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Abstract
In this work we obtain positive singular solutions of{

−∆u(y) = u(y)p in y ∈ Ωt,
u = 0 on y ∈ ∂Ωt,

where Ωt is a sufficiently small C2,α perturbation of the cone Ω := {x ∈ RN : x =
rθ, r > 0, θ ∈ S} where S ⊂ SN−1 has a smooth nonempty boundary and where p > 1
satisfies suitable conditions. By singular solution we mean the solution is singular at
the ‘vertex of the perturbed cone’. We also consider some other perturbations of the
equation on the unperturbed cone Ω and here we use a different class of function spaces.
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1 Introduction

In this work we consider a Lane-Emden-Fowler equation on small perturbations of a cone
in RN . To describe the cone we fix S ⊂ SN−1 (N ≥ 3) with a smooth nonempty boundary
and we now consider the cone given by Ω := {x ∈ RN : r = |x| > 0, θ = x

|x| ∈ S}. We are
interested in obtaining positive singular solutions of{

−∆yu(y) = u(y)p in Ωt,
u = 0 on ∂Ωt,

(1)

where Ωt is a sufficiently small perturbation of Ω and where p > 1.
The approach we take is to linearize around a positive separable solution v0 to the un-

perturbed problem given by {
−∆v0 = vp0 in Ω,

v0 = 0 on ∂Ω\{0}. (2)

By a well known computation it is known that if w is a positive classical solution of{
−∆θw = ν (N − 2 + ν)w + wp in S,

w = 0 on ∂S,
(3)

where ν := −2
p−1

and ∆θ is the Laplace-Beltrami operator on SN−1, then v0(x) = v0(r, θ) =

rνw(θ) is positive singular solution of (2). When we need to indicate the dependence of w
on p we will write w = wp and from here on we shall define

λp := ν (N − 2 + ν) =
2

p− 1

(
2

p− 1
− (N − 2)

)
.

We now discuss the restrictions on p so we can find a positive classical solution of (3). For
the existence we use a variational approach; we minimize

Ep(w) :=

∫
S
|∇θw|2 − λpw2dθ(∫
S
|w|p+1dθ

) 2
p+1

,

over H1
0 (S)\{0}. We now introduce the following critical values of p;

p0 := 1 +
4

N − 2 +
√

(N − 2)2 + 4λ1(S)
, p1 :=

N + 3

N − 1
, p2 :=

N + 1

N − 3
, (4)

where we are using the obvious generalizations in the case of N = 3. Note p2 is exactly the
exponent coming from the critical Sobolev imbedding in dimension N − 1, when N > 3.
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• For p ∈ (p0, p2) one has λp < λ1(S) (here λ1(S) is the first eigenvalue of −∆θ in H1
0 (S))

and H1
0 (S) ⊂⊂ Lp+1(S). For this range of p the above variational approach coupled

with an elliptic regularity argument shows the existence of a positive classical solution
w of (3).

• For p ≤ p0 one has λp ≥ λ1(S) and hence there is no positive classical solution of (3).

• For p ≥ p2 note that (3) becomes a critical/supercritical problem in the sense of
Sobolev imbedding and the existence of positive classical solutions of (3) becomes a very
hard question which we won’t discuss, other than to mention for certain symmetrical
domains one can find a positive solution; for instance a geodesic annulus.

In our approach we will require that not only is w a positive classical solution of (3) but
we will also need it to be a nondegenerate solution; by this we mean the associated linearized
operator has a trivial kernel. In the case of S a geodesic ball of radius α, where 0 < α ≤ π

2
,

then w is nondegenerate for p ∈ (p0, p1) which follows from Theorem A [38], see section 1.2.
For the range of p ∈ (p1, p2) they also show the solutions are nondegenerate in the space of
radial functions, but this is not sufficient for our purposes.

With this in mind we will apply some abstract analytic bifurcation theory developed in
[12, 5, 4] to show the existence of at most a countable sequence of p’s (they may be none
or just a finite sequence) increasing to p2 and for which wp is a nondegenerate solution
provided p is not an element of the sequence. In the case of general domains S we will apply
the abstract bifurcation theory to show wp is a nondegenerate except again for a countable
increasing sequence; but now this sequence is contained in (p0, p2) with p2 being the only
possible limit point.

We now discuss the perturbations we will consider and also the change of variables to
reduce the problem to one on the unperturbed cone; we mention the following change of
variables is taken from [16] where they examine the extremal solution of the Gelfand problem
on perturbations of the unit ball. Let ψ : Ω → RN be C2,α map such that there is some
C > 0 such that

|ψ(x)| ≤ C|x|, |Dψ(x)| ≤ C, |D2ψ(x)| ≤ C

|x|
. (5)

For t > 0 small we now define the perturbed domain

Ωt := {y : y = x+ tψ(x), x ∈ Ω} .

Given y ∈ Ωt define ψ̃(t, y) via x = y + tψ̃(t, y). Then there is some C1 > 0 such that for
small enough t > 0 one has

|ψ̃(t, y)| ≤ C1|y|, |Dyψ̃(t, y)| ≤ C1, |D2
yψ̃(t, y)| ≤ C1

|y|
. (6)

Given u(y) defined on Ωt we define v(x) on Ω via u(y) = v(x) where y and x are related
as above. To find a positive solution of (1) it is sufficient to find a positive solution v(x) of
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{
−∆v − Et(v) = vp in x ∈ Ω,

v = 0 on ∂Ω,
(7)

where Et is the second order linear differential operator given by

Et(v) := 2t
∑
i,k

vxixk∂yiψ̃k + t
∑
i,k

vxk∂yiyiψ̃k + t2
∑
i,j,k

vxjxk∂yiψ̃j∂yiψ̃k,

where in all the sums the indices run from 1 to N .
We now state our main result.

Theorem 1. 1. Suppose N ≥ 3 and S ⊂ SN−1 with smooth nonempty boundary. Then
there is a sequence of increasing qk (possibly empty or finite) with p0 < q1 < q2 <
... with qk < p2 (with p2 being the only possible limit point) such that for all p ∈
(p0, p2)\

(
{qk : k ≥ 1} ∪ {N+2

N−2
}
)

and all mappings ψ which satisfy (5) there exists a
positive singular solution of (1) for sufficiently small t > 0.

2. Suppose N ≥ 3 and S ⊂ SN−1 is a geodesic ball. Then there is a sequence of increasing
qk (possibly empty or finite) with p1 ≤ q1 < q2 < ... with qk < p2 (with p2 being the
only possible limit point) such that for all p ∈ (p0, p2)\

(
{qk : k ≥ 1} ∪ {N+2

N−2
}
)

and
all mappings ψ which satisfy (5) there exists a positive singular solution of (1) for
sufficiently small t > 0.

Our approach to finding a positive solution of (7), for small t, will be to linearize around
v0 where v0 is an explicit singular separable solution as defined above; for the time being
we are assuming the existence of a classical positive solution w = wp of (3). Of course a
crucial ingredient in this approach will be the mapping properties of the linearized operator
associated with v0; ie.

L(φ)(x) := −∆φ(x)− pvp−1
0 (x)φ(x) = −∆φ(x)− pwp(θ)

p−1

r2
φ(x). (8)

We now look for solutions of (7) of the form v(x) = v0(x) + φ(x) where φ is to be
determined. Then we need φ to satisfy{

L(φ) = (v0 + φ)p − vp0 − pv
p−1
0 φ+ Et(v0) + Et(φ) in Ω,

φ = 0 on ∂Ω.
(9)

To find a solution of this we will apply Banach’s fixed point theorem on a suitable space to
the nonlinear operator given by Jt(φ) = ψ where ψ satisfies{

L(ψ) = (v0 + φ)p − vp0 − pv
p−1
0 φ+ Et(v0) + Et(φ) in Ω,

ψ = 0 on ∂Ω.
(10)

Note a priori that the term (v0 +φ)p is not well defined if v0 +φ is negative somewhere in Ω;
this won’t be an issue since we will restrict φ to be small enough such that we always have
this term is positive.
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For this approach to work one will need to understand the the mapping properties of L
and in particular we will want L to be surjective. We now define the functions spaces we
will work in, these spaces are a very slight adjustment of the spaces introduced in [32, 34].

Let 0 < α < 1 be fixed and we consider the following function spaces, where As := {x ∈
Ω : s < |x| < 2s},

‖f‖C0,α
ν−2

= sup
0<s

s2−ν
(

sup
As

|f |+ sα sup
x,y∈As

|f(x)− f(y)|
|x− y|α

)
,

‖φ‖C2,α
ν

= sup
0<s

s−ν
{

sup
As

|φ|+ s sup
As

|∇φ|+ s2 sup
As

|D2φ|+ s2+α sup
x,y∈As

|D2φ(x)−D2φ(y)|
|x− y|α

}
.

Set Y := C0,α
ν−2 and X to be the set of φ ∈ C2,α

ν with φ = 0 on ∂Ω\{0}; with given norms
‖ · ‖Y and ‖ · ‖X .

1.0.1 Brief outline of paper

As mentioned above, a key point in showing the mapping L is onto Y , will be that w is a
nondegenerate solution of (3). Assuming the nondegeneracy condition on w we analyse in
detail the linearized operator L in Section 2. In Section 1.2 we state known results regarding
w in the case of S a geodesic ball, and in Section 3 we consider the case of general S. We
then perform the fixed point argument in Section 4. In Section 5 we consider some more
general equations using the same method; and in particular the same function spaces. We
then conclude the paper with Section 6 where we examine the equations in different function
spaces. The purpose of this is to allow for larger perturbations of the unperturbed cone.
Instead of working directly with perturbations of the domain we prefer to just consider lower
order perturbations of the domain to illustrate the usefulness of the new spaces.

1.1 General background

A well studied problem is the existence versus non-existence of positive solutions of the
Lane-Emden equation given by{

−∆u = up in Ω,
u = 0 on ∂Ω,

(11)

where Ω is a bounded domain in RN with N ≥ 3. Define the critical exponent ps = N+2
N−2

and

note that it is related to the critical Sobolev imbedding exponent 2∗ := 2N
N−2

= ps + 1. For
1 < p < ps H

1
0 (Ω) is compactly imbedded in Lp+1(Ω) and hence standard methods show the

existence of a positive minimizer of

min
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|p+1dx

) 2
p+1

.
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This positive minimizer is a positive solution of (11) see for instance the book [39]. For
p ≥ ps H

1
0 (Ω) is no longer compactly imbedded in Lp+1(Ω) and so to find positive solutions

of (11) one needs to take other approach. For p ≥ ps the well known Pohozaev identity
[36] shows there are no positive solutions of (11) provided Ω is star shaped. For general
domains in the critical/supercritical case, p ≥ ps, the existence versus nonexistence of positive
solutions of (11) is a very delicate question; see [9, 35, 20, 18, 19] and for related problems
[17, 28, 8, 27, 41].

