the estimate also holds for u*, v*). To see this we first note that by Remark 2.1
we have ||u||;1, [lv]l;1 < C (uniformly in A) and since u, v are radially decreasing we have the
desired result otherwise we couldn’t have the L! bound. We now let 0 < ¢ <1 be a smooth
function supported in By with¢ =1 on B 1. Putting this into (2.7) and rearranging gives

2 2 2 2
W-2) [Ty <c [ Lyl 2.8)
N N
B Bi\B|
2 2

Now let 0 < i < 1 denote smooth function with ¢ =0 in B 1 and ¥ =1 for |x| > % Multiply
—Au = Af"(u)g(v) by uyr? and integrate by parts and use Young’s inequality to arrive at

[ rvurv? <o [ prageu +a [ieur,
and hence we have

/ |Vul? <2 / f'w)gu+C u’ (2.9)

Bi\B| Bi1\B| Bi\B
2 3

Bl

and we now use the pointwise bound to see that

|Vul> < C,

B1\B;
2

where C is independant of A. Similarly we obtain the same estimate of v and combining this
with (2.8) we see that u, v are bounded in HO1 (B7) independant of A and hence u™, v* € H(} (B1).

Step 3. Let (u, v) denote a minimal solution of (G);,, on the I'; where o := K—: For 0 <
r< % define ¢ to be the following test function

poVN-1-1 ifo<t<r,
p(t) =~ vN-I-I ifr<r<1/2,

VN=I2(1 )y if 12 <t <.
Putting ¢ into (2.7) gives
r

2 2
u;(t) v () yog 2/n=i+2( ] 2 1 2
/( A * 14 $dr = Car X”VMHLz(Bl\Bl/Z) + ;HVUHU(BI\BI/z) ’

forall0 <r < % and one easily extends this to all 0 < r < 1 by taking Cy bigger if necessary.
From this, by simple calculations we get
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o =(3)| - ()

r

s/é(%wr(wh |vr(t)|> T

[ (a2 02 .
Sﬁ(/(’—Jr’—)tN“dt) </t1_th>
A 4
r/2

r/2

1
Vi

N |

1/2

JN—T42-¥ 1 o
=Cnr 2<7”W”L2<Bl\31/z>+f||vv||L2(Bl\Bl/z) -

Let 0 < r < 1. Then, there exist m € N and 1/2 < r; <1 such that r =
are radial, we have u(ry) < IIMIILOC(BI\W) < CN““"H'(B]\tT/z) and v(ry) < ||v||LOO(Bl\[T/2) <
CN”v”Hl(Bl\IT/z)'

1 1
ﬁ|u(r)|+—|v(r)|
T|”(”)_”(”|+ ! |v(r1)—v(r>|+%|u(m)|+%7|vm>|

() -(3)|+ 5 ) ()

i=1
CN CN
+ il B + ﬁ”v”Hl(Bl\le

m—1 rl
=Cn Z <25—1
i=1

Z

=1

~N/24Y/N=T42 /4 1
) <ﬁIIWIILz<BI\m> + ﬁ”vv“m(&\m)>

CN CN
—+ EHMHHI(BI\BTZ) + ﬁ”v”Hl(Bl\BTZ)

s <'"2_:1< r >N/2+«/N1+2+1>< 1 ul L L i
=+N i—1 u H'(B1\Bi2) v H'(B\\B1,2)
P 2[ \/_ \/—

Note that the sign of /N — 1 +2 — & is crucial in getting estimates. Since /N — 1 +2— ¥ =0
if and only if N = 10, this d1mens1on is the critical dimension. From the above, for any 0 < r <1
we getif 2 <N < 10,

