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Abstract

We examine the two elliptic systems given by

(G)λ,γ − �u = λf ′(u)g(v), −�v = γf (u)g′(v) in Ω,

and

(H)λ,γ − �u = λf (u)g′(v), −�v = γf ′(u)g(v) in Ω,

with zero Dirichlet boundary conditions and where λ, γ are positive parameters. We show that for general 
nonlinearities f and g the extremal solutions associated with (G)λ,γ are bounded, provided Ω is a convex 
domain in RN where N ≤ 3. In the case of a radial domain, we show the extremal solutions are bounded 
provided N < 10. The extremal solutions associated with (H)λ,γ are bounded in the case where f is a 
general nonlinearity, g(v) = (v + 1)q for 1 < q < ∞ and when Ω is a bounded convex domain in RN for 
N ≤ 3. Certain regularity results are also obtained in higher dimensions for (G)λ,γ and (H)λ,γ for the case 
of explicit nonlinearities of the form f (u) = (u + 1)p and g(v) = (v + 1)q .
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1. Introduction

We examine the following systems:

(G)λ,γ

{−�u = λf ′(u)g(v) Ω

−�v = γf (u)g′(v) Ω,

u = v = 0 ∂Ω

and

(H)λ,γ

{−�u = λf (u)g′(v) Ω

−�v = γf ′(u)g(v) Ω,

u = v = 0 ∂Ω

where Ω is a bounded domain in RN and λ, γ > 0 are positive parameters. The nonlinearities f
and g will satisfy various properties but will always at least satisfy

(R) f is smooth, increasing and convex with f (0) = 1 and f superlinear at ∞.

We begin by recalling the scalar analog of the above systems. Given a nonlinearity f which 
satisfies (R), the following equation

(Q)λ

{−�u = λf (u) Ω

u = 0 ∂Ω

is now quite well understood whenever Ω is a bounded smooth domain in RN . See, for instance, 
[1–5,8,10,12,15]. We now list the properties one comes to expect when studying (Q)λ. It is well 
known that there exists a critical parameter λ∗ ∈ (0, ∞), called the extremal parameter, such that 
for all 0 < λ < λ∗ there exists a smooth, minimal solution uλ of (Q)λ. Here the minimal solution 
means in the pointwise sense. In addition for each x ∈ Ω the map λ �→ uλ(x) is increasing 
in (0, λ∗). This allows one to define the pointwise limit u∗(x) := limλ↗λ∗ uλ(x) which can be 
shown to be a weak solution, in a suitably defined sense, of (Q)λ∗ . For this reason u∗ is called 
the extremal solution. It is also known that for λ > λ∗ there are no weak solutions of (Q)λ. Also 
one can show the minimal solution uλ is a semi-stable solution of (Q)λ in the sense that

∫
Ω

λf ′(uλ)ψ
2 ≤

∫
Ω

|∇ψ |2, ∀ψ ∈ H 1
0 (Ω).

A question that has attracted a lot of attention is the regularity of the extremal solution. It is 
known that the extremal solution can be a classical solution or it can be a singular weak solution. 
We now list some results in this direction:

• ([12]) u∗ is bounded if f satisfies (R) and N ≤ 3.
• ([3]) u∗ is bounded if f satisfies (R) (can drop the convexity assumption) and Ω a convex 

domain in R4.
• ([4]) u∗ is bounded if Ω is a radial domain in RN with N < 10 and f satisfies (R) (can drop 

the convexity assumption).
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It is precisely these type of results which we are interested in extending to the case of systems. 
For various results on fourth order analogs of (Q)λ see [7]. Before we can discuss the regularity 
of the extremal solutions associated with (G)λ,γ and (H)λ,γ we need to introduce some notation.

Under various conditions on f and g the above systems fit into the general framework of 
developed in [11], who examined a generalization of

(P )λ,γ

{−�u = λF(u, v) Ω

−�v = γG(u, v) Ω,

u = v = 0 ∂Ω.

The following results are all taken from [11]. Let Q = {(λ, γ ) : λ, γ > 0} and we define

U := {
(λ, γ ) ∈ Q : there exists a smooth solution (u, v) of (P )λ,γ

}
.

Firstly we assume that F(0, 0), G(0, 0) > 0. A simple argument shows that if F is superlinear 
at u = ∞, uniformly in v, then the set of λ in U is bounded. Similarly we assume that G is 
superlinear at v = ∞, uniformly in u and hence we get U is bounded. We also assume that F , 
G are increasing in each variable. This allows the use of a sub/supersolution approach and one 
easily sees that if (λ, γ ) ∈ U then so is (0, λ] × (0, γ ]. One also sees that U is nonempty.

We now define Υ := ∂U ∩ Q, which plays the role of the extremal parameter λ∗. Various 
properties of Υ are known, see [11]. Given (λ∗, γ ∗) ∈ Υ set σ := γ ∗

λ∗ ∈ (0, ∞) and define

Γσ :=
{
(λ,λσ) : λ∗

2
< λ < λ∗

}
.

We let (uλ, vλ) denote the minimal solution (P )λ,σλ for λ∗
2 < λ < λ∗. One easily sees that for 

each x ∈ Ω that uλ(x), vλ(x) are increasing in λ and hence we define

u∗(x) := lim
λ↗λ∗ uλ(x), v∗(x) := lim

λ↗λ∗ vλ(x),

and we call (u∗, v∗) the extremal solution associated with (λ∗, γ ∗) ∈ Υ . Under some very minor 
growth assumptions on F and G one can show that (u∗, v∗) is a weak solution of (P )λ∗,γ ∗ .

We now come to the issue of stability.

Theorem A. (See [11].) Let (λ, γ ) ∈ U and let (u, v) denote the minimal solution of (P )λ,γ . 
Then (u, v) is semi-stable in the sense that there is some smooth 0 < ζ , χ ∈ H 1

0 (Ω) and 0 ≤ η

such that

−�ζ = λFu(u, v)ζ + λFv(u, v)χ + ηζ, −�χ = γGu(u, v)ζ + γGv(u, v)χ + ηχ, Ω.

(1.1)

In this paper we prove that the extremal solution of (G)λ∗,γ ∗ with general nonlinearities, 
either on a general domain and lower dimensions or on a radial domain and higher dimensions 
are regular. Moreover, for explicit nonlinearities we prove regularity on a general domain in 
higher dimensions.

The following stability inequalities play a key role in this paper and we shall refer to them 
many times through proofs. We mention that in [9] the De Giorgi type results and Liouville 
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theorems have been proved for a much more general gradient system and they obtained a stability 
inequality which reduces to (1.2) in the particular case we are examining. Note that some of our 
results will hold for a general gradient system that is examined in [9].