There has been much work done on the existence and nonexistence of positive classical
solutions of

−∆w = wp in RN . (12)

As in the bounded domain case the critical exponent ps plays a crucial role. For 1 <
p < ps there are no positive classical solutions of (12) and for p ≥ ps there exist positive
classical solutions, see [6, 7, 25, 24]. The moving plane method shows that all positive
classical solutions, satisfying certain assumptions, are radial about a point. Regarding the
existence versus nonexistence of stable solutions of (12) one should consult [40, 29, 23]. For
the existence of solutions for (12) in either exterior domains; or perturbations of (12) see
[13, 14, 15]. The Dirichlet problem (11) in the context of very weak solutions (and which
allows for singularities on the boundary) have been studied in [21, 26, 30, 33]. We now briefly
mention here some works relevant to our study. In [21], del Pino-Musso-Pacard constructed
positive weak solutions of the problem (11) which vanish in suitable trace sense on ∂Ω, but
which are singular at prescribed single points if p is equal or slightly above N+1

N−1
(they also

consider the case for a different range of p where the singular set is higher dimensional).
Also, when Ω = RN

+ they constructed a solution of problem with fast decay, behaves like
as |x|−(N−1) as |x| → ∞. In [30] Horák-McKennab-Reichel considered the equation (11) in
Lipschitz wedge- like domains Ω, smooth domains except for one corner, where it locally
coincides with a cone of cross-section S ⊂ SN−1 (see [26, 30] for the precise definition). They
proved the existence of an unbounded, positive, very weak solution which blows up at 0 ∈ ∂Ω,

and when Ω is an infinite cone then the equation admits a positive solution behaves like |x|
−2
p−1

fro any p ∈ (p0,∞) if N = 2, 3 and any p ∈ (p0,
N+1
N−3

) if N ≥ 4, (p0 defined in (4)) and note
that p0 depends on S. But this solution does not have fast decay at infinity. Note that the
exponent p0 is a truly critical exponent as it is shown in [33] that if 1 < p < p0 then every
very weak solution of problem (11) is bounded. Very recently, Konstantinos T. Gkikas in [26]
improved some of the above results and based on a fixed point argument which also allows
the construction of blowing-up solutions, he showed the existence of positive weak solutions
which vanish in a suitable trace sense on ∂S, but which are singular at prescribed “edge” of Ω
if p is equal or slightly above the exponent p0. Moreover, in the case which Ω is unbounded,

the solutions have fast decay at infinity like |x|2−γ−N , where γ := 2−N
2

+
√

(N−2
2

)2 + λ1(S).

Note that 2− γ −N = −2
p0−1

< −2
p−1

for all p > p0, for precise statements and further results

see Theorems 1.1-1.3 in [26].
However, the existence of unbounded very weak solutions of (11) for all exponents above the
critical point N+1

N−1
is still open both in case of smooth domains and domains with conical

corners. In this paper, using the idea of perturbing an explicitly known singular solution and
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then utilizing fixed point argument, we show the existence of positive singular solutions in
domains which are small perturbations of the cone, for p ∈ (p0,

N+1
N−3

) (see Theorems 1) except
for at most countably many values of p. This countable set is coming from the fact we are
applying some abstract analytic bifurcation theory and real analyticity methods developed
in [12, 5] to obtain a nondegenerate solution of (3) (see Section 3) which in turn allows us
to develop the needed linear theory (see Section 2) so as to apply a fixed point argument
(see Section 4) to solve (9). It would be interesting to discover whether there really is a
resonance phenomena or whether this countable set of p is only an artifact of our proof.
Another interesting question would whether one can use a similar approach to investigate
the case of a bounded domain with conic singularity.

Before giving more background on problems on the cone we mention that our current
work is heavily motivated by [16, 32, 34, 13, 14, 15]. For explicit results on cone domains
see [1, 2, 37, 3] and the references within.

1.2 Known results regarding (3) when S the geodesic ball

We will now give a result from [38] but they perform a change of variables so the resulting
domain is Euclidean (which we also do); what follows is all taken from [38]. Suppose S is the
geodesic ball of radius α, 0 < α ≤ π

2
and P : SN−1\(0, ..., 0,−1) 7→ RN−1 is the stereographic

projection and set

R = tan
α

2
and BR = {x ∈ RN−1 : |x| < R} = P (S).

Then w is a positive classical solution of (3) if and only if the function v defined by

v(x) =
w(P−1x)

(1 + |x|2)
N−3

2

x ∈ BR, (13)

is a positive classical solution of{
∆v + (N−1)(N−3)+4λp

(1+|x|2)2
v + 4(1 + |x|2)

p(N−3)−(N+1)
2 vp = 0 in BR,

v = 0 on ∂BR.
(14)

They then prove the following theorem.

Theorem A. [38] If

1 +
4

N − 2 +
√

(N − 2)2 + 4λ1(S)
< p <

N + 1

N − 3
when N ≥ 3, (15)

then problem (3) has a unique positive radial solution w. Moreover, let v be the positive
radial solution to (14) defined by (13). Then v is nondegenerate in the radial function space
H1

0,rad(BR).
Moreover, if

1 +
4

N − 2 +
√

(N − 2)2 + 4λ1(S)
< p <

N + 3

N − 1
when N ≥ 3, (16)
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then v is nondegenerate in the full space H1
0 (BR).

First we note the exponents defined earlier p0, p1, p2 are coming from this theorem. Note
the nondegeneracy conditions carry over to (3). In particular we see w is a nondegenerate
solution of (3) in H1

0 (S) for p ∈ (p0, p1); and nondegenerate in H1
0,rad(S) for p ∈ [p1, p2).

2 The linear theory

In this section we consider the needed linear theory so as to apply a fixed point argument
(see Section 4) to solve (9). In particular we will want the linearized operator L (around
the solution v0) to be onto Y with a continuous right inverse. Let w = wp denote a positive
classical solution of (3) and consider the eigenpairs

−∆θψk(θ)− ν(N − 2 + ν)ψk(θ)− pwp(θ)p−1ψk(θ) = µkψk(θ) in S, (17)

with ψk = 0 on ∂S and we assume these are L2(S) normalized.

Lemma 1. (Kernel of L) Let p ∈ (p0, p2) with p 6= N+2
N−2

and suppose w > 0 a smooth solution
of (3) and we suppose φ ∈ X is such that L(φ) = 0 in Ω with φ = 0 on ∂Ω. If µk 6= 0 for all
k ≥ 1 then φ = 0.

Proof. Let φ ∈ X and we suppose L(φ) = 0. Writing φ as φ(x) =
∑∞

k=1 ak(r)ψk(θ) and
writing out L(φ) = 0 gives

0 =
∞∑
k=1

(
−a′′k(r)−

(N − 1)a′k(r)

r
+ (ν(N − 2 + ν) + µk)

ak(r)

r2

)
ψk(θ),

and hence we must have

−a′′k(r)−
(N − 1)a′k(r)

r
+ (ν(N − 2 + ν) + µk)

ak(r)

r2
= 0 0 < r <∞,

which are ode’s of Euler type. Define

γk := −(µk + ν(N − 2 + ν)),

and hence we can re-write the above ode’s as

a′′k(r) +
(N − 1)

r
ak(r) + γk

ak(r)

r2
= 0 0 < r <∞.

Looking for solutions of the form a(r) = rβ we see β needs to satisfy

β2 + (N − 2)β + γk = 0,

and from this we need to consider three cases:
Case I: (N − 2)2 − 4γk > 0
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Case II: (N − 2)2 − 4γk = 0
Case III: (N − 2)2 − 4γk < 0.

Case I. In this case we have

β+
k :=

−(N − 2)

2
+

√
(N − 2 + 2ν)2 + 4µk

2

β−k :=
−(N − 2)

2
−
√

(N − 2 + 2ν)2 + 4µk
2

,

and hence ak(r) = Ckr
β+
k + Dkr

β−k for some Ck, Dk ∈ R and note β−k < β+
k . To show

Ck = Dk = 0 it will be sufficient to show that both of β+
k , β

−
k differ from ν. First note that

if β+
k = ν then we have

N − 2 + 2ν =
√

(N − 2 + 2ν)2 + 4µk

and if p < N+2
N−2

then the left hand side is negative; a contradiction. So we now assume

p > N+2
N−2

. Then by squaring both sides we see that β+
k = ν exactly when µk = 0.

We now examine when β−k = ν. Note we have equality when

−(N − 2)− 2ν =
√

(N − 2 + 2ν)2 + 4µk

and note the left hand side is negative when N+2
N−2

< p and hence we can restrict p < N+2
N−2

and in this case we see we have equality exactly when µk = 0.

Case II. (N − 2)2 − 4γk = 0. In this case we

ak(r) = Ckr
−(N−2)

2 +Dkr
−(N−2)

2 ln(r),

and provided p 6= N+2
N−2

we can again show Ck = Dk = 0 by sending r → 0 or ∞. Note here
we don’t need assume µk 6= 0.

Case III. (N − 2)2 − 4γk < 0. In this case define

ωk :=

√
4γk − (N − 2)2

2

and then the general solution given by

ak(r) = Ckr
2−N

2 sin(ωk ln(r)) +Dkr
2−N

2 cos(ωk ln(r)),

for constants Ck, Dk. As in Case II we see we must have Ck = Dk = 0 after considering
sending r to 0 and ∞; also note we are not assuming µk 6= 0.
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We now state our main result regarding the linear operator L.

Proposition 1. Suppose N ≥ 3, p ∈ (p0, p2) and p 6= N+2
N−2

and let wp denote the positive
classical radial solution promised by Theorem A. Suppose µk 6= 0 for all k ≥ 1. Then there
is some C > 0 such that for all f ∈ Y there is some φ ∈ X such that L(φ) = f in Ω with
φ = 0 on ∂Ω and ‖φ‖X ≤ C‖f‖Y .

Note that µk 6= 0 for all k ≥ 1 is just the statement that wp is a nondegenerate solutions
of (3). Hence this result is saying provided wp is a nondegenerate solution then L has good
mapping properties from X to Y .

Proof. We write f and φ as f(x) =
∑∞

k=1 bk(r)ψk(θ) and φ(x) =
∑∞

k=1 ak(r)ψk(θ) and hence
we need to find ak such that

a′′k(r) +
(N − 1)a′k(r)

r
− (ν(N − 2 + ν) + µk)

ak(r)

r2
= bk(r), 0 < r <∞.

As before we need to separate the three cases:
Case I: (N − 2)2 − 4γk > 0
Case II: (N − 2)2 − 4γk = 0
Case III: (N − 2)2 − 4γk < 0.

Case I. We now assume we are in Case I.
Homogenous solutions. y1(r) = rβ

−
k , y2(r) = rβ

+
k and the Wronskian is then W (r) =

(β+
k − β

−
k )r1−N .

A particular solution. A particular solution is given by ak(r) = y1(r)u(r) + y2(r)v(r) where

u′(r) =
−y2b

W
=
−bk(r)rβ

+
k +N−1

β+
k − β

−
k

, v′(r) =
y1b

W
=
bk(r)r

β−k +N−1

β+
k − β

−
k

.

Put γk := −(µk + ν(N − 2 + ν)).

ak(r) = rβ
−
k

∫ r

T2

y1(t)bk(t)

W (t)
dt− rβ

+
k

∫ r

T1

y2(t)bk(t)

W (t)
dt

where we are free to choose Tk and then

ak(r) =
rβ
−
k

β−k − β
+
k

∫ r

T2

bk(t)

tβ
−
k −1

dt− rβ
+
k

β−k − β
+
k

∫ r

T1

bk(t)

tβ
+
k −1

dt.

We now get estimates on the solution. Depending on the sign of β+
k − ν and β−k − ν (note

its nonzero by assumption) we pick Ti = 0 or Ti =∞. For instance lets assume ν − β+
k < 0

and we then pick T1 =∞. Lets assume |bk(t)|t2−ν ≤ 1 and then note we have

rβ
+
k

∫ ∞
r

|bk(t)|
tβ

+
k −1

dt ≤ rβ
+
k

∫ ∞
r

tν−β
+
k −1dt ≤ Ckr

ν ,
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and similarly for the other term. This shows that |ak(r)|r−ν ≤ Ck for r > 0. This gives us a
bound on the first term in the X norm on the kth mode of φ.