1 1 1 1
ﬁ|u(r)| + ﬁ|v(r)| = CN(ﬁ”u”HI(BI\Bl_/z) + ﬁ”v”Hl(Bl\lT/z))’

if N =10,

1 1
\/—|u( )’ + _|U(r)‘ = CN(1 + |10gr|)(ﬁ”u”Hl(Bl\lT/2) + ﬁ”lel(Bl\[T/Z))’
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if N > 10,
1 1 N 1 1
_ _ —S+/N-T+2( 4 .
ﬁ|”(r)|+ﬁ|v(’)|chV : <ﬁ|lu||H1(Bl\Bl/2)+ﬁ"UHHl(Bl\Bl/Z))'

Passing to limits we obtain the desired estimates for u*, v*. O
3. Explicit nonlinearities

We now examine the case of polynomial nonlinearities and for this we recall the definition
t+(p) = p + +/p(p — 1) and note that 7 is increasing on [1, co0). We begin with the gradient
system.

Theorem 3.1. Let f(u) = (u + 1)?, g(v) = (v + 1) and suppose p,q > 2.

(1) Let (\*, y*) € Y. Then the associated extremal solution of (G);x ,+ is bounded provided

N 1+ 2 {te(p = 1), 14:(g — D} (3.1
— < ——— X max — 1), — . .
3 ptq—2 +p +q

(2) Let (W*,y*) € Y and define I 45 ,(t) :=p+q—1— % + %((K_q)t—kq—l —1). Let
to :=max{ty(p — 1),2:.(¢ — 1)} and suppose that 1, 4 3+ ,+(to) > 0 and I, p = 3+(to) > 0.
The map t — min{l}, 4 s+ ,+(t), I p,y+ 2+ ()} is decreasing and has a root in (9, 00), which

we denote by T. Suppose

N 14+ 2 T (3.2)
— < —T. .
2 p+qg—2

Then the associated extremal solution of (G)y+ = is bounded.

Remark 3.1. Note that the condition on 7y from the second part of Theorem 3.1 is really a
condition on how close the parameters (A*, y*) are to the “diagonal” given by A*p = y*¢. On
the diagonal one trivially sees the condition is satisfied. Some algebra shows that the condition
is satisfied provided (1*, y*) lie within the cone

*

1 1

p+aq . ot y'q ptaq . ~oFeT

1 — ——min(p, q) <5< 1 — ——min(p, q) .
2pq A*p 2pq

Theorem 3.2. Let f(u) = (u+ )P, g(v) :=(+ 1)? with p,q > 1.

Suppose
. 2 p 2 q
N < min{4 + +2 4+ +2 ,
p—1 p—1 q—1 q—1

and (\*, y*) € T. Then the associated extremal solution of (H)yx ,+ is bounded.
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Remark 3.2. Note that p > 4 + % +2 /% is decreasing and goes to 6 as p — oo. Hence

for N < 6 we see all extremal solutions are bounded for any p, g. As in the case of (G);,, one

can obtain better results provided they restrict the range of the parameters (X, y) to a certain cone

with axis given by % = %, we omit the details.

We begin with some pointwise comparison results.

Lemma 3.1. Let f(u) = (u+ 1)? and g(v) = (v + 1)? where p,q > 1.

(1) Suppose that (u, v) is a smooth solution of (G)y,, where A\p > yq. Then v <u < ;‘—Zv.

(2) Suppose (u,v) is the smooth minimal solution of (H);, ,, where g\ > yp. Then pyu > giv.

Proof. (1) Subtracting two equations of (G), , we get

—Aw—v) =1+ A+ ) (p(l +v) — yqg(1 +u))
>yq(1+w)? 1+ (v —u)

multiply both sides of the above with (1 — v)_ to get f [IV(u —v)_ |2 < 0 and therefore v < u.
Now, multiply the second equation of (G)y,, with ))/‘—Z and again subtract two equations to get

—A(u - j:—pv> =1+’ 'TA+v)? ' v—u)<0
q

From maximum principle we get u < ));—ZU.

(2) Set K (x) := (u + 1)?~ (v + )9~ First note that

Lu—v):=—A@—v)—ypKx)u—v)=Kx)((Ag — yp)u+1rg —yp),

and note that the right hand side is nonnegative. If we can show that L satisfies the maximum
principle then we’d have u — v > 0.