Lemma 1.1. For any φ, ψ ∈ H 1
0 (Ω) the following inequalities hold.

(1) Let (u, v) denote a semi-stable solution of (G)λ,γ in the sense of (1.1). Then∫
f ′′(u)g(v)φ2 +

∫
f (u)g′′(v)ψ2 + 2

∫
f ′(u)g′(v)φψ

≤ 1

λ

∫
|∇φ|2 + 1

γ

∫
|∇ψ |2. (1.2)

(2) Let (u, v) denote a semi-stable solution of (H)λ,γ in the sense of (1.1). Then∫
f ′(u)g′(v)

(
φ2 + ψ2) + 2

∫ √
ff ′′gg′′φψ ≤ 1

λ

∫
|∇φ|2 + 1

γ

∫
|∇ψ |2. (1.3)

Proof. We will prove inequalities (1.2) and (1.3) for φ, ψ ∈ C∞
c (Ω) and then a standard density 

argument extends the inequalities to φ, ψ ∈ H 1
0 (Ω).

(1) By Theorem A there is some 0 < ζ, χ such that

−�ζ ≥ λf ′′(u)g(v)ζ + λf ′(u)g′(v)χ and −�χ ≥ γf ′(u)g′(v)ζ + γf (u)g′′(v)χ in Ω.

Consider test functions φ, ψ ∈ C∞
c (Ω) and multiply both sides of the above inequalities with φ

2

ζ

and ψ
2

χ
to obtain

−
∫

|∇ζ |2 φ2

ζ 2
+ 2

∫
∇φ · ∇ζ

φ

ζ
≥

∫
λf ′(u)g′(v)φ2 χ

ζ
+

∫
λf (u)g′′(v)φ2,

−
∫

|∇χ |2 ψ2

χ2
+ 2

∫
∇ψ · ∇χ

ψ

χ
≥

∫
γf (u)g′′(v)ψ2 +

∫
γf ′(u)g′(v)ψ2 ζ

χ
,

note there are no issues regarding the functions φ2

ζ
, ψ2

χ
after one considers the fact that ζ and χ

are smooth and positive on the support of φ and ψ . Apply Young’s inequality for the left hand 
side of each inequality and add them to get

λ

∫
f ′′(u)g(v)φ2 + γ

∫
f (u)g′′(v)ψ2 +

∫
f ′(u)g′(v)

(
λφ2 χ

ζ
+ γψ2 ζ

χ

)

≤
∫

|∇φ|2 +
∫

|∇ψ |2.

Simple calculations show that the third term is an upper bound for

2
√

λγ

∫
f ′(u)g′(v)φψ.

Then, replacing φ with φ√ and ψ with ψ√ gives the desired result.

λ γ
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(2) Proof is quite similar to (1). By Theorem A there is some 0 < ζ, χ such that

−�ζ

ζ
≥ λf ′(u)g′(v) + λf (u)g′′(v)

χ

ζ
and − �χ

χ
≥ γf ′′(u)g(v)

ζ

χ
+ γf ′(u)g′(v) in Ω,

and we now multiply the first equation by φ2 and the second by ψ2 and add the equations and 
integrate over Ω . In addition we use the fact that∫

Ω

−�E

E
φ2 ≤

∫
|∇φ|2,

for any E > 0 and φ ∈ H 1
0 (Ω). Doing this one obtains

∫
Ω

f ′(u)g′(v)
(
λφ2 + γψ2) +

∫
Ω

λf (u)g′′(v)φ2 χ

ζ
+ γf ′′(u)g(v)ψ2 ζ

χ
≤

∫
Ω

|∇φ|2 + |∇ψ |2.

Again some simple algebra shows that

2
√

λγ

∫
Ω

√
f (u)f ′′(u)g(v)g′′(v)φψ,

is a lower bound for the second integral. Using this lower bound and replacing φ with φ√
λ

and ψ

with ψ√
γ

finishes the proof. �
In Section 2, we explore the regularity of extremal solutions for systems (G)λ,γ and (H)λ,γ

with general nonlinearities and, in then Section 3 we consider explicit nonlinearities. We finish 
the current section by this point that in [6] the system

(E)λ,γ

{−�u = λev Ω

−�v = γ eu Ω,

u = v = 0 ∂Ω,

was examined. It was shown that if Ω is a bounded domain in RN where N ≤ 9, then the extremal 
solution (u∗, v∗) associated with (λ∗, γ ∗) ∈ Υ is bounded if

N − 2

8
<

γ ∗

λ∗ <
8

N − 2
.

Note that as one gets closer to the diagonal parameter range γ = λ that better regularity results are 
obtained. At the diagonal the system can be shown to reduce to the scalar equation −�u = λeu. 
This phenomena will also be present in Section 3 where we consider explicit nonlinearities.

2. General nonlinearities

We begin by examining (G)λ,γ in the case of general nonlinearities and we show the extremal 
solutions are bounded in low dimensions and our methods of proof are close to [12].
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Theorem 2.1. Suppose that Ω is a bounded smooth convex domain in RN where N ≤ 3 and 
suppose f and g both satisfy condition (R). We also assume that f ′(0) > 0 and g′(0) > 0. In 
addition we assume that f ′, g′ are convex and there is some ξ > 0 such that

lim inf
u→∞ f ′′(u) = ∞, lim inf

v→∞ g′′(v) = ∞. (2.1)

Let (λ∗, γ ∗) ∈ Υ . Then the associated extremal solution of (G)λ∗,γ ∗ is bounded.

For radial domains we obtain similar results but in higher dimensions and our methods of 
proof follow very closely to [4] and [14].

Theorem 2.2. Let Ω = B1, N ≥ 3, and f and g both satisfy condition (R) and in addition we 
assume that there is some ξ > 0 such that

lim inf
u→∞ f ′′(u) = ∞, lim inf

v→∞ g′′(v) = ∞.

Let (λ∗, γ ∗) ∈ Υ and let (u∗, v∗) denote the extremal solution associated with (G)λ∗,γ ∗ . Then

(1) if N < 10, then u∗, v∗ ∈ L∞(B1),
(2) if N = 10, then u∗(r), v∗(r) ≤ Cλ∗,γ ∗(1 + | log r|) for r ∈ (0, 1],
(3) if N > 10, then u∗(r), v∗(r) ≤ Cλ∗,γ ∗,N r− N

2 +√
N−1+2 for r ∈ (0, 1].

We are unable to prove the analogous version for the system (H)λ,γ and hence we restrict our 
attention to the special case.

Theorem 2.3. Suppose Ω a bounded smooth convex domain in R3 and 1 < q < ∞. Assume 
f satisfies (R) and we also assume that f ′′ ≥ C > 0. Let (λ∗, γ ∗) ∈ Υ . Then the associated 
extremal solution of (H)λ∗,γ ∗ for g(v) = (1 + v)q is bounded.