Case II. (N − 2)2 − 4γk = 0 which we can re-write at µk(p) = −(N−2+2ν)2

4
. As above we

assume t2−ν |bk(r)| ≤ 1 and we now write

ak(r) = ln(r)r
2−N

2

∫ r

T2

t
N
2 bk(t)dt− r

2−N
2

∫ r

T1

ln(t)t
N
2 bk(t)dt.

First assume 1 < p < N+2
N−2

and note that in this case we have N
2

+ ν − 1 < 0. Take
T1 = T2 =∞, then using the above formula we can write

ak(r) = r
2−N

2

∫ r

∞
t
N
2 bk(t)(ln(r)− ln(t))dt.

Hence,

|ak(r)| ≤ r
2−N

2

∫ ∞
r

t
N
2 |bk(t)|(ln(t)− ln(r))dt.

Fix an 0 < ε < −(N
2

+ ν − 1) then using the inequality

ln(t)− ln(r) = ln
t

r
≤ Cε

(
t

r

)ε
t < r with Cε :=

1

εe

we obtain

|ak(r)| ≤ Cεr
2−N

2

∫ ∞
r

t
N
2 |bk(t)|

(
t

r

)ε
dt

= Cεr
2−N

2
−ε
∫ ∞
r

t
N
2

+ν−2+ε|t2−νbk(t)|dt,

≤ Ckr
2−N

2
−ε
∫ ∞
r

t
N
2

+ν−2+εdt ≤ Ckr
ν .

Note that in the above we used that N
2

+ ν − 2 + ε < −1.
Now consider the case N+2

N−2
< p < N+1

N−3
. Then note that in this case we have N

2
+ ν − 1 > 0.

Take T1 = T2 = 0, then we have

|ak(r)| ≤ r
2−N

2

∫ r

0

t
N
2 |bk(t)|(ln(r)− ln(t))dt.

Fix 0 < ε < N
2

+ ν − 1 and then similar as above we obtain

|ak(r)| ≤ Cεr
1+ε−N

2

∫ r

0

t
N
2

+ν−2−ε|t2−νbk(t)|dt,

and since N
2

+ ν − 2− ε > −1 we get

|ak(r)| ≤ Ckr
ν .
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Case III. Lets assume we are in Case III. We use variation of parameters and hence we must
first find the homogenous solutions; yi. A computation shows y1(r) = r

2−N
2 sin(ωk ln(r)) and

y2(r) = r
2−N

2 cos(ωk ln(r)) where ωk :=

√
4γk−(N−2)2

2
, and the Wronskian W (r) = −ωkr1−N .

We then have a particular solution of the form ak(r) = y1(r)u(r) + y2(r)v(r) where

u′(r) =
−bky2

W
=
bk(r)r

N
2 cos(ωk ln(r))

ωk
, v′(r) =

bky1

W
=
−bk(r)r

N
2 sin(ωk ln(r))

ωk
.

Doing the computations we arrive at

ωkak(r) = r
2−N

2 sin(ωk ln(r))

∫ r

T1

bk(t)t
N
2 cos(ωk ln(t))dt

−r
2−N

2 cos(ωk ln(r))

∫ r

T2

bk(t)t
N
2 sin(ωk ln(t))dt,

where we can pick T1, T2. Take T1 = T2 =∞ and so we have

ωkak(r) = r
2−N

2 sin(ωk ln(r))

∫ r

∞
bk(t)t

N
2 cos(ωk ln(t))dt

−r
2−N

2 cos(ωk ln(r))

∫ r

∞
bk(t)t

N
2 sin(ωk ln(t))dt,

and we suppose |bk(t)|t2−α ≤ 1; and note the integrals are well defined for any r > 0 since
the bound on bk shows the integrands are integrable on (r,∞). Using the bounds on bk we
also see that there is some Ck > 0 such that r−ν |ak(r)| ≤ Ck for r > 0. In Case I, II and
III we can use the ode for ak directly along with the zero order bounds on ak to see that
‖ak‖C2,α

ν
≤ Ck‖bk‖C0,α

ν−2
.

So far we have shown for each k ≥ 1 and fk(x) = bk(r)ψk(θ) with fk ∈ Y there is some
φk ∈ X, φk(x) = ak(r)ψk(θ) which satisfies L(φk) = fk in Ω with φk = 0 on ∂Ω. Moreover
there is some Ck > 0 (independent of fk, ak) such that ‖φk‖X ≤ Ck‖fk‖Y .

One can ague that for each m ≥ 1 there is some Dm > 0 such that

m∑
k=1

‖bkψk‖Y ≤ Dm‖
m∑
k=1

bkψk‖Y

independent of bk and hence using this we see for any

fm(x) :=
m∑
k=1

bk(r)ψk(θ)

there is some φm(x) =
∑m

k=1 ak(r)ψk(θ) such that L(φm) = fm on Ω with φm = 0 on ∂Ω and
‖φm‖X ≤ Dm‖fm‖Y . We now show we can takeDm independent ofm in ‖φm‖X ≤ Dm‖fm‖Y .
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Suppose not, then there is some fm (as above) and φm with ‖φm‖X = 1 and ‖fm‖Y → 0.
We begin by showing that the zero order term of the norm of φm must go to zero. Let sm > 0
be arbitrary and set

εm := s−νm sup
Asm

|φm|,

and define ψm(x) := s−νm φm(smx). Note that ψm satisfies

−∆ψm(x)− pw(θ)p−1ψm(x)

|x|2
= gm(x) in Ω (18)

with ψm = 0 on Ω where gm(x) := s2−ν
m fm(smx). A computation shows for each k we have

|gm(x)− gm(y)|
|x− y|α

≤ k2−ν+α‖fm‖Y ∀x, y ∈ Ek := {x ∈ Ω :
1

k
< |x| < k},

and supEk |gm(x)| ≤ k2−ν‖fm‖Y . This implies that gm → 0 in C0,α(Ek) for each k ≥ 1.

Additionally using the bound ‖φm‖X ≤ 1 we have |ψm(x)| ≤ 2−ν

|x|−ν on Ω. Also, it is not

hard to obtain that ‖∇ψm‖L∞(Ek) ≤ k1−ν and ‖D2ψm‖L∞(Ek) ≤ k2−ν , and also k2−ν+α as the
uniform upper bound for the Hölder norm of D2ψm on Ek. Using a diagonal argument we
can then find some ψ such that ψm → ψ in C2,β(Ek) for β < α and all k ≥ 2 and ψ satisfies

−∆ψ(x)− pw(θ)p−1ψ(x)

|x|2
= 0 in Ω,

with ψ = 0 on ∂Ω\{0}. Note additionally that |ψ(x)| ≤ 2−ν

|x|−ν . Using this zero order bound
along with a scaling argument one can show that ψ ∈ X and hence by Lemma 1 we have
ψ = 0 and so ψm → 0 in C2,β(Ek) for each k ≥ 2. But note we have

s−νm sup
Asm

|φm(x)| ≤ sup
1
2
|<|x|<2

s−νm |φm(smx)| = sup
x∈E2

|ψm(x)| → 0,

and hence we have the zero order portion of the norm goes to zero.
We now show the other portions also go to zero. Let sm > 0 be arbitrary and we re-write

(18) as

−∆ψm(x) = gm(x) +
pw(θ)p−1ψm(x)

|x|2
in E4,

with ψm = 0 on the lateral boundary of E4. Note that from the above estimates we have
that the right hand side of this equation converges to zero in C0,α(E4) and hence by elliptic
regularity theory we have ψm → 0 in C2,α(E2). After scaling back and the fact that sm > 0
is arbitrary we see that φm → 0 in X, which contradicts the bound ‖φm‖X = 1.
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3 Nondegeneracy of wp

3.1 Nondegeneracy of wp on (p1, p2) when S is the geodesic ball

In the case of S a geodesic ball, recall from Theorem A [38] (see Section 1.2) we have wp is
a positive nondegenerate solution of (3) for p ∈ (p0, p1). In the current section we will apply
bifurcation theory to partially extend this result to the full interval (p0, p2). We follow the
setting from [4], which follows closely the book of [5] and also the paper [12].

Let X ,Y denote Banach spaces, U ⊂ R × X an open set containing (0, 0) in its closure
and F : U → Y an R analytic function. We define

S := {(λ, x) ∈ U : F (λ, x) = 0} , and

N := {(λ, x) ∈ S : Ker(∂xF (λ, x) = {0}} ,

and we define a distinguished arc to be a maximal connected subset of N . We now define
some conditions:

(G1) Bounded closed subsets of S are compact in R×X .
(G2) ∂xF (λ, x) is a Fredholm operator of index zero for all (λ, x) ∈ S.
(G3) There exists an analytic function (λ, u) : (0, ε) → S such that ∂xF (λ(s), u(s)) is
invertible for all s ∈ (0, ε) and lims→0+(λ(s), u(s)) = (0, 0).

Define A+ := {λ(s), u(s) : s ∈ (0, ε)}.

We now state Theorem 1.13 from [4].

Theorem 1.13. [4] Suppose (G1)-(G3) hold. Then, (λ, u) can be extended as a continuous
map (still called) (λ, u) : (0,∞)→ S with the following properties:

1. Define A := {(λ(s), u(s)) : s > 0}. Then N ∩ A is an at most countable union of
distinct distinguished arcs ∪ni=0Ai, n ≤ ∞.

2. A+ ⊂ A0.

3. {s > 0 : Ker(∂xF (λ(s), u(s)) 6= {0} is a discrete set.

4. At each of its points A has a local analytic re-parameterization (see [4] for details).

5. One of the following occurs.

(a) ‖(λ(s), u(s))‖R×X →∞ as s→∞.

(b) the sequence {(λ(s), u(s))} approaches the boundary of U as s→∞.
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(c) A is the closed loop:

A = {(λ(s), u(s)) : 0 ≤ s ≤ T, (λ(T ), u(T )) = (0, 0) for some T > 0}.

In this case, choosing the smallest such T > 0 we have (λ(s + T ), u(s + T )) =
(λ(s), u(s)) for all s ≥ 0.

6. Suppose ∂xF (λ(s1), u(s1)) is invertible for some s1 > 0. If for some s2 6= s1, we have
(λ(s1), u(s1)) = (λ(s1), u(s2)) then 5 (c) occurs and |s2 − s1| is an integer multiple of
T . In particular the map s 7→ (λ(s), u(s)) is injective on [0, T ).

We will now apply this theorem to (3); which we re-write for the sake of the reader (and
we change notation to u to agree with the above stated theorem){

−∆θu = λpu+ up in S,
u = 0 on ∂S.

Let φ1 > 0 denote the first eigenfunction of −∆θ in H1
0 (S), which is L∞ normalized. We

define

Cφ1 :=

{
u ∈ C0(S) : ‖u‖Cφ1 := sup

Ω

|u|
φ1

<∞
}
,

and we set

C+
φ1

:=

{
u ∈ Cφ1 : inf

Ω

u

φ1

> 0

}
,

which is open in Cφ1 . We now set X = Y := Cφ1 , U := (p0, p2)×C+
φ1

and define the mapping
F : U → Y by

F (p, u) := u+ λp(∆θ)
−1u+ (∆θ)

−1up.

(G1’) Since we are working on the finite interval (p0, p2) we can adjust (G1) to read for
all δ > 0 (small) that Sδ := {(p, u) ∈ U : F (p, u) = 0, p ∈ [p0 + δ, p2 − δ]} is compact in
(p0, p2)×X .