We now assume that (#, v) is the smooth minimal solution of (), , and additional we as-
sume that (A, y) e U\T . By Theorem A there is some 1 > 0 and ¢ > 0 such that

—AY —qpy K(x)¢ = ny. (3-3)

Since (A, y) ¢ T one can infact show that n > 0. Hence the linear operator on the left satisfies
the maximum principle. Since g > 1 we see that L must also satisfy the maximum principle and
hence u > v. In the case where (X, y) €/ N we pass to the limit along the fixed parameter ray
through (0, 0) and (A, y) and use the above result. Hence we have shown that u > v. Now set
t:= % and then note that

—Aw—tv)=K@)rg(w+1)—(+1)=0

and hence u > rv. O
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Before we prove Theorem 3.1 we need a general energy estimate.

Lemma 3.2. Let f(u) = (u + 1)? and g(v) = (v 4+ 1)4. Suppose that (u,v) is a semi-stable
solution of (G),.,, withs,t € R\{%}. Then

52

25 — 1

2
p(p—l— t )/(1+u)2’+”‘2(1+v)"+q(q—1—

2s+q—2 p
— )/(1+v> (14 1)

+2pq /(1 +u) P A+ 0y p(p - 1) /(1 +u)P 721+ )
+4q(q — 1)/(1 +u)? (14 v)772

52
+p

2
! 1f(1+u)P*1(1+v)'1 +q

-1
T 2S_I/(l—i-u)l’(l-}-v)q

<2p(p-— 1)/(1+u)f+1’*2(1+v)‘1 +2pq/(1+u)f+l’*‘(1+v)ff*‘
+2q(q — 1)/(1+u)P(1+v)S+‘I*2+2pq/(1+u)P*1(1+v)S+q*‘

Proof. This is an application of Lemma 1.1. Take ¢ := (1 + u)’ — 1 and ¥ := (1 +v)* — 1
in (1.2), then we have

P =1 [ w209+ — 1)
alg =) [+ 020w (@40 = 1))
+2pq/(1 +w)?P A+ (A +w) = 1) (A +v) 1)
< ?/|Vu|2(1—l—u)z’_z—i-$/|Vv|2(1+v)zs_2 (3.4)

Multiply the first and the second equation of (G);, with (1 + w1 —Tand 1+ v)= 1 -1,
respectively, to get

Qt — 1)/|Vu|2(1+u)2’_2=Ap/(1+u)2’+p_2(1+v)q —xp/(1+u)l’—1(1+v)q

and

(2s—1)/|Vu|2(1+v)23‘*2=yq/(1+v)2s+‘f*2(1+u)l’—yq/(1+v)q*1(1+u)P.

Using these identities and (3.4) finishes the proof. O
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Proof of Theorem 3.1. (1) Let (A*, y*) € 7" and let (4, v) denote a smooth minimal solution on

the ray I, where o := £

Letl <t <ty(p—1)and 1 <s <t4(g — 1) in Lemma 3.2 to arrive at an inequality of the
form

/(u + DX 204+ 1) + /(u + P+ )P 2 <.
First note that
f |Vul* < pﬁ/(u + P+ 17 <Cyy,

provided p <2ty (p — 1) + p — 2 but this holds since p > 1 and by passing to the limit we see
that u* € HJ (£2). We similarly show that v* € HJ (£2).

Without loss of generality assume that p > g and hence t1 (¢ — 1) <ty(p — 1) and so we
have

/(u+ 1)21+[7+£]—2 S Cta

forall 1 <t <ty (p — 1). We now re-write the equation as

—Au* P
= c(x)u™ + p(v* + 1) ,
where
*+ -1 -
Ofc(x):p((u +1) )(v*+1)q§C(u*+l)p+q 2.

u*

We now apply regularity theory to see that u* is bounded provided c(x), (v* + 1)? € LT for
some T > % But this holds provided

N
(p+q—2)3<2t+(p—1)+p+q—2,

which is the desired result. To see v* is bounded we now use the pointwise comparison between
u and v and pass to the limit along the ray I.