We fix the notation t+(q) := q + √
q(q − 1) which will play an important role in the proof of 

the above theorem and theorems to follow. The following lemma is used to prove Theorem 2.1
where a convex domain is assumed but we prove the lemma for general domains.

Lemma 2.1. Suppose Ω is a bounded domain in RN and f and g satisfy the conditions from 
Theorem 2.1 and define a := f ′(0) > 0, b := g′(0) > 0. Let (λ∗, γ ∗) ∈ Υ and let (u∗, v∗) denote 
the extremal solution associated with (G)λ∗,γ ∗ . Then there is some C < ∞ such that

(i)

∫
f ′(u∗)g′(v∗)(f ′(u∗) − a

)(
g′(v∗) − b

) ≤ C,

(ii)
∫ (

f ′(u∗) − a
)
f ′′(u∗)g(

v∗) ≤ C, (iii)
∫ (

g′(v∗) − b
)
g′′(v∗)f (

u∗) ≤ C.

Remark 2.1. Let fi , gi denote smooth increasing nonlinearities with fi(0), gi(0) > 0 and we 
also assume

lim inf
f1(u) = lim inf

g2(v) = ∞. (2.2)

u→∞ u v→∞ v
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Let (um, vm) denote a sequence of smooth solutions of (P )λm,σλm , where 0 < σ < ∞ is fixed and 
λm is restricted to a compact subset of (0, ∞) and F(u, v) = f1(u)g1(v), G(u, v) = f2(u)g2(v). 
Then we have the estimate

∫
f1(um)g1(vm)δ +

∫
f2(um)g2(vm)δ ≤ C,

where δ(x) := dist(x, ∂Ω). Applying regularity theory shows that um, vm are bounded in L1(Ω).
On occasion we will restrict our attention to smooth convex domains where many of the proofs 

are much more compact. One can use the moving plane to obtain uniform estimates for arbitrary 
positive solutions of our system in a convex domain; see [13]. One first uses the results from [13]
to obtain estimates valid near ∂Ω . Suppose (um, vm) are as above. For ε > 0 small define Ωε :=
{x ∈ Ω : δ(x) < ε}. Using results from [13] shows there is some small ε > 0 (depending only 
on Ω) and 0 < C such that supΩε

um +supΩε
vm ≤ C‖um‖L1(Ω) +C‖vm‖L1(Ω) and since um, vm

are bounded in L1(Ω) we see that um and vm are bounded in Ωε . Using the maximum principle 
there is some C1 > 0 such that um, vm ≥ C1 in the compliment of Ωε.

Proof. All integrals are over Ω unless otherwise stated. Our approach will be to obtain uniform 
estimates for any minimal solution (u, v) of (G)λ,γ on the ray Γσ and then one sends λ ↗ λ∗ to 
obtain the same estimate for (u∗, v∗). Let (u, v) denote a smooth minimal solution of (G)λ,γ on 
the ray Γσ and put φ := f ′(u) − a and ψ := g′(v) − b into (1.2) to obtain

∫
f ′′(u)g(v)

(
f ′(u) − a

)2 +
∫

f (u)g′′(v)
(
g′(v) − b

)2

+ 2
∫

f ′(u)g′(v)
(
f ′(u) − a

)(
g′(v) − b

)
≤ 1

λ

∫
∇(

f ′(u) − a
)
f ′′(u) · ∇u + 1

γ

∫
∇(

g′(v) − b
)
g′′(v) · ∇v. (2.3)

Integrating the right-side of (2.3) by parts shows that

∫
∇(

f ′(u) − a
)
f ′′(u) · ∇u = −

∫ (
f ′(u) − a

)
f ′′′(u)|∇u|2 +

∫ (
f ′(u) − a

)
f ′′(u)(−�u).

∫
∇(

g′(v) − b
)
g′′(v) · ∇v = −

∫ (
g′(v) − b

)
g′′′(v)|∇v|2 +

∫ (
g′(v) − b

)
g′′(v)(−�v).

In addition the other term in (2.3) involving v is of the similar form. We use the equation (G)λ,γ

to replace −�u and −�v in the last equalities and simplify to get

1

λ

∫ (
f ′(u) − a

)
f ′′′(u)|∇u|2 + 1

γ

∫ (
g′(v) − b

)
g′′′(v)|∇v|2

+ 2
∫

f ′(u)g′(v)
(
f ′(u) − a

)(
g′(v) − b

)
≤ a

∫
f ′′(u)

(
f ′(u) − a

)
g(v) + b

∫
g′′(v)

(
g′(v) − b

)
f (u).
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We now define h1(u) := ∫ u

0 (f ′(t) − a)f ′′′(t)dt and h2(v) := ∫ v

0 (g′(t) − b)g′′′(t)dt . Subbing 
this into the previous inequality and integrating by parts and using (G)λ,γ again we arrive at

∫
h1(u)f ′(u)g(v) +

∫
h2(v)f (u)g′(v) + 2

∫
f ′(u)g′(v)

(
f ′(u) − a

)(
g′(v) − b

)
≤ a

∫
f ′′(u)

(
f ′(u) − a

)
g(v) + b

∫
g′′(v)

(
g′(v) − b

)
f (u). (2.4)

Now suppose u > α > 0. Then we have

h1(u) ≥
u∫

α

(
f ′(t) − a

)
f ′′′(t)dt ≥ (

f ′(α) − a
)(

f ′′(u) − f ′′(α)
)
,

and so using the condition on f ′′(u) we see that

lim inf
u→∞

h1(u)

f ′′(u)
≥ f ′(α) − a,

for any α > 0. But since f is convex and superlinear at infinity we see that limu→∞ h1(u)
f ′′(u)

= ∞. 

Similarly limv→∞ h2(v)
g′′(v)

= ∞.

We now estimate the integral 
∫

f ′′(u)g(v)(f ′(u) − a). There is some T > 1 large such that 
for all u ≥ T we have h1(u) ≥ 100(a + 1)f ′′(u) for all u ≥ T . Then we have

∫
f ′′(u)g(v)

(
f ′(u) − a

)
=

∫
u≥T

+
∫

u<T

≤ 1

100(a + 1)

∫
h1(u)g(v)

(
f ′(u) − a

) +
∫

u<T

∫
f ′′(u)g(v)

(
f ′(u) − a

)
.

We now estimate this last integral. Let T be as above and fixed and we let k ≥ 1 denote a natural 
number.