Condition (G1’) We begin by checking the condition (G1’). We suppose the result is false
and so there is some (pm, um) such that pm → p̂ ∈ (p0, p2) and um does not converge in X .
First note that if ‖um‖L∞ is unbounded then a blow up argument allows one to obtain the
needed contradiction; see Lemma 2. So from this we see that um is uniformly bounded in
L∞. If ‖um‖L∞ → 0 we can renormalize to find a positive solution v of −∆θv = λp̂v in S
with v = 0 on ∂S; which is a contradiction since λp̂ is not equal the first eigenfunction of
−∆θ in H1

0 (S). So we have shown there are positive constants Ci with C1 ≤ ‖um‖L∞ ≤ C2.
By elliptic regularity we can pass to a subsequence and find some ε0 > 0 and u ∈ C2,ε0(S)
such that um → u in C2,ε0(S). Note that u ∈ Cφ1 after considering the fact that the gradient
is bounded. This convergence is sufficient to show that um → u in Cφ1 ; a contradiction. So
we have shown condition (G1’) holds.
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Condition (G2) Condition (G2) holds from standard abstract elliptic theory.

Condition (G3) We first need to prove the existence of a local branch of solutions and
to do this we apply the Crandall-Rabinowitz Theorem, see Theorem 1.7 in [10] and for the
readers convenience we restate it here.

Theorem 1.7. [10] Let X, Y be Banach spaces, V a neighborhood of 0 in X and

F : (−1, 1)× V → Y

have the properties
(a) F (t, 0) = 0 for |t| < 1,
(b) the partial derivatives Ft, Fx and Ftx exists and are continuous,
(c) N(Fx(0, 0)) and Y

R(Fx(0,0))
are one-dimensional.

(d) Ftx(0, 0)x0 6∈ R(Fx(0, 0)), where

N(Fx(0, 0)) = span{x0}.

If Z is any complement of N(Fx, (0, 0)) in X, then there is a neighborhood U of (0, 0) in
R×X, an interval (−a, a), and continuous functions ϕ : (−a, a)→ R, ψ : (−a, a)→ Z such
that ϕ(0) = 0, ψ(0) = 0 and

F−1{0} ∩ U = {(ϕ(s), sx0 + sψ(s)) : |s| < a} ∪ {(t, 0) : (t, 0) ∈ U}.
If Fxx is also continuous, the functions ϕ and ψ are once continuously differentiable.

To apply the above theorem for our equation, let X, Y = Cφ1 and consider the operator
F : (1, p2)×X → Y as

F (p, u) := u− λp(−∆θ)
−1u− (−∆θ)

−1|u|p.

We have F (p, 0) = 0 ∈ Y for all p ∈ (1, p2). Also, at the point p0 we have λp0 = λ1(S) and

Lξ := Fu(p0, 0)ξ = ξ − λ1(−∆θ)
−1ξ,

which is a Fredholm operator of index zero and ker(L) is one-dimensional, indeed we have
ker(L) = span{φ1} where, as before, φ1 > 0 is the first eigenfunction of −∆θ in H1

0 (S)
(which is L∞ normalized). Additionally, we have that codim Rang(L) = 1 by the Fredholm
alternative. Now we check the transversality condition:

∂2
p,uF (p0, 0)φ1 6∈ range(L). (19)

We have

∂2
p,uF (p0, 0)φ1 = lim

t→0

∂uF (p0 + t, 0)φ1 − ∂uF (p0, 0)φ1

t

= lim
t→0

λp0 − λp0+t

t
(−∆θ)

−1φ1

= −
[

λ1

p0 − 1
+

4

(p0 − 1)3

]
φ1

λ1

:=
β

λ1

φ1,
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so if (19) does not hold then there should be a ξ ∈ X such that ξ − λ1(−∆θ)
−1ξ = β

λ1
φ1 or

−∆ξ = λ1ξ − β, in S ξ = 0 on ∂S,

which is impossible because β 6= 0. Thus by the above Theorem 1.7, there exists a continuous
function

(p(s), u(s)) : (−a, a)→ (1, p1)×X

such that F (p(s), u(s)) = 0 for all s ∈ (−a, a), p(0) = p0, and u(s) = sφ1 + sψ(s), where ψ
is continuous on (−a, a), ψ(0) = 0 and ψ is orthogonal to φ1. Now note by the continuity of
ψ at s = 0 we have

sup
x∈S

|ψ(s)|
φ1

(x) = ‖ψ(s)‖Cφ1 = ‖ψ(s)− ψ(0)‖Cφ1 <
1

2
,

for s sufficiently small, gives that u(s) ≥ s
2
φ1, for s > 0 small. In particular, u(s) ∈ C+

φ1
for

s > 0 sufficiently small. Note also that for 0 < s small we must have p(s) > p0; otherwise
we would not have a positive solution.

We need to now show that this local solution is analytic in the parameter s. We now
return to the prior setting of F : U → Cφ1 and we can apply a similar argument to [12] to
see that the solution is analytic in the parameter s on an interval of the form s ∈ (0, ε). To
see the nondegeneracy condition we suppose that (p(sm), u(sm)) = (pm, um) is a degenerate
solution with sm → 0 and we let φm denote L∞ normalized solutions of the linearized
equation. Hence we have

−∆θφm = λpmφm + pmu
pm−1
m φm in S, φm = 0 on ∂S,

and we have ‖um‖L∞ → 0. Since pm → p0 we see pm−1 is bounded away from zero and hence
we can pass to the limit in the equation to see that there is some φ∞ which is L∞ normalized
such that φm → φ∞ in C2,ε0(S) (after passing to a subsequence) and which satisfies

−∆θφ∞ = λ1(S)φ∞ in S, φ∞ = 0 on ∂S,

and hence we must have φ∞ to be either φ1 or −φ1. We can assume without loss of generality
that φ∞ = φ1 and hence we have φm → φ1 in C2,ε0(S). Multiplying the equation for um by
φm and integrating and then multiplying the equation for φm by um and integrating (and
equating) we arrive at ∫

S

upmm φmdθ = 0,

for all m; and hence φm must be sign changing. Using the convergence of φm we see φm > 0
in S for large enough m and hence we have a contradiction. From this we see that by
taking ε > 0 smaller if necessary we have that (u(s), p(s)) is a nondegenerate solution for
all s ∈ (0, ε). This proves that condition (G3) holds. For later reference we now define
A+ := {(p(s), u(s)) : s ∈ (0, ε)}.
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We now apply Theorem 1.13 [4] to obtain an extension of the map s 7→ (p(s), u(s)) to
all of (0,∞). In particular part 3 gives us that {s > 0 : Ker(∂uF (p(s), u(s))) 6= {0}} is a
discrete set. In particular if {p(s) : s > 0} = (p0, p2) then we are done. To show this is the
case we need to consider the 3 possible cases from alternative offered in part 5 of the theorem.

(a) We first suppose ‖(p(s), u(s))‖R×Cφ1 →∞. By passing to a subsequence we can assume
there is some sm →∞ such that p(sm)→ p̂ ∈ [p0, p2]. If p̂ = p2 then we are done so we now
assume p̂ ∈ [p0, p2) and we let tm := ‖um‖L∞ . If tm →∞ we can apply a blow up argument
to obtain a contradiction; see Lemma 2. We now suppose tm is bounded above. Then by
elliptic regularity we see that um is bounded in C1,δ(S) for some δ > 0 and this is sufficient
to see that um is bounded in Cφ1 and hence we obtain the needed contradiction. So we have
shown that either case (a) happens and {p(s) : s > 0} = (p0, p2) (hence we are done) or case
(a) cannot happen.

(b) We now consider the possibility of case (b) happening. Lets suppose after passing to a
subsequence we have p(sm)→ p2; then as before we are done. So lets assume p(s)→ p0. Then
there is some s0 (large) such that for all s ≥ s0 we have p(s) ∈ (p0, p(ε)) and by uniqueness
of solution for p ∈ (p0, p1) Theorem A [38] we see there is some τs ∈ (0, ε) such that
(p(s), u(s)) = (p(τs), u(τs)). Therefore, we obtain that the distinguished arc corresponding
to all large s must coincide with A0. This gives a contradiction, as distinguished arcs are
distinct from Theorem 1.13 part 1.

So we can now suppose p̂ ∈ (p0, p2) and we set tm := ‖um‖L∞ . As before if tm → ∞ we

can obtain a contradiction. If tm → 0 we can re-normalize um by vm(x) := um(x)
tm

and see
that vm > 0 converges to some v > 0 with ‖v‖L∞ = 1 and −∆θv = λp̂v in S with v = 0
on ∂S; but this gives us a contradiction since λp̂ 6= λ1(S). So now we can assume tm is
bounded and bounded away from zero. From this and elliptic regularity we can find a some
0 < u ∈ C2,ε0(S) which satisfies

−∆θu = λp̂u+ up̂ in S, u = 0 on ∂S,

and by Hopf’s lemma we have inf∂S |∇u| > 0. From this we can conclude that u ∈ C+
φ1

, and
using the above stated convergence we see that um → u in Cφ1 ; and hence we cannot have
um converge to the boundary of C+

φ1
. Hence we have shown if we are in case (b) we must

have p(s)→ p2 and we are done.

(c) We now suppose we are in the closed loop case. Then for arbitrary large s with
p(s) ∈ (p0, p(ε)) we have the existence of τs ∈ (0, ε) such that (p(s), u(s)) = (p(τs), u(τs)).
This shows that for these large values of s we must have s ∈ A0; which again is a contradic-
tion by the same argument as in part (c).

So from the above we have shown the following result.

Proposition 2. Suppose S and N are as in Theorem 1. Then there is a sequence of in-
creasing qk (possibly empty or finite) with p1 ≤ q1 < q2 < ... with qk < p2 (with p2 being
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the only possible limit point) such that for all p ∈ (p0, p2)\{qk : k ≥ 1} one has that wp is a
nondegenerate solution of (3).

3.2 Nondegeneracy of w on general domains S

In this section we extend the nondegeneracy result to general domains S, but of course now
the set of {qk : k ≥ 1} where wp is degenerate is contained in (p0, p2) with p2 being the only
possible limit point. To obtain this result we will again apply Theorem 1.13 [4], but first we
will require a couple of results. We begin by proving classical solutions of (3) are uniformly
bounded; which is really just the standard subcritical result.

Lemma 2. (Subcritical solutions are uniformly bounded) Suppose N ≥ 3 and S ⊂ SN−1

with smooth nonempty boundary. Suppose pm ∈ [p0, p2) with supm pm < p2. Then there is
some C > 0 such that for um > 0 a classical solution of (3) we have ‖um‖L∞ ≤ C for all m.

Proof. Using the stereographic projection (see (13) we see that there is some domain D ⊂
RN−1 (bounded with smooth boundary) and positive solution vm(x) related to um via

vm(x) =
um(P−1x)

(1 + |x|2)
N−3

2

, x ∈ D,

and vm satisfies{
∆vm + (N−1)(N−3)+4λpm

(1+|x|2)2
vm + 4(1 + |x|2)

p(N−3)−(N+1)
2 vpmm = 0 in D,

vm = 0 on ∂D.
(20)

We can now use a standard blow up argument to obtain a contradiction and hence vm
must be uniformly bounded.

The following proposition 3 is heavily inspired by [11], where they prove some unique-
ness and nondegeneracy results for −∆u = up in a Euclidean domain with zero boundary
condition; for p close to 1. This result is also contained in [12]. We mention that the result
we need is much easier than the above mentioned problem since our exponent doesn’t get
close to 1.