(2) In (1) we only used the first two integrals from Lemma 3.2 to obtain estimates. In this part
we also use the third integral. Let (A, y*) € U and let (u, v) denote the a minimal solution on
the ray Iy, where o := K—j The exact proof depends on the sign of A*p — y*q and we suppose

that A*p > y*q. Lettg <t < T and s0 I g s+ +(t), Iy p i y+(t) > Oand p— 1 — 22 g — 1 —

% < 0. We now set s = ¢ and examine the estimate from Lemma 3.2. Note the coefficients
in front of the first two integrals are negative and the coefficient in front of the third integral is
positive. The other integrals on the left are lower order terms which we drop. Now note that u > v
and so we can replace, since the coefficients are negative, the u’s in the first two integrals from
the estimate in Lemma 3.2 with v’s. In the third integral we use the fact that %(u + 1 <v+1.
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Writing this all out and then again using the fact that we can compare u and v, one can see that
the following is a lower bound for the left-hand side of the integral estimate given by Lemma 3.2,

12 12 Yq -l 2t+p+q—2
—1- —1- 2 — 1 -
(olr=r-z=) valomrmg=) vama(5) ) faen

2 t+q—1
! 2pq ((v4 / 2+ ptq—2
—1-= S Y -1 1 p+q—2
(P q)(p 4 2t —1 p+q((kp ( u)

Combining everything gives an estimate of the form

Ipyq,)»*,y*(t)/(l +u)2t+[7+Q*2 S CP,C],)»*,)/* /(1 + u)l+p+q72.

Since I 4,a+,y+(t) > 0 we have an estimate. We now proceed exactly as in the first part. We
rewrite the equation in the alternate form and we then require that

N
(p+q—2)3 <2t+p+q-2,
for some 79 < t where I, 4+ () >0. O

Lemma 3.3. Let (A*, y*) € T and let (u, v) denote a minimal solution of (H);. , on the ray I';
where 0 = K—: Then for 1 <t <ty (p) and 1 <t <1t1(q) we have

f(u + DXl 4t <, (3.5)
/(u+ e+ nrrtl <, (3.6)

where C is uniform on the ray I,. These two inequalities and an application of the Cauchy—
Schwarz inequality gives

/(u + Pl it <

Proof. Set ¢ := (u+1)" — 1 and ¥ := (v + 1) — 1 and put these into the stability inequality
given by (1.3) to arrive at an inequality of the form

t2
NP~ 5

+2y/p(p—Dg(g—1) / @+ P 4 1yt

2

2t —1

= C(p,q)/(u + P 4 e +C(p,q)/(u + 1P+ et
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Note that for the given choices of ¢, T the coefficients on the left are positive. One now easily
sees that the terms on the right are lower order terms and hence we obtain the desired estimates
after some standard calculations. O

Proof of Theorem 3.2. Without loss of generality we suppose that A*¢q > y*p. Let (u, v) denote

a minimal solution on the ray I';, where o := K—* Note that we have u > ;‘*‘; v > v. We first show

that u™* € Hol. First note that

f [Vul® = rg /(u + DPu+ 177,
along the ray I, and the right hand side is uniformly bounded provided

p+1l<p—1+4+2t(p),

which is the case, for any p > 1 and dimension N, after considering the estimates from
Lemma 3.3. We now rewrite the equation for u* as

* p_
—Au* = Aq((u_'_ul%) (v* + l)q_llf'< + rg (v + l)q_l,

and to show u* is bounded it is sufficient to show that (u* + 1)?~!(v* + 1)4~! € L” for some
r> % Using Lemma 3.3 one sees this is the case provided

N N
g(p—1)<p—l+t+(p), z(q—1)<q—1+t+(q).

So we have shown that u™* is bounded and we now use the fact that u* > v* to see the same
forv*. O
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