∫
u<T

f ′′(u)g(v)
(
f ′(u)−a

) =
∫

u<T,v<kT

+
∫

u<T,v≥kT

= C(k,T ) +
∫

u<T,v≥kT

f ′′(u)g(v)
(
f ′(u)−a

)

and we now estimate this last integral. One easily sees that this last integral is bounded above by

sup
u<T

f ′′(u)

f ′(u)
sup

v>kT

g(v)

(g′(v) − b)g′(v)

∫ (
f ′(u) − a

)(
g′(v) − b

)
f ′(u)g′(v).

Combining this all together we see that for all sufficiently large T and all 1 ≤ k there is some 
constant C(k, T ) such that
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∫
f ′′(u)g(v)

(
f ′(u) − a

) ≤ 1

100(a + 1)

∫
h1(u)f ′(u)g(v) + C(k,T )

+ sup
u<T

f ′′(u)

f ′(u)
sup

v>kT

g(v)

(g′(v) − b)g′(v)

×
∫ (

f ′(u) − a
)(

g′(v) − b
)
f ′(u)g′(v).

Using the same argument one can show for all sufficiently large T and for all 1 ≤ k there is some 
C(k, T ) such that∫

g′′(v)f (u)
(
g′(v) − b

) ≤ 1

100(b + 1)

∫
h2(v)g′(v)f (u) + C(k,T )

+ sup
v<T

g′′(v)

g′(v)
sup

u>kT

f (u)

(f ′(u) − a)f ′(u)

×
∫ (

f ′(u) − a
)(

g′(v) − b
)
f ′(u)g′(v).

Since f ′′, g′′ → ∞ we see that

lim
k→∞ sup

u>kT

f (u)

(f ′(u) − a)f ′(u)
= 0,

and similarly for the other term. Hence by taking k sufficiently large we can substitute everything 
back into (2.4) and see that all the integrals in (2.4) are bounded independent of λ. �
Proof of Theorem 2.1. We assume that N = 3 and Ω is convex domain in R3. The case of 
N = 1, 2 is easier and we omit their proofs. We suppose that (λ∗, γ ∗) ∈ Υ and (u∗, v∗) is the 
associated extremal solution of (G)λ∗,γ ∗ . Set σ = γ ∗

λ∗ . Using Remark 2.1 along with Lemma 2.1
we see that f ′(u∗)g′(v∗) ∈ L2(Ω). Note that this and the convexity of g show that

∫
Ω

f ′(u∗)2g(v∗)2

(v∗ + 1)2
≤ C.

From Lemma 2.1 and Remark 2.1 we have −�u∗, −�v∗ ∈ L1 and hence we have u∗, v∗ ∈ L3− , 
i.e. Lp for any p < 3. We now use the domain decomposition method as in [12]. Set

Ω1 :=
{
x : f ′(u∗)2g(v∗)2

(v∗ + 1)2
≥ f ′(u∗)2−α

g
(
v∗)2−α

}
,

Ω2 := Ω\Ω1 = {
x : f ′(u∗)g(

v∗) ≤ (
v∗ + 1

) 2
α
}
,

where 0 < α is to be picked later. First note that

∫ (
f ′(u∗)g(

v∗))2−α ≤
∫

f ′(u∗)2g(v∗)2

(v∗ + 1)2
≤ C.
Ω1 Ω
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Similarly we have

∫
Ω2

(
f ′(u∗)g(

v∗))p ≤
∫
Ω

(
v∗ + 1

) 2p
α .

Taking α = 4
5 and using the L3− bound on v shows that f ′(u∗)g(v∗) ∈ L

6
5 −(Ω). By a symmetry 

argument we also have f (u∗)g′(v∗) ∈ L
6
5 −(Ω).

By elliptic regularity we have u∗, v∗ ∈ W
2, 6

5 − and this is contained in L6−(Ω) after con-
sidering the Sobolev imbedding theorem. Using these estimates and again using the domain 

decomposition Ω1 and Ω2 but taking α = 1
2 gives that f ′(u∗)g(v∗) ∈ L

3
2 −(Ω) and by symmetry 

we have the same for f (u∗)g′(v∗). Elliptic regularity now shows that u∗, v∗ ∈ W
2, 3

2 − and this is 
contained in Lp for any p < ∞. One last iteration with α = 1

4 shows that f ′(u∗)g(v∗) ∈ L
7
4 (Ω)

and after considering elliptic regularity and the Sobolev imbedding we have u∗ is bounded. By 
symmetry we see v∗ is also bounded. �
Proof of Theorem 2.3. Let (λ∗, γ ∗) ∈ Υ and let (u∗, v∗) denote the extremal solution associated 
with (H)λ∗,γ ∗ . We let (u, v) denote a minimal solution on the ray Γσ where σ = γ ∗

λ∗ . Without 
loss of generality we can assume λ = σ = 1 to simplify the calculations. Note the assumption on 
f ′′ shows there is some ξ > 0 such that f (u)

u1+ξ → ∞ as u → ∞. Using this along with the fact that 
q > 1 and Remark 2.1 shows that �u∗, �v∗ ∈ L1(Ω). Set α := f (u) − 1 and β := (v + 1)t − 1
where 1 < t < t+(q) := q + √

q(q − 1) into the stability inequality to obtain

(
q − t2

2t − 1

)∫
f ′(u)(v + 1)2t+q−1 +

∫ (
f (u) − 1

)
f ′′(u)|∇u|2

+ 2
√

q(q − 1)

∫ √
f (u)f ′′(u)(v + 1)q−1(f (u) − 1

)(
(v + 1)t − 1

)

≤ 2q

∫
f (u)f ′(u)(v + 1)q−1 + 2q

∫
f ′(u)(v + 1)q+t−1

We label these integrals as Ii for 1 ≤ i ≤ 5 from left to right. The condition on t ensures the 
coefficient in front I1 is positive. We can rewrite

I2 =
∫

qh1(u)f (u)(v + 1)q−1, where h1(u) =
u∫

0

(
f (τ) − 1

)
f ′′(τ )dτ.

One easily sees that h1(u)
f ′(u)

→ ∞ as u → ∞. Let T be sufficiently large such that h1(u) ≥ 10f ′(u)

for all u ≥ T . Then one easily sees that

∫
f (u)f ′(u)(v + 1)q−1 ≤ 1

∫
h1(u)f (u)(v + 1)q−1 + f ′(T )

∫
f (u)(v + 1)q−1.
10
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We also have

∫
f ′(u)(v + 1)q+t−1 ≤ T q+t−1

∫
f ′(u) + 1

T t

∫
f ′(u)(v + 1)q+2t−1,

and so after combining the estimates we have

(
q − t2

2t − 1
− 2q

T t

)∫
f ′(u)(v + 1)q+2t−1 + 4q

5

∫
h1(u)f (u)(v + 1)q−1

+ 2
√

q(q − 1)

∫ √
f (u)f ′′(u)(v + 1)q−1(f (u) − 1

)(
(v + 1)t − 1

)
≤ 2qf ′(T )

∫
f (u)(v + 1)q−1 + 2qT q+t−1

∫
f ′(u).