Proposition 3. Let S ⊂ SN−1 with smooth boundary with N ≥ 3. Then there is some ε > 0
(small) such that for all p ∈ (p0, p0 + ε) there is a unique positive solution of (3). Moreover
the solution is nondegenerate.

Proof. To agree with the notation from Section 3.1 we will change the variable from w to u.
We first prove uniqueness. Suppose pm ↘ p0 and um, vm are two positive distinct solutions
of (3). Set ζm := um−vm

tm
where tm > 0 chosen such that ‖ζm‖L∞ = 1. We first show that um

(and also vm) must satisfy ‖um‖L∞ → 0. Set Tm := supS um and by Lemma 2 we know Tm
is bounded. Suppose Tm → T ∈ (0,∞); then we can pass to a limit in the equation to find a
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positive solution of (3) with p = p0; but this is a contradiction if we recall that λp0 = λ1(S).
Multiplying the equation for um by vm and vice versa we obtain

0 =

∫
S

umvm (upmm − vpmm ) dθ,

and from this we see that ζm must change sign. A computation shows that{
−∆θζm = λpmζm + Cm(θ)ζm in S,

ζm = 0 on ∂S,
(21)

where Cm(θ) := upmm −vpmm
um−vm . Since pm bounded away from one and ‖um‖L∞ , ‖vm‖L∞ → 0 we

see that supS |Cm| → 0. By passing to a subsequence we can pass to the limit in (21) to see
there is some ‖ζ‖L∞ = 1 such that ζm → ζ in C1(S) and ζ satisfies −∆θζ = λp0ζ in S with
ζ = 0 on ∂S. Recalling φ1 > 0 is L∞ normalized first eigenfunction we see that we must
have ζ = +φ1 or ζ = −φ1. Without loss of generality we take ζ = φ1; but this contradicts
fact that ζm is sign changing and converges to φ1 in C1. So we have shown there is a unique
solution of (3) for p > p0 but close. We now show the solution is nondegenerate.

So we let um > 0 denote a solution of above with pm ↘ p0 and we assume the solution is
degenerate and we let φm denote an L∞ normalized solution of the linearized equation, ie.
−∆θφm = λpmφm + pmu

pm−1
m φm in S with φm = 0 on ∂S. Multiplying this equation by um

and integrating; and multiplying the equation for um by φm and integrating we arrive at

0 =

∫
S

upmm φmdθ,

and so we see that φm must be sign changing. Now again noting that since pm − 1 is
bounded away from zero we have supS u

pm−1
m → 0. Arguing as above we can show that φm

must converge in C1 to either φ1 or −φ1; but again we get a contradiction to φm being sign
changing.

4 The fixed point argument

Recall we have defined Jt(φ) = ψ where ψ satisfies

L(ψ) = (v0 + φ)p − vp0 − pv
p−1
0 φ+ Et(v0) + Et(φ)

=: K(φ) + +Et(v0) + Et(φ) in Ω

with ψ = 0 on ∂Ω\{0}. To obtain a solution φ of (9) we will show that Jt is a contraction
on Bε0 where Bε0 is the closed ball of radius ε0 centered at the origin in X.
First we show that for ε0 sufficiently small

‖K(φ2)−K(φ1)‖C0,α
ν−2
≤ C(ε0)‖φ2 − φ1‖C2,α

ν
, where C(ε0)→ 0 as ε0 → 0 (22)
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for all φ2, φ1 ∈ Bε0 . To this end, we first prove that for ε0 sufficiently small and φ ∈ Bε0 we
have

|φ(x)| ≤ Cε0v0(x), for x ∈ Ω.

To see the above note that ‖φ‖C2,α
ν

< ε0 implies |φ(x)| < ε0|x|ν , for x ∈ Ω \ {0}. Now set
φ(x) = φ(r, θ) = ε(r, θ)rν with |ε(r, θ)| < ε0, so to get |φ(x)| ≤ Cε0v0(x) it suffices to show

|ε(r, θ)| < Cε0w(θ) for all r ∈ (0,∞). (23)

Using the inequality |∇θφ|
r
≤ |∇xφ| in the second term in the definition of ‖φ‖C2,α

ν
we get

sup
s>0

s−ν
(
s sup

As

[
r−ν−1|∇θε(r, θ)

])
≤ ε0,

and from this we roughly get

sup
s>0

sup
As

|∇θε(r, θ)| ≤ Cε0.

Then using ε(r, θ) = 0 on ∂S and the mean value theorem, we get

|ε(r, θ)| ≤ Cε0dist(θ, ∂S) for all r ∈ (0,∞).

Hence to prove (23) we need to show

C0dist(θ, ∂S) ≤ w(θ), θ ∈ S. (24)

Recall that w(θ) > 0 satisfies the equation −∆θw− ν(N − 2 + ν)w = wp ≥ 0 in S, then by a
refinement of Hopf’s lemma (Lemma 1, chapter 9 of [22]) we get ∂w

∂ν
< 0 on ∂S that by the

compactness of ∂S this easily gives w(θ) > C0dist(θ, ∂S) for θ ∈ S. Hence we have (24) for
ε0 sufficiently small.

Now since | φ
v0
| ≤ Cε0 < 1 for φ ∈ Bε0 we can show that, using the Taylor expansion, we

have for x ∈ Ω, φ2, φ1 ∈ Bε0 and p > 1

|K(φ2)−K(φ1)|(x) ≤ Cvp−2
0 (x)(|φ1(x)|+ |φ2(x)|)(|φ2(x)− φ1(x)|). (25)

To see (25), first note we have

K(φ2)−K(φ1) = (v0 + φ2)p − (v0 + φ1)p − pvp−1
0 (φ2 − φ1)

= vp0

[
(1 + a)p − (1 + b)p − p(a− b)

]
, where a :=

φ2

v0

and b :=
φ1

v0

.

Note when |t| < 1 we have by Taylor expansion (or binomial expansion), for p > 1

(1 + t)p = 1 + pt+
∞∑
2

γkt
k,
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where γk are the binomial coefficients, and where this series converges absolutely provided
|t| < 1. Hence,

K(φ2)−K(φ1) = vp0

∞∑
2

γk(a
k − bk).

Now note by the mean value theorem, for k ≥ 2 we have

|ak − bk| = |(a2)
k
2 − (b2)

k
2 | ≤ k

2
|a2 − b2| z

k
2
−1

for some z between a2 and b2, and recall we have |a|, |b| ≤ Cε0 < 1, hence z < ε1 < 1.

Therefore, applying the above estimates we get (Note
∑∞

2 kγkz
k
2
−1 is bounded by a C

independent of z for 0 < z < ε1)

|K(φ2)−K(φ1)| ≤ vp0

∞∑
2

γk
k

2
|a2 − b2| z

k
2
−1 ≤ Cvp0|a2 − b2|

= Cvp0|(
φ2

v0

)2 − (
φ1

v0

)2| ≤ Cvp−2
0 (|φ2|+ |φ1|)|φ2 − φ1|,

which proves (25).
Now from (25) we have

|K(φ2)−K(φ1)|(x) ≤ Cvp−1
0 (x)(

|φ1(x)|
v0

+
|φ2(x)|
v0

)(|φ2(x)−φ1(x)|) ≤ Cε0
wp−1(θ)

|x|2
(|φ2(x)−φ1(x)|)

≤ Cε0

|x|2
(|φ2(x)− φ1(x)|)

Thus for x ∈ As we get

s2−ν |K(φ2)−K(φ1)|(x) ≤ Cε0s
−ν(|φ2(x)− φ1(x)|),

that gives
sup
s>0

s2−ν sup
As

|K(φ2)−K(φ1)|(x) ≤ Cε0‖φ2 − φ1‖C2,α
ν
. (26)

To estimate the Holder norm of K(φ2)−K(φ1), first note that using the inequality

sup
s>0

s2−ν+α sup
x,y∈As

|f(x)− f(y)|
|x− y|α

≤ 4 sup
s>0

s3−ν sup
As

|∇f |,

it suffices to estimate s3−ν |∇K(φ2)−∇K(φ1)| in As. We have

∇K(φ) = p
(

(v0 + φ)p−1)− vp−1
0 − (p− 1)vp−2

0 φ
)
∇v0 + p

(
(v0 + φ)p−1)− vp−1

0

)
∇φ.
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Again using Taylor expansion in the expression above and similar as before one can show
that

sup
s>0

s3−ν sup
As

|∇K(φ2)−∇K(φ1)| ≤ C(ε0)‖φ2−φ1‖C2,α
ν
, where C(ε0)→ 0 as ε0 → 0. (27)

Now (26) and (27) imply (22).
Also by the definition of Et and assumptions in (6) its easy to get

‖Et(φ2 − φ1)‖C0,α
ν−2
≤ Ct‖φ2 − φ1‖C2,α

ν
and ‖Et(v0)‖C0,α

ν−2
≤ Ct. (28)

Now note that taking φ1 = 0 in (22) and (28) we get

‖K(φ)‖C0,α
ν−2
≤ C(ε0)‖φ‖C2,α

ν
and ‖Et(φ)‖C0,α

ν−2
≤ Ct‖φ‖C2,α

ν
, φ ∈ Bε0 . (29)

Now by the definition of Jt, the continuity of the right inverse of L and the above estimates
(22),(28) and (29) we see that, for t, ε0 sufficiently small, Jt maps Bε0 to itself. Also by these
estimates we get

‖Jt(φ2)− Jt(φ1)‖C2,α
ν
≤ (Ct+ C(ε0))‖φ2 − φ1‖C2,α

ν
for all φ2, φ1 ∈ Bε0 ,

where C(ε0) → 0 as ε0 → 0. This shows that for sufficiently small t and ε0, Jt : Bε0 → Bε0

is a contraction and hence we can apply Banach’s Contraction Mapping Principle to obtain
a fixed point φ ∈ Bε0 . By taking ε0 > 0 small enough we see that v(x) = v0(x) + φ(x) is
positive in Ω by considering (23) and satisfies (7).

5 More general equations

We now point out some more general equations that can be handled by the above method.

1. We first consider the Hénon like equation

{
−∆u = |x|αup in Ωt,

u = 0 on ∂Ωt.
(30)

Then v0(r, θ) := r
−2−α
p−1 w(θ) is a separable positive solution on the unperturbed equation

provided w is a positive classical solution of

−∆θw = λ̂pw + wp in S, w = 0 on S,

where

λ̂p :=

(
α + 2

p− 1

)(
2 + α

p− 1
− (N − 2)

)
.
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Note for general S we will require that p is subcritical; hence p < N+1
N−3

and we will need

λ̂p < λ1(S), where λ1(S) is defined as before. Note this implies various restrictions on

the allowed parameters; for instance for S and p fixed we have λ̂p → ∞ as α → ∞;

hence for large α we have λ̂p > λ1(S). Once we find a positive classical solution w we
still need to show its nondegenerate; which would then show using the same method

as above that the linearized operator L(φ) := −∆φ− pw(θ)p−1φ
r2

is surjective and we can
proceed as before.

2. We can also examine equations of the form{
−∆u = up ± |x|βuq in Ωt,

u = 0 on ∂Ωt.
(31)

As before we look for separable solutions on the unperturbed cone. A computation

shows that for β := 2
p−1

(q − 1)− 2 we have v0(r, θ) = r
−2
p−1w(θ) is a separable solution

provided w > 0 a classical solution of

−∆θw = λpw + wp ± wq in S, w = 0 on ∂S,

where

λp :=
2

p− 1

(
2

p− 1
− (N − 2)

)
.