Passing to the limit shows this inequality holds with (u∗, v∗) in place of (u, v). But these last two 
integrals are finite and hence we have an estimate provided the first coefficient is positive, which 
is indeed the case provided we take T bigger if necessary. Hence each of the following integrals 
is finite

(i)

∫
f ′(u∗)(v∗ + 1

)q+2t−1
, (ii)

∫
f ′(u∗)f (

u∗)(v∗ + 1
)q−1

,

(iii)
∫

f
(
u∗) 3

2
(
v∗ + 1

)q+t−1
,

for all 1 < t < t+(q).
Now note that −�(f (u)) = −f ′′(u)|∇u|2 + λqf ′(u)f (u)(v + 1)q−1 and since f is convex 

and since f ′(u)f (u)(v + 1)q−1 is uniformly bounded in L1(Ω) along the ray Γσ shows that 

f (u) is uniformly bounded in L
N

N−2 − = L3− ; and hence f (u∗) ∈ L3− .
We now use (i) and (iii) to show that u∗ is bounded. To do so, set 0 < ε < 3/2 define

τ > max

{
3

2ε
,

3

3/2 − ε

}
> 1, α := 3(τ − 1)

2τ
> 0 and p = 3

2
+ ε.

From the definition of α, we have τ ′α = 3
2 , where τ ′ and τ are conjugates meaning that 1

τ
+

1
τ ′ = 1. It is straightforward to see that (p − α)τ < 3 since τ > 3

2ε
, and also pτ ′ < 3 since 

τ > 3
3/2−ε

. Elementary calculations show that the function L(q) := 1 + t+(q)
q−1 is decreasing in 

q > 1 and L(q) > 3 for q > 1. As a result, pτ ′ < L(q) = 1 + t+(q)
q−1 . Therefore, (q − 1)pτ ′ <

q + t+(q) − 1. From the Hölder’s inequality we have

∫
f

(
u∗)p(

v∗ + 1
)(q−1)p =

∫
f

(
u∗)p−α

f
(
u∗)α(

v∗ + 1
)(q−1)p

≤
(∫

f
(
u∗)(p−α)τ

) 1
τ
(∫

f
(
u∗) 3

2
(
v∗ + 1

)τ ′p(q−1)
) 1

τ ′
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but the right hand side is finite and hence by elliptic regularity we have u∗ is bounded. We 
now show that v∗ is bounded. First note that we have 

∫
(v∗ + 1)2t+q−1 < ∞ for any 1 < t <

t+(q) and hence one has 
∫
(v∗ + 1)q+1 < ∞. Since u∗ is bounded this shows that v∗ ∈ H 1

0 (Ω). 
Now to complete the proof of v∗ being bounded it is sufficient to show (since u∗ is bounded) 
that (v∗ + 1) ∈ L(q−1)p(Ω) for some p > 3

2 but this easily follows after considering the above 
estimate. �
Proof of Theorem 2.2. Step 1. Let (u, v) denote a smooth minimal solution of (G)λ,γ on the 
ray Γσ where σ := γ ∗

λ∗ . Then taking a derivative of (G)λ,γ with respect to r gives

{−�ur + N−1
r2 ur = λf ′′(u)g(v)ur + λf ′(u)g′(v)vr for 0 < r < 1,

−�vr + N−1
r2 vr = γf ′(u)g′(v)ur + γf (u)g′′(v)vr for 0 < r < 1.

(2.5)

Multiply the first and the second equations of (2.5) with urφ
2 and vrφ

2 where φ ∈ C0,1(B1) ∩
H 1

0 (B1) gives

∫
|∇ur |2φ2 + 1

2
∇u2

r · ∇φ2 + N − 1

r2
u2

r φ
2 =

∫
λf ′′(u)g(v)u2

r φ
2 + λf ′(u)g′(v)vrurφ

2

∫
|∇vr |2φ2 + 1

2
∇v2

r · ∇φ2 + N − 1

r2
v2
r φ

2 =
∫

γf ′(u)g′(v)urvrφ
2 + γf (u)g′′(v)v2

r φ
2 (2.6)

On the other hand, testing (1.2) on φ → urφ and ψ → vrφ where φ is as above, we get∫
f ′′(u)g(v)u2

r φ
2 +

∫
f (u)g′′(v)v2

r φ
2 + 2

∫
f ′(u)g′(v)urvrφ

2

≤ 1

λ

∫ ∣∣∇(urφ)
∣∣2 + 1

γ

∫ ∣∣∇(vrφ)
∣∣2

.

Expanding the right hand side we get

1

λ

∫ (
|∇ur |2φ2 + u2

r |∇φ|2 + 1

2
∇φ2 · ∇u2

r

)
+ 1

γ

∫ (
|∇vr |2φ2 + v2

r |∇φ|2 + 1

2
∇φ2 · ∇v2

r

)

Applying (2.6) the above will be

1

λ

∫
u2

r |∇φ|2 + 1

γ

∫
v2
r |∇φ|2 − N − 1

λ

∫
u2

r

φ2

r2
− N − 1

γ

∫
v2
r

φ2

r2

+ 2
∫

f ′(u)g′(v)urvrφ
2 +

∫
f (u)g′′(v)v2

r φ
2 +

∫
f ′′(u)g(v)u2

r φ
2.

Therefore one obtains, after substituting rφ for φ,

(N − 1)

∫ (
u2

r

λ
+ v2

r

γ

)
φ2 ≤

∫ (
u2

r

λ
+ v2

r

γ

)∣∣∇(rφ)
∣∣2

, (2.7)

for all φ ∈ C0,1(B1) ∩ H 1(B1). Note that there is no f and g in this estimate.
0
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Step 2. We show that (2.7) implies that u∗, v∗ ∈ H 1
0 (B1). Firstly we argue there is some 

CR > 0 such that for any 0 < R < 1 we have supr>R(u(r) + v(r)) ≤ CR and CR is independent 
of λ (and hence the estimate also holds for u∗, v∗). To see this we first note that by Remark 2.1
we have ‖u‖L1, ‖v‖L1 ≤ C (uniformly in λ) and since u, v are radially decreasing we have the 
desired result otherwise we couldn’t have the L1 bound. We now let 0 ≤ φ ≤ 1 be a smooth 
function supported in B1 with φ = 1 on B 1

2
. Putting this into (2.7) and rearranging gives

(N − 2)

∫
B 1

2

u2
r

λ
+ v2

r

γ
≤ C

∫
B1\B 1

2

u2
r

λ
+ v2

r

γ
. (2.8)

Now let 0 ≤ ψ ≤ 1 denote smooth function with ψ = 0 in B 1
4

and ψ = 1 for |x| > 1
2 . Multiply 

−�u = λf ′(u)g(v) by uψ2 and integrate by parts and use Young’s inequality to arrive at∫
|∇u|2ψ2 ≤ 2λ

∫
f ′(u)g(v)uψ2 + 4

∫
u2|∇ψ |2,

and hence we have ∫
B1\B 1

2

|∇u|2 ≤ 2λ

∫
B1\B 1

4

f ′(u)g(v)u + C

∫
B1\B 1

4

u2 (2.9)

and we now use the pointwise bound to see that∫
B1\B 1

2

|∇u|2 ≤ C,

where C is independant of λ. Similarly we obtain the same estimate of v and combining this 
with (2.8) we see that u, v are bounded in H 1

0 (B1) independant of λ and hence u∗, v∗ ∈ H 1
0 (B1).

Step 3. Let (u, v) denote a minimal solution of (G)λ,γ on the Γσ where σ := γ ∗
λ∗ . For 0 <

r < 1
2 define φ to be the following test function

φ(t) =

⎧⎪⎨
⎪⎩

r−√
N−1−1 if 0 ≤ t ≤ r,

t−
√

N−1−1 if r < t ≤ 1/2,

2
√

N−1+2(1 − t) if 1/2 < t ≤ 1.

Putting φ into (2.7) gives

r∫
0

(
u2

r (t)

λ
+ v2

r (t)

γ

)
tN−1dt ≤ CNr2

√
N−1+2

(
1

λ
‖∇u‖2

L2(B1\B1/2)
+ 1

γ
‖∇v‖2

L2(B1\B1/2)

)
,

for all 0 < r < 1
2 and one easily extends this to all 0 < r < 1 by taking CN bigger if necessary. 

From this, by simple calculations we get
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1√
λ

∣∣∣∣u(r) − u

(
r

2

)∣∣∣∣ + 1√
γ

∣∣∣∣v(r) − v

(
r

2

)∣∣∣∣
≤

r∫
r/2

(
1√
λ

∣∣ur(t)
∣∣ + 1√

γ

∣∣vr(t)
∣∣)t

N−1
2 t

1−N
2 dt

≤ √
2

( r∫
r/2

(
u2

r (t)

λ
+ v2

r (t)

γ

)
tN−1dt

)1/2( r∫
r/2

t1−Ndt

)1/2

≤ CNr
√

N−1+2− N
2

(
1√
λ

‖∇u‖L2(B1\B1/2)
+ 1√

γ
‖∇v‖L2(B1\B1/2)

)
.

Let 0 < r ≤ 1. Then, there exist m ∈ N and 1/2 < r1 ≤ 1 such that r = r1
2m−1 . Since u, v

are radial, we have u(r1) ≤ ‖u‖L∞(B1\B1/2)
≤ CN‖u‖H 1(B1\B1/2)

and v(r1) ≤ ‖v‖L∞(B1\B1/2)
≤

CN‖v‖H 1(B1\B1/2)
.

1√
λ

∣∣u(r)
∣∣ + 1√

γ

∣∣v(r)
∣∣

≤ 1√
λ

∣∣u(r1) − u(r)
∣∣ + 1√

γ

∣∣v(r1) − v(r)
∣∣ + 1√

λ

∣∣u(r1)
∣∣ + 1√

γ

∣∣v(r1)
∣∣

≤ 1√
λ

m−1∑
i=1

∣∣∣∣u
(

r1

2i−1

)
− u

(
r1

2i

)∣∣∣∣ + 1√
γ

m−1∑
i=1

∣∣∣∣v
(

r1

2i−1

)
− v

(
r1

2i

)∣∣∣∣
+ CN√

λ
‖u‖H 1(B1\B1/2)

+ CN√
γ

‖v‖H 1(B1\B1/2)

≤ CN

m−1∑
i=1

(
r1

2i−1

)−N/2+√
N−1+2( 1√

λ
‖∇u‖L2(B1\B1/2)

+ 1√
γ

‖∇v‖L2(B1\B1/2)

)

+ CN√
λ

‖u‖H 1(B1\B1/2)
+ CN√

γ
‖v‖H 1(B1\B1/2)

≤ CN

(
m−1∑
i=1

(
r1

2i−1

)−N/2+√
N−1+2

+ 1

)(
1√
λ

‖u‖H 1(B1\B1/2)
+ 1√

γ
‖v‖H 1(B1\B1/2)

)

Note that the sign of 
√

N − 1 + 2 − N
2 is crucial in getting estimates. Since 

√
N − 1+2 − N

2 = 0
if and only if N = 10, this dimension is the critical dimension. From the above, for any 0 < r ≤ 1
we get if 2 ≤ N < 10,

1√
λ

∣∣u(r)
∣∣ + 1√

γ

∣∣v(r)
∣∣ ≤ CN

(
1√
λ

‖u‖H 1(B1\B1/2)
+ 1√

γ
‖v‖H 1(B1\B1/2)

)
,

if N = 10,

1√ ∣∣u(r)
∣∣ + 1√

γ

∣∣v(r)
∣∣ ≤ CN

(
1 + | log r|)( 1√ ‖u‖H 1(B1\B1/2)

+ 1√
γ

‖v‖H 1(B1\B1/2)

)
,

λ λ
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if N > 10,

1√
λ

∣∣u(r)
∣∣ + 1√

γ

∣∣v(r)
∣∣ ≤ CNr− N

2 +√
N−1+2

(
1√
λ

‖u‖H 1(B1\B1/2)
+ 1√

γ
‖v‖H 1(B1\B1/2)

)
.

Passing to limits we obtain the desired estimates for u∗, v∗. �
3. Explicit nonlinearities

We now examine the case of polynomial nonlinearities and for this we recall the definition 
t+(p) = p + √

p(p − 1) and note that t+ is increasing on [1, ∞). We begin with the gradient 
system.

Theorem 3.1. Let f (u) = (u + 1)p , g(v) = (v + 1)q and suppose p, q > 2.

(1) Let (λ∗, γ ∗) ∈ Υ . Then the associated extremal solution of (G)λ∗,γ ∗ is bounded provided

N

2
< 1 + 2

p + q − 2
max

{
t+(p − 1), t+(q − 1)

}
. (3.1)

(2) Let (λ∗, γ ∗) ∈ Υ and define Ip,q,λ,γ (t) := p + q − 1 − t2

2t−1 + 2pq
p+q

((
γ q
λp

)t+q−1 − 1). Let 
t0 := max{t+(p − 1), t+(q − 1)} and suppose that Ip,q,λ∗,γ ∗(t0) > 0 and Iq,p,γ ∗,λ∗(t0) > 0. 
The map t �→ min{Ip,q,λ∗,γ ∗(t), Iq,p,γ ∗,λ∗(t)} is decreasing and has a root in (t0, ∞), which 
we denote by T . Suppose

N

2
< 1 + 2

p + q − 2
T . (3.2)

Then the associated extremal solution of (G)λ∗,γ ∗ is bounded.