To follow our approach we will need to show the linearized operator is surjective onto
to Y ; which follow using the same argument as before (hence we need to prove the
nondegeneracy of w).

3. Consider {
−∆u+ C(θ)

|x|2 u = up in Ωt,

u = 0 on ∂Ωt.
(32)

A computation shows that v0(r, θ) := r
−2
p−1w(θ) is a positive singular solution of (32)

on the unperturbed cone Ω provided w > 0 is a classical solution of

−∆θw + C(θ)w = λpw + wp in S, w = 0 on ∂S.

As before to find positive singular solution of (32) for t > 0 small we will need w to be
a nondegenerate solution.

6 Alternate function spaces

In this section we consider some alternate functions spaces to consider our problem in, the
purpose being that this may allow one to use perturbations that are not admissible in the
weighted Hölder spaces we used in the previous sections. Instead of considering perturbations
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of the cone we prefer here to consider lower order perturbations of the equation on the
unperturbed cone Ω, where Ω is defined as in the introduction. This will be sufficient to
illustrate that there are benefits for considering these new spaces. Recall in the previous
sections Y = C0,α

ν−2 and X was the C2,α
ν functions which were zero on ∂Ω. We will now

denote this second space as C2,α
ν,0 ; any reference to spaces X and Y from here forwards refers

to the spaces defined below. We now define the following new norms

‖f‖Y := sup
s>0

sα+1−N
2 ‖f‖H−1(As),

‖φ‖X1 := sup
s>0

sα+1−N
2 ‖∇φ‖L2(As), ‖φ‖X0 := sup

s>0
sα−

N
2 ‖φ‖L2(As)

which are the weighted H−1 and H1
0 spaces we consider. We will also consider some weighted

Lq spaces

‖f‖Yq := sup
s>0

sα+2−N
q ‖f‖Lq(As),

‖φ‖X0
q

:= sup
s>0

sα−
N
q ‖φ‖Lq(As), ‖φ‖X1

q
:= sup

s>0
sα+1−N

q ‖∇φ‖Lq(As),

‖φ‖X2
q

:= ‖φ‖X1
q

+ sup
s>0

sα+2−N
q ‖D2φ‖Lq(As).

As before we define L via (8) where w = wp denotes a positive classical solution of (3).
We now consider two perturbations of (2) given by{

−∆u+ V (x)u = up in Ω,
u = 0 on ∂Ω\{0}, (33)

and {
−∆u = |u|p + f(x) in Ω,

u = 0 on ∂Ω\{0}. (34)

Recall if V (x) = C(θ)
|x|2 we can handle (33) via the prior method, see Section 5. Here we

would like to consider cases of V (x) which our prior methods would not be able to handle.
As before we look for solutions of the form u(x) = v0(x) + φ(x) of (33); but we replace up

with |u|p for now, and recall v0 is the explicit separable solution of (2). We then need φ to
satisfy {

L(φ) = H(φ)− V (x)φ− V (x)v0 in Ω,
φ = 0 on ∂Ω\{0}, (35)

where H(φ) := |v0 + φ|p − vp0 − pv
p−1
0 φ. Using the same approach we see to find a solution

of (34) we need φ to satisfy{
L(φ) = H(φ) + f(x) in Ω,

φ = 0 on ∂Ω\{0}. (36)

Before we carry on we state our main linear result regarding these new spaces.
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Proposition 4. Suppose N ≥ 3.

1. Suppose p ∈ (p0, p1), µk 6= 0 for all k ≥ 1. Then there is some C > 0 such that for all
f ∈ Y there is some φ ∈ X1 such that L(φ) = f in Ω with φ = 0 on ∂Ω. Moreover one
has the estimate ‖φ‖X1 ≤ C‖f‖Y .

2. Suppose p ∈ (p0, p2), 1 < q <∞ and µk 6= 0 for all k ≥ 1. Then there is some Cq such
that for all f ∈ Yq there is some φ ∈ X2

q such that L(φ) = f in Ω with φ = 0 on ∂Ω.
Moreover one has the estimate ‖φ‖X2

q
≤ Cq‖f‖Yq .

6.0.1 Equation (33)

Here we examine conditions on V (x) so we can obtain a positive solution of (33). Our main
interest is to weaken the spaces to allow for V (x) for which the weighted Hölder spaces we
used in the previous sections wouldn’t work. So we want V (x) to not be smooth; but we
will impose smallness conditions (to see examples of V (x) without smallness assumptions

see Section 5). We consider V (x) = Vε(x) = hε(x)
|x|2 where ε > 0 is a small parameter. So we

consider the nonlinear operator Jε(φ) = ψ where{
L(ψ) = H(φ)− hεφ

|x|2 −
hεv0
|x|2 in Ω,

ψ = 0 on ∂Ω\{0}.
(37)

We begin with some estimates on H(φ) (see below (35) for the definition of H). For
p > 1 there is some C (all constants just depend on p) such that for all 0 < v0 ∈ R and
φi, φ ∈ R one has

|H(φ)| ≤ C(vp−1
0 + |φ|p−1)|φ|, (38)

|H(φ2)−H(φ1)| ≤ C
(
vp−1

0 + |φ2|p−1 + |φ1|p−1
)
||φ2 − φ1|, (39)

|H(φ)| ≤ C
(
vp−2

0 φ2 + |φ|p
)
, (40)

|H(φ2)−H(φ1)| ≤ C
(
vp−2

0 (|φ1|+ |φ2|) + |φ1|p−1 + |φ2|p−1
)
|φ2 − φ1|. (41)

If we restrict 1 < p ≤ 2 then we have

|H(φ)| ≤ C|φ|p (42)

|H(φ2)−H(φ1)| ≤ C
(
|φ2|p−1 + |φ1|p−1

)
|φ2 − φ1|. (43)

The estimates (40) and (41) are completely standard so we omit any discussion of them.
For the remaining estimates see Section 7.

We now state our main theorem in this section.
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Theorem 2. Suppose S, p,N are as in the hypothesis of Theorem 1 part 1 and for some
q ∈ (N,∞) one has

sup
s>0

1

sN

∫
As

|hε(x)|qdx→ 0, (44)

as ε↘ 0. Then for ε > 0 small enough there is a positive solution of (33) where V (x) = hε(x)
|x|2 .

Proof. Fix p, q, S,N as in the hypothesis. Define Jε as above. We will show that Jε is a
contraction on BR where BR is the closed ball centered at the origin in X2

q . The exact
approach will depend on whether p ≤ 2 or p > 2. We first consider the case of p ∈ (p0, 2].
Given φ ∈ BR a scaling argument and Sobolev imbedding theorems show the existence of
C > 0 such that

sup
s<|x|<2s

|φ| ≤
C‖φ‖X2

q

sα
(45)

for all s > 0.
Into. Let φ ∈ BR. Using (42) we see and (45) one immediately sees that

‖H(φ)‖Yq ≤ sup
s>0

sα+2−N
q C‖φ‖pX2

q
s
N
q

sαp
≤ CRp,

after noting the exponent on s is zero. A similar computation shows

‖hεv0|x|−2‖qYq ≤ C sup
s>0

1

sN

∫
As

|hε(x)|qw(θ)qdx

which converges to zero as ε → 0 by hypothesis. A similar computation and using (45) we
see

‖hεφ|x|−2‖qYq ≤ CRq sup
s>0

1

sN

∫
As

|hε(x)|qdx.

We set Tε := (1 + maxS w
q) sups>0

1
sN

∫
As
|hε(x)|qdx. Then we have Jε(BR) ⊂ BR provided

CRp + CTε + CRqTε ≤ R. (46)

Contraction. Let φi ∈ BR and then using (43) and (45) we have

‖H(φ2)−H(φ1)‖qYq ≤ C sup
s>0

sq(α+2−αp)Rq(p−1)‖φ2 − φ1‖qX2
q

and now note the exponent on s is zero. Now let Jε(φi) = ψi. A similar computation shows

‖hε|x|−2(φ2 − φ1)‖Yq ≤ CT
1
q
ε ‖φ2 − φ1‖X2

q
.

Combining the above two estimates shows

‖ψ2 − ψ1‖X2
q
≤
(
CRp−1 + CT

1
q
ε

)
‖φ2 − φ1‖X2

q
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and hence using this we see Jε is a contraction on BR provided (46) holds and CRp−1+CT
1
q
ε <

1. Note we can easily satisfy both these condition by fixing R > 0 small and then taking
ε > 0 small. We then can apply the Banach fixed point argument to see the existence of a
fixed point φ ∈ BR such that Jε(φ) = φ. By taking R > 0 sufficiently small its clear that

u = v0 + φ is nonzero and is a classical solution of (33) with V (x) = hε(x)
|x|2 in the case of

up replaced with |u|p. Since q > N and hence W 2,q ⊂ C0,1 we can argue as in the case of
weighted Hölder spaces to see u > 0 and hence satisfies (33).

We now consider the case of p > 2. In this case we use the inequality (41). First note
that to estimate ‖H(φ2)−H(φ1)‖Yq we just need to estimate the Yq norm of vp−2

0 |φi||φ2−φ1|
for i = 1, 2, because the other terms are computed in the above case and note we did not
use the restriction 1 < p ≤ 2 there. So we now have

‖vp−2
0 |φi||φ2 − φ1|‖qYq ≤ sup

s>0
s(α+2)q−N

∫
As

v
(p−2)q
0 |φi|q|φ2 − φ1|q ' Cs2αq−N

∫
As

|φi|q|φ2 − φ1|q

≤ Cs2αq−N

(
sup

s<|x|<2s

|φi|

)q(
sup

s<|x|<2s

|φ2 − φ1|

)q

sN

and by (45) we have this is bounded above by

≤ C sup
s>0

s2αq
‖φi‖qX2

q

sαq

‖φ2 − φ1‖qX2
q

sαq
≤ CRq‖φ2 − φ1‖qX2

q
.

Hence we proved that

‖vp−2
0 |φi||φ2 − φ1|‖Yq ≤ CR‖φ2 − φ1‖X2

q
,

and hence when coupled with the other term we have

‖H(φ2)−H(φ1)‖Yq ≤ C(R +Rp−1)‖φ2 − φ1‖X2
q
. (47)

From this we see that

‖ψ2 − ψ1‖X2
q
≤
(
C(R +Rp−1) + CT

1
q
ε

)
‖φ2 − φ1‖X2

q

and hence we have Jε a contraction on BR (but we haven’t proven into yet) provided

C(R +Rp−1) + CT
1
q
ε ≤

3

4
. (48)

Now let φ ∈ BR and Jε(φ) = ψ. Using the above estimate with φ2 = φ and φ1 = 0 (and
since H(0) = 0) we arrive at

‖H(φ)‖Yq ≤ C(R2 +Rp).
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So we then have

‖ψ‖X2
q
≤ C(R2 +Rp) + C‖|x|−2hεφ‖Yq + C‖x|−2hεv0‖Yq

and using the earliear estimates on the other terms we arrive at

‖ψ‖X2
q
≤ C(R2 +Rp) + CRT

1
q
ε

and hence for Jε(BR) ⊂ BR it is sufficient that

C(R2 +Rp) + CRT
1
q
ε ≤ R.

By fixing R > 0 sufficiently small and then taking ε > 0 small we see that we can satisfy
this property along with (48) and hence Jε is a contraction on BR and now we can proceed
as in the case of p ≤ 2.