Remark 3.1. Note that the condition on t0 from the second part of Theorem 3.1 is really a 
condition on how close the parameters (λ∗, γ ∗) are to the “diagonal” given by λ∗p = γ ∗q . On 
the diagonal one trivially sees the condition is satisfied. Some algebra shows that the condition 
is satisfied provided (λ∗, γ ∗) lie within the cone

(
1 − p + q

2pq
min(p, q)

) 1
t0+q−1

<
γ ∗q
λ∗p

<

(
1 − p + q

2pq
min(p, q)

)− 1
t0+p−1

.

Theorem 3.2. Let f (u) = (u + 1)p , g(v) := (v + 1)q with p, q > 1.
Suppose

N < min

{
4 + 2

p − 1
+ 2

√
p

p − 1
,4 + 2

q − 1
+ 2

√
q

q − 1

}
,

and (λ∗, γ ∗) ∈ Υ . Then the associated extremal solution of (H)λ∗,γ ∗ is bounded.
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Remark 3.2. Note that p �→ 4 + 2
p−1 + 2

√
p

p−1 is decreasing and goes to 6 as p → ∞. Hence 

for N ≤ 6 we see all extremal solutions are bounded for any p, q . As in the case of (G)λ,γ one 
can obtain better results provided they restrict the range of the parameters (λ, γ ) to a certain cone 
with axis given by γ

λ
= q

p
, we omit the details.

We begin with some pointwise comparison results.

Lemma 3.1. Let f (u) = (u + 1)p and g(v) = (v + 1)q where p, q > 1.

(1) Suppose that (u, v) is a smooth solution of (G)λ,γ where λp ≥ γ q . Then v ≤ u ≤ λp
γ q

v.
(2) Suppose (u, v) is the smooth minimal solution of (H)λ,γ where qλ ≥ γp. Then pγu ≥ qλv.

Proof. (1) Subtracting two equations of (G)λ,γ we get

−�(u − v) = (1 + u)p−1(1 + v)q−1(λp(1 + v) − γ q(1 + u)
)

≥ γ q(1 + u)p−1(1 + v)q−1(v − u)

multiply both sides of the above with (u − v)− to get 
∫ |∇(u − v)−|2 ≤ 0 and therefore v ≤ u. 

Now, multiply the second equation of (G)λ,γ with λp
γ q

and again subtract two equations to get

−�

(
u − λp

γ q
v

)
= λp(1 + u)p−1(1 + v)q−1(v − u) ≤ 0

From maximum principle we get u ≤ λp
γ q

v.

(2) Set K(x) := (u + 1)p−1(v + 1)q−1. First note that

L(u − v) := −�(u − v) − γpK(x)(u − v) = K(x)
(
(λq − γp)u + λq − γp

)
,

and note that the right hand side is nonnegative. If we can show that L satisfies the maximum 
principle then we’d have u − v ≥ 0.

We now assume that (u, v) is the smooth minimal solution of (H)λ,γ and additional we as-
sume that (λ, γ ) ∈ U\Υ . By Theorem A there is some η ≥ 0 and ψ > 0 such that

−�ψ − qpγK(x)ψ ≥ ηψ. (3.3)

Since (λ, γ ) /∈ Υ one can infact show that η > 0. Hence the linear operator on the left satisfies 
the maximum principle. Since q > 1 we see that L must also satisfy the maximum principle and 
hence u ≥ v. In the case where (λ, γ ) ∈ U ∩ Υ we pass to the limit along the fixed parameter ray 
through (0, 0) and (λ, γ ) and use the above result. Hence we have shown that u ≥ v. Now set 
t := λq

γp
and then note that

−�(u − tv) = K(x)λq
(
(u + 1) − (v + 1)

) ≥ 0

and hence u ≥ tv. �
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Before we prove Theorem 3.1 we need a general energy estimate.

Lemma 3.2. Let f (u) = (u + 1)p and g(v) = (v + 1)q . Suppose that (u, v) is a semi-stable 
solution of (G)λ,γ with s, t ∈R\{ 1

2 }. Then

p

(
p − 1 − t2

2t − 1

)∫
(1 + u)2t+p−2(1 + v)q + q

(
q − 1 − s2

2s − 1

)∫
(1 + v)2s+q−2(1 + u)p

+ 2pq

∫
(1 + u)t+p−1(1 + v)s+q−1 + p(p − 1)

∫
(1 + u)p−2(1 + v)q

+ q(q − 1)

∫
(1 + u)p(1 + v)q−2

+ p
t2

2t − 1

∫
(1 + u)p−1(1 + v)q + q

s2

2s − 1

∫
(1 + u)p(1 + v)q−1

≤ 2p(p − 1)

∫
(1 + u)t+p−2(1 + v)q + 2pq

∫
(1 + u)t+p−1(1 + v)q−1

+ 2q(q − 1)

∫
(1 + u)p(1 + v)s+q−2 + 2pq

∫
(1 + u)p−1(1 + v)s+q−1

Proof. This is an application of Lemma 1.1. Take φ := (1 + u)t − 1 and ψ := (1 + v)s − 1
in (1.2), then we have

p(p − 1)

∫
(1 + u)p−2(1 + v)q

(
(1 + u)t − 1

)2

+ q(q − 1)

∫
(1 + v)q−2(1 + u)p

(
(1 + v)s − 1

)2

+ 2pq

∫
(1 + u)p−1(1 + v)q−1((1 + u)t − 1

)(
(1 + v)s − 1

)

≤ t2

λ

∫
|∇u|2(1 + u)2t−2 + s2

γ

∫
|∇v|2(1 + v)2s−2 (3.4)

Multiply the first and the second equation of (G)λ,γ with (1 + u)2t−1 − 1 and (1 + v)2s−1 − 1, 
respectively, to get

(2t − 1)

∫
|∇u|2(1 + u)2t−2 = λp

∫
(1 + u)2t+p−2(1 + v)q − λp

∫
(1 + u)p−1(1 + v)q

and

(2s − 1)

∫
|∇v|2(1 + v)2s−2 = γ q

∫
(1 + v)2s+q−2(1 + u)p − γ q

∫
(1 + v)q−1(1 + u)p.

Using these identities and (3.4) finishes the proof. �
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Proof of Theorem 3.1. (1) Let (λ∗, γ ∗) ∈ Υ and let (u, v) denote a smooth minimal solution on 
the ray Γσ where σ := γ ∗

λ∗ .
Let 1 < t < t+(p − 1) and 1 < s < t+(q − 1) in Lemma 3.2 to arrive at an inequality of the 

form ∫
(u + 1)2t+p−2(v + 1)q +

∫
(u + 1)p(v + 1)2s+q−2 ≤ Ct,s .

First note that ∫
|∇u|2 ≤ pλ∗

∫
(u + 1)p(v + 1)q ≤ Ct,s,

provided p < 2t+(p − 1) + p − 2 but this holds since p > 1 and by passing to the limit we see 
that u∗ ∈ H 1

0 (Ω). We similarly show that v∗ ∈ H 1
0 (Ω).

Without loss of generality assume that p ≥ q and hence t+(q − 1) ≤ t+(p − 1) and so we 
have ∫

(u + 1)2t+p+q−2 ≤ Ct ,

for all 1 < t < t+(p − 1). We now re-write the equation as

−�u∗

λ∗ = c(x)u∗ + p
(
v∗ + 1

)q
,

where

0 ≤ c(x) = p
((u∗ + 1)p−1 − 1)

u∗
(
v∗ + 1

)q ≤ C
(
u∗ + 1

)p+q−2
.

We now apply regularity theory to see that u∗ is bounded provided c(x), (v∗ + 1)q ∈ LT for 
some T > N

2 . But this holds provided

(p + q − 2)
N

2
< 2t+(p − 1) + p + q − 2,

which is the desired result. To see v∗ is bounded we now use the pointwise comparison between 
u and v and pass to the limit along the ray Γσ .

(2) In (1) we only used the first two integrals from Lemma 3.2 to obtain estimates. In this part 
we also use the third integral. Let (λ∗, γ ∗) ∈ U and let (u, v) denote the a minimal solution on 
the ray Γσ , where σ := γ ∗

λ∗ . The exact proof depends on the sign of λ∗p − γ ∗q and we suppose 

that λ∗p ≥ γ ∗q . Let t0 < t < T and so Ip,q,λ∗,γ ∗(t), Iq,p,λ∗,γ ∗(t) > 0 and p − 1 − t2

2t−1 , q − 1 −
t2

2t−1 < 0. We now set s = t and examine the estimate from Lemma 3.2. Note the coefficients 
in front of the first two integrals are negative and the coefficient in front of the third integral is 
positive. The other integrals on the left are lower order terms which we drop. Now note that u ≥ v

and so we can replace, since the coefficients are negative, the u’s in the first two integrals from 
the estimate in Lemma 3.2 with v’s. In the third integral we use the fact that γ q

(u + 1) ≤ v + 1. 

λp
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Writing this all out and then again using the fact that we can compare u and v, one can see that 
the following is a lower bound for the left-hand side of the integral estimate given by Lemma 3.2,

(
p

(
p − 1 − t2

2t − 1

)
+ q

(
q − 1 − t2

2t − 1

)
+ 2pq

(
γ q

λp

)t+q−1)∫
(1 + u)2t+p+q−2

+ (p + q)

(
p + q − 1 − t2

2t − 1
+ 2pq

p + q

((
γ q

λp

)t+q−1

− 1

))∫
(1 + u)2t+p+q−2.

Combining everything gives an estimate of the form

Ip,q,λ∗,γ ∗(t)
∫

(1 + u)2t+p+q−2 ≤ Cp,q,λ∗,γ ∗
∫

(1 + u)t+p+q−2.

Since Ip,q,λ∗,γ ∗(t) > 0 we have an estimate. We now proceed exactly as in the first part. We 
rewrite the equation in the alternate form and we then require that

(p + q − 2)
N

2
< 2t + p + q − 2,

for some t0 < t where Ip,q,λ∗,γ ∗(t) > 0. �
Lemma 3.3. Let (λ∗, γ ∗) ∈ Υ and let (u, v) denote a minimal solution of (H)λ,γ on the ray Γσ

where σ = γ ∗
λ∗ . Then for 1 < t < t+(p) and 1 < τ < t+(q) we have

∫
(u + 1)2t+p−1(v + 1)q−1 ≤ C, (3.5)

∫
(u + 1)p−1(v + 1)2τ+q−1 ≤ C, (3.6)

where C is uniform on the ray Γσ . These two inequalities and an application of the Cauchy–
Schwarz inequality gives

∫
(u + 1)p+t−1(v + 1)q+τ−1 ≤ C.

Proof. Set φ := (u + 1)t − 1 and ψ := (v + 1)τ − 1 and put these into the stability inequality 
given by (1.3) to arrive at an inequality of the form

q

(
p − t2

2t − 1

)∫
(u + 1)2t+p−1(v + 1)q−1 + p

(
q − τ 2

2τ − 1

)∫
(u + 1)p−1(v + 1)q+2τ−1

+ 2
√

p(p − 1)q(q − 1)

∫
(u + 1)p+t−1(v + 1)q+τ−1

≤ C(p,q)

∫
(u + 1)p+t−1(v + 1)q−1 + C(p,q)

∫
(u + 1)p−1(v + 1)q+τ−1.
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Note that for the given choices of t , τ the coefficients on the left are positive. One now easily 
sees that the terms on the right are lower order terms and hence we obtain the desired estimates 
after some standard calculations. �
Proof of Theorem 3.2. Without loss of generality we suppose that λ∗q ≥ γ ∗p. Let (u, v) denote 
a minimal solution on the ray Γσ where σ := γ ∗

λ∗ . Note that we have u ≥ λ∗q
γ ∗pv > v. We first show 

that u∗ ∈ H 1
0 . First note that

∫
|∇u|2 = λq

∫
(u + 1)pu(v + 1)q−1,

along the ray Γσ and the right hand side is uniformly bounded provided

p + 1 < p − 1 + 2t+(p),

which is the case, for any p > 1 and dimension N , after considering the estimates from 
Lemma 3.3. We now rewrite the equation for u∗ as

−�u∗ = λq

(
(u∗ + 1)p − 1

u∗

)(
v∗ + 1

)q−1
u∗ + λq

(
v∗ + 1

)q−1
,

and to show u∗ is bounded it is sufficient to show that (u∗ + 1)p−1(v∗ + 1)q−1 ∈ Lr for some 
r > N

2 . Using Lemma 3.3 one sees this is the case provided

N

2
(p − 1) < p − 1 + t+(p),

N

2
(q − 1) < q − 1 + t+(q).

So we have shown that u∗ is bounded and we now use the fact that u∗ ≥ v∗ to see the same 
for v∗. �
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