Remark 1. Instead of working with q > N we can also work with q = N
2p′
∈ (1, N

2
), p′ = p

p−1
,

and here one needs weaker assumptions on the smallness of hε. The problem with this
approach is one does not get for free the positivity of u = v0 + φ (but they do get u 6= 0). So
one still needs to prove u is positive and hence we chose to not pursue this. Also note for the
problem at hand the weighted Hölder spaces we used in the beginning would not be sufficient.

6.0.2 Equation (34)

We now state our main theorem for this section.

Theorem 3. Suppose S, p,N are as in the hypothesis of Theorem 1 part 1 and additionally
we assume p < N+2

N−2
. Then for ‖f‖Y small enough there exists a solution u ∈ X1 of (34).

Proof. Define the nonlinear mapping J(φ) = ψ via{
L(ψ) = H(φ) + f(x) in Ω,

ψ = 0 on ∂Ω\{0}, (49)

and to obtain a solution φ of (36) we show J is a contraction on BR (the closed ball of radius
R centered at the origin in X1). We fix p as above and we assume additionally that p ≤ 2.
Into. Let φ ∈ BR and let ψ = J(φ). Then we have

‖ψ‖X1 ≤ C‖f‖Y + C‖H(φ)‖Y .

Note there is some C > 0 such that ‖g‖H−1(As) ≤ C‖g‖
L

2N
N+2 (As)

where C independent of s.

Using this we have

‖H(φ)‖H−1(As) ≤ C‖H(φ)‖
L

2N
N+2 (As)

≤ C‖φ‖p
L

2pN
N+2 (As)
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and hence we have
‖H(φ)‖Y ≤ C sup

s>0
sα+1−N

2 ‖φ‖p
L

2pN
N+2 (As)

.

For 1 < q ≤ 2∗ there is some C > 0 such that

‖φ‖Lq(As) ≤
C‖φ‖X1

sα−
N
q

(50)

for all s > 0. From this we see that

‖H(φ)‖Y ≤ C sup
s>0

sα+1−N
2 ‖φ‖pX1

sp(α−
N
q

)

where we are taking q = 2pN
N+2

which is in the allowable range since we have p < N+2
N−2

. From
the definition of q and α we see the exponent on s is zero and hence we have

‖H(φ)‖Y ≤ CRp.

So we see that if ψ = J(φ) that

‖ψ‖X1 ≤ C‖H(φ)‖Y + C‖f‖Y ≤ CRp + C‖f‖Y

and hence to have J(BR) ⊂ BR we need

CRp + C‖f‖Y ≤ R. (51)

Contraction. Let φi ∈ BR and ψi = J(φi). Then we have

‖ψ2 − ψ1‖X1 ≤ C‖H(φ2)−H(φ1)‖Y

and we now estimate the right hand side of this using (43). So we have

‖H(φ2)−H(φ1)‖H−1(As) ≤ C‖H(φ2)−H(φ1)‖
L

2N
N+2 (As)

≤ C‖(|φ1|p−1+|φ2|p−1)|φ2−φ1)‖
L

2N
N+2 (As)

=: I

and we now examine one term of I;

I
2N
N+2 =

∫
As

|φ1|
(p−1)2N
N+2 |φ2 − φ1|

2N
N+2dx

and we now apply Höler’s inequality on this with 2Nt
N+2

= 2∗ = 2N
N−2

to obtain

I ≤ ‖φ1‖p−1

L
N(p−1)

2 (As)
‖φ2 − φ1‖L2∗ (As)

and note since p < N+2
N−2

we have N(p−1)
2

< 2∗. We now use (50) to see

I ≤ CRp−1‖φ2 − φ1‖X1

sαp−1−N
2
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and from this we see

‖H(φ2)−H(φ1)‖Y ≤
(
CRp−1 sup

s>0
sα+2−αp

)
‖φ2 − φ1‖X1

and noting the exponent on s is zero, and hence we have

‖ψ2 − ψ1‖X1 ≤ CRp−1‖φ2 − φ1‖X1 .

Using this and (51) we see for small R > 0 and then assuming ‖f‖Y is small we see that J
is a contraction on BR and hence we can apply Banach’s fixed point theorem. The case of
p > 2 is similar; again we omit the details.

6.1 The linear theory

In this section we prove Proposition 4. We begin by examining the kernel of L in these
various new spaces.

Lemma 3. (Kernel of L) Suppose N ≥ 3.

1. Suppose p ∈ (p0, p1), µk 6= 0 for all k ≥ 1 and φ ∈ X1 is such that L(φ) = 0 in Ω with
φ = 0 on ∂Ω. Then φ = 0.

2. Suppose p ∈ (p0, p2), 1 < q < ∞ and µk 6= 0 for all k ≥ 1. Suppose φ ∈ X2
q is such

that L(φ) = 0 in Ω with φ = 0 on ∂Ω. Then φ = 0.

Proof. Let φ ∈ X1 or X2
q be such that L(φ) = 0 with φ = 0 on ∂Ω. We now write φ as

φ(x) =
∑∞

k=1 ak(r)ψk(θ). We now obtain bounds on each ak(r). First multiply the infinite
sum representation of φ by ψk(θ) and integrate over S one obtains (after taking absolute
values) that

|ak(r)| ≤
∫
S

|φ(rθ)||ψk(θ)|dθ ≤ Tk

∫
S

|φ(rθ)|dθ

where Tk is a constant depending on k, and then we can apply Jensen’s inequality to see
that

|ak(r)|q ≤ T̃k

∫
S

|φ(rθ)|qdθ

and hence we have ∫ 2s

s

rN−1|ak(r)|qdr ≤ Tk

∫
As

|φ(x)|qdx ≤ TkC

sqα−N
(52)

for all s > 0; here q > 1. Note this estimate gives∫ 2s

s

1

r
|ak(r)rα|qdr ≤ Tk. (53)
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From this we see
inf

s<r<2s
|rαak(r)|q ≤ T̃k (54)

for all s > 0.
We now obtain the form of ak(r). Note that ak(r) satisfies the following

0 =
∞∑
k=1

(
−a′′k(r)−

(N − 1)a′k(r)

r
+ (ν(N − 2 + ν) + µk)

ak(r)

r2

)
ψk(θ), (55)

and hence we must have

−a′′k(r)−
(N − 1)a′k(r)

r
+ (ν(N − 2 + ν) + µk)

ak(r)

r2
= 0 0 < r <∞, (56)

which are ode’s of Euler type. Define

γk := −(µk + ν(N − 2 + ν)),

and hence we can re-write the above ode’s as

a′′k(r) +
(N − 1)

r
ak(r) + γk

ak(r)

r2
= 0 0 < r <∞.

Looking for solutions of the form a(r) = rβ we see β needs to satisfy

β2 + (N − 2)β + γk = 0,

and from this we need to consider three cases:
Case I: (N − 2)2 − 4γk > 0
Case II: (N − 2)2 − 4γk = 0
Case III: (N − 2)2 − 4γk < 0.

Case I. In this case we have

β+
k :=

−(N − 2)

2
+

√
(N − 2 + 2ν)2 + 4µk

2

β−k :=
−(N − 2)

2
−
√

(N − 2 + 2ν)2 + 4µk
2

,

and hence ak(r) = Ckr
β+
k + Dkr

β−k for some Ck, Dk ∈ R and note β−k < β+
k . To show

Ck = Dk = 0 we claim it will be sufficient to show that both of β+
k , β

−
k differ from ν. In this

case we have
ak(r)r

α = Ckr
β+
k +α +Dkr

β−k +α

and note both exponents are nonzero by hypothesis. If either of Ck or Dk is nonzero we can
obtain a contradiction by considering (54) and sending s→ 0 or s→∞.
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Case II. In this case we have

|rαak(r)| = rα−
N−2

2

∣∣∣Ck +Dk ln r
∣∣∣

And since α 6= N−2
2

(because p 6= N+2
N−2

) we see that if Ck 6= 0 orDk 6= 0 then limr→0 |rαak(r)| =
∞ or limr→∞ |rαak(r)| =∞, a contradiction, hence Ck = Dk = 0.

Case III. (N − 2)2 − 4γk < 0. In this case define

ωk :=

√
4γk − (N − 2)2

2

and then the general solution given by

ak(r) = Ckr
2−N

2 sin(ωk ln(r)) +Dkr
2−N

2 cos(ωk ln(r)),

for constants Ck, Dk. Now note we have

T̃k
sqα−N

≥
∫ 2s

s

rN−1|ak(r)|qdr =

∫ 2s

s

rN−1+q 2−N
2

∣∣Ck sin(ωk ln(r)) +Dk cos(ωk ln(r))
∣∣qdr.

Changing the variable τ = r
s

in the last integral we get

T̃k

sq(α−
N−2

2
)
≥

∫ 2

1

τN−1+q 2−N
2

∣∣Ck sin(ωk ln(sτ)) +Dk cos(ωk ln(sτ))
∣∣qdτ

= (C2
k +D2

k)
q
2

∫ 2

1

τN−1+q 2−N
2

∣∣ sin(ωk ln(sτ) + θk
∣∣qdτ,

where θk := arcsin Dk√
C2
k+D2

k

. Now taking s = sm = e
± 2mπ

ωk , m = 1, 2, ... we get

T̃k

s
q(α−N−2

2
)

m

≥ (C2
k +D2

k)
q
2

∫ 2

1

τN−1+q 2−N
2

∣∣ sin(ωk ln(τ) + θk
∣∣qdτ = Ak > 0, m = 1, 2, ...

which is impossible by letting m→∞ noting that α− N−2
2
6= 0, unless we have Ck = Dk =

0.

Proof of Proposition 4. The idea of the proof in 1 and 2 will be to prove the result for
f ∈ C0,α

ν−2 (and hence φ ∈ C2,α
ν,0 ), and then perform a blow up argument. This will give us

the desired result, but for this reduced class of f . We then will extend to the full space of
f . We proof part 2 first since we don’t have to deal with H−1 in this case.

2. So we fix 1 < q < ∞ and we claim there is some Cq such that for all f ∈ C0,α
ν−2 there

is some φ ∈ C2,α
ν,0 with L(φ) = f in Ω with φ = 0 on ∂Ω and we have ‖φ‖X0

q
≤ Cq‖f‖Yq .

Of course the existence is not an issue, only the estimate might be false. So if we assume
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the result is false then there is fm ∈ C0,α
ν−2 and φm ∈ C2,α

ν,0 such that L(φm) = fm in Ω with
φm = 0 on ∂Ω and ‖φm‖X0

q
= 1 and ‖fm‖Yq → 0. Note after rescaling and using boundary

elliptic regularity theory we see that φm is bounded in X2
q (to see a similar calculation see

below). Also note there is some sm > 0 such that sqα−Nm ‖φm‖qLq(Asm ) ≥
3
4
. We now define

ζm(x) := sαmφm(smx) and note
∫

1<|x|<2
|ζm(x)|qdx ≥ 3

4
. Also note a computation shows that

for any i we have ∫
2i<|x|<2i+1

|ζm(x)|qdx ≤ 2i(N−qα). (57)

Also note we have

−∆ζm(x)− pw(θ)p−1ζm(x)

|x|2
= s2+α

m fm(smx) =: gm(x) in Ω (58)

with ζm = 0 on ∂Ω. For large integers k we set Ek := {x ∈ Ω : 1
k
< |x| < k} and

Ẽk := {x ∈ Ω : 1
2k
< |x| < 2k}. A computation shows that gm → 0 in Lq(Ẽk). Also note for

each large k there is some Ck such that we have

‖ζm‖W 2,q(Ek) ≤ Ck‖∆ζm‖Lq(Ẽk) + Ck‖ζm‖Lq(Ẽk) (59)

which shows there is some C̃k such that ‖ζm‖W 2,q(Ek) ≤ C for all m. By passing to a
subsequence and using a diagonal argument we can assume ζm ⇀ ζ in W 2,q(Ek) for any k
large and ζ satisfies L(ζ) = 0 in Ω with ζ = 0 on ∂Ω. Now also note we can pass to the
limit in (57) and also in the inequality above (57). From this we see that ζ ∈ X0

q is nonzero.
As before a scaling argument shows that ζ ∈ X2

q and hence we have a contradiction to the
kernel of L being trivial; see Lemma 3. We have now proved the initial claim; we need to
extend this to the full set of f .
Fix f ∈ Yq and for large m we set fm(x) = f(x) for x ∈ Em with fm = 0 otherwise. Then
we have ‖fm‖Yq ≤ ‖f‖Yq . By density there is some fm ∈ C0,α

ν−2 (in fact zero near the vertex
of the cone and ∞) such that ‖fm − fm‖Yq ≤ m−1‖fm‖Yq and hence we have

‖fm‖Yq ≤ ‖fm − fm‖Yq + ‖fm‖Yq ≤ (1 +m−1)‖f‖Yq ≤ 2‖f‖Yq

and for any large integer k there is some Ck such that

‖fm − fm‖Lq(Ẽk) ≤ Ck‖fm − fm‖Yq ≤
Ck
m
‖fm‖Yq ≤

Ck
m
‖f‖Yq .

Let L(φm) = fm in Ω with φm = 0 on ∂Ω. Then by the above estimates we have
‖φm‖X2

q
≤ C‖fm‖Yq ≤ 2C‖f‖Yq and hence we can pass to a subsequence and find some φ

such that φm ⇀ φ ∈ W 2,q(Ek) for all k and then note we have L(φ) = f in Ω with φ = 0 on
∂Ω. We now fix s > 0 and note we can pass to the limit to see

sqα−N
∫
As

|φ(x)|qdx ≤ 2qCq‖f‖qYq
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and now we can sup over s to see that we have the desired X0
q estimate on φ. We can now

use scaling to get the full X2
q bound on φ.

1. We claim there is some C > 0 such that for all f ∈ C0,α
ν−2 there is some φ ∈ C2,α

ν,0 with
L(φ) = f in Ω with φ = 0 on ∂Ω and we have ‖φ‖X0 ≤ C‖f‖Y (note that for any φ as
above we must have φ ∈ H1(Ẽk) for all k). As before the only issue is the estimate and so
if we assume its false there is some φm and fm which satisfy the equation and ‖φm‖X0 = 1,
‖fm‖Y → 0. Then there is some sm > 0 such that

s2α−N
m

∫
Asm

|φm(x)|2dx ≥ 3

4
.

Set ζm(x) := sαmφm(smx) and note for all i we have∫
2i<|x|<2i+1

|ζm(x)|2dx ≤ 2i(N−2α) and

∫
1<|x|<2

|ζm(x)|2dx ≥ 3

4
. (60)

As before we have ζm satisfies (58). We now make a few claims that we will prove later;
Claim 1. For each large k, gm (as defined in (58)) satisfies ‖gm‖H−1(Ẽk) → 0 as m→∞.

Claim 2. There Ck such that for all ψ ∈ H1
0,loc(Ω) (by this we mean ψ ∈ H1(Ek) for all k

and ψ = 0, in the sense of trace, on the lateral boundary of Ek for each k) we have

‖∇ψ‖L2(Ek) ≤ Ck‖∆ψ‖H−1(Ẽk) + Ck‖ψ‖L2(Ẽk).

Using Claim 1 and Claim 2 we see there is some Ck such that ‖ζm‖H1(Ek) ≤ Ck for all m
and using a diagonal argument there is some ζ ∈ H1

0,loc(Ω) such that ζm ⇀ ζ in H1(Ek) for
all k and ζ satisfies L(ζ) = 0 in Ω with ζ = 0 on ∂Ω. Fix s > 0 and we can pass to the limit
in (60) to see ζ is nonzero and∫

2i<|x|<2i+1

|ζ(x)|2dx ≤ 2i(N−2α).

Using this bound we see ζ ∈ X0. Fix s > 0 and set ζs(x) = ζ(sx) and −∆ζs(x) =
|x|−2pw(θ)p−1ζs(x) in Ω with ζs = 0 on ∂Ω and so we can use Claim 2 with k = 2 to
get

s2α+2−N
∫
s<|y|<2s

|∇ζ(y)|2dy ≤ Cs2α−N
∫

4−1s<|y|<4s

|ζ(y)|2dy ≤ C‖ζ‖2
X0

and we can now take the supremum over s; this gives us ζ ∈ X1. This gives us the desired
contradiction after recalling the kernel of L is trivial.

As before we now extend the estimate to the full space Y . For m large let γm be
a piecewise linear, Lipschitz cut off with γm = 1 for m−1 < |x| < m with γm = 0 for
|x| < (2m)−1 or |x| > 2m; so there is some C such that |∇γm| ≤ Cm−1 in m < |x| < 2m
and |∇γm| ≤ Cm in 2−1m−1 < |x| < m−1.
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We now define fm by fm = γmf which is well defined (recall f may not be a function). We
now show that there is some C (independent of f and m ≥ 2)) such that ‖fm‖Y ≤ C‖f‖Y .
Fix s > 0 and note

| 〈fm, φ〉 | ≤ ‖f‖H−1(As)‖∇(γmφ)‖L2(As)

for all φ ∈ H1
0 (As) where 〈·, ·〉 denote the H−1(As), H

1
0 (As) duality pairing. Using the

gradient bounds on γm and noting the first eigenvalue of −∆ on H1
0 (As) we see there is some

C > 0 (independent of s, m and f) such that ‖∇(γmφ)‖L2(As) ≤ C‖∇φ‖L2(As) and from this
we see ‖fm‖H−1(As) ≤ C‖f‖H−1(As) and hence we have ‖fm‖Y ≤ C‖f‖Y . For each m as

above there is some fm ∈ C0,α
ν−2 (in fact its zero near the vertex of the cone and near∞) such

that ‖fm − fm‖Y ≤ m−1‖fm‖Y ≤ m−1C‖f‖Y after considering the above estimate. Then
we get

‖fm‖Y ≤ ‖fm − fm‖Y + ‖fm‖Y ≤ (1 +m−1)C‖f‖Y ≤ 2C‖f‖Y
for all large m. Note if we write the earlier inequality to see that for all s > 0 that

sα+1−N
2 ‖fm − fm‖H−1(As) ≤ Cm−1‖f‖Y .

We will show for each k there is some Ck (depending only on k) such that

‖fm − fm‖H−1(Ẽk) ≤ Ck sup
k
2
≤s≤k
‖fm − fm‖H−1(As) ≤ C̃k‖fm − fm‖Y ≤

C̃k
m
‖f‖Y .

The only inequality in the above that we need to justify is ‖fm−fm‖H−1(Ẽk) ≤ Ck sup k
2
≤s≤k ‖fm−

fm‖H−1(As). To prove this result it will be sufficient to prove the following: there is some C
(independent of f) such that for any f ∈ Y we have

‖f‖H−1(A1,3) ≤ C‖f‖H−1(A1,2) + C‖f‖H−1(A 3
2 ,3

)

where Aa,b := {x ∈ Ω : a < |x| < b}. Fix some smooth 0 ≤ γ on RN with γ = 1 in B 3
2

with

γ ∈ C∞c (B2). Then note for φ ∈ H1
0 (A1,3) we have φ = γφ + (1 − γ)φ. For 0 < a < b we

write 〈·, ·〉Aa,b to be the H−1(Aa,b), H
1
0 (Aa,b) duality pairing. Then we have∣∣ 〈f, φ〉A1,3

∣∣ ≤ ‖f‖H−1(A1,2)‖∇(γφ)‖L2(A1,2) + ‖f‖H−1(A 3
2 ,3

)‖∇((1− γ)φ)‖L2(A 3
2 ,3

).

The L2 norms on the right hand side of the above inequality are all bounded above by
C‖∇φ‖L2(A1,3) where C depends on the cut off γ. Now taking a supremum over φ gives the
desired result.

Proof of Claim 1. We first show that ‖gm‖H−1(Ak) → 0 for any k > 0. Fix k > 0 and let
−∆vm = gm in Ak with vm ∈ H1

0 (Ak) and so ‖gm‖H−1(Ak) = ‖∇vm‖L2(Ak).
Set v̂m(x) := s−αm vm(s−1

m x) for ksm < |x| < 2ksm and hence −∆v̂m(x) = fm(x) in Aksm
with v̂m = 0 on ∂Aksm . Hence we have ‖fm‖H−1(Aksm ) = ‖∇v̂m‖L2(Aksm ). From this we see∫

k<|y|<2k

|∇vm(y)|2dy = s2α+2−N
m

∫
ksm<|x|<2ksm

|∇v̂m(x)|2dx

= kN−2α−2(ksm)2α+2−N‖fm‖H−1(Aksm )

≤ kN−2α−2‖fm‖Y → 0,
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as m→∞ and hence ‖gm‖H1(Ak) → 0 as m→∞. To see we can extend this to Ẽk we take
k = 1 and k = 3

2
and use the above argument to see that ‖gm‖H−1(A1,3) → 0. We can keep

doing this process of joining intersecting annular regions of the form As and obtaining H−1

estimates on the union. Hence we see for any fixed k we have ‖gm‖H−1(Ẽk) → 0 as m→∞.
This completes the proof of Claim 1.

Proof of Claim 2. The proof follows the exact proof one would use for the Lp version of
this estimate; which gives W 2,p(Ẽk) bounds.

2

7 Appendix

Here we collect some of the proofs for the estimates (38)-(43).

Lemma 4. If 1 < p ≤ 2, then we have

0 ≤ H(φ) ≤ cp|φ|p (61)

and

|H(φ2)−H(φ1)| ≤ Cp

(
|φ2|p−1 + |φ1|p−1

)
|φ2 − φ1|. (62)

Proof. First note we have the known inequalities(
|b|p−2b− |a|p−2a

)
(b− a) > 0, a 6= b for all p > 1 (63)

0 ≤
(
|b|p−2b− |a|p−2a

)
(b− a) ≤ cp|b− a|p, 1 < p ≤ 2, (64)

see, for example, [31] for the above computations. Now we write by the mean value theorem
(note |t|p is differentiable when p > 1)

H(φ) = H(φ)−H(0) = φH ′(z),

for some z = tφ, t ∈ [0, 1], and then

H(φ) = φH ′(z) =
H ′(z)z

t
=
p

t

(
|v0 + z|p−2(v0 + z)− vp−2

0 v0

)
(v0 + z − v0)

Hence using (63) and (64) we get H(φ) ≥ 0 for all p > 1 and also

H(φ) ≤ cpt
p−1|φ|p ≤ cp|φ|p 1 < p ≤ 2,

that proves (61). To see (62) we have

H(φ2)−H(φ1) = (φ2 − φ1)H ′(z),
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where z = θφ1 + (1− θ)φ2 for some θ ∈ [0, 1], hence

H(φ2)−H(φ1) = (φ2 − φ1)
H ′(z)z

z
,

and then using (64) again, we obtain

|H(φ2)−H(φ1)| = |φ2 − φ1|
|z|

H ′(z)z ≤ Cp|φ2 − φ1||z|p−1 ≤ C(|φ2|p−1 + |φ1|p−1)|φ2 − φ1|,

that proves (62).
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