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Abstract. We consider the following Gelfand problem

(P )λ


−∆u = λa(x)f(u) in Ω,
u > 0 in Ω,

u = 0 on ∂Ω,

where λ > 0 is a parameter and f(u) = eu or f(u) = (u+ 1)p where p > 1 and

a(x) is a nonnegative function with certain monotonicity (we allow a(x) = 1).
Here Ω is an annular domain which is also a double domain of revolution. Our

interest will be in the question of the regularity of the extremal solution. We

obtain improved compactness because of the annular nature of the domain and
we obtain further compactness under some monotonicity assumptions on the

domain.
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1. Introduction

We are interested in the following Gelfand problem

(P )λ

 −∆u = λa(x)f(u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where f(u) = eu or f(u) = (u + 1)p where p > 1 and where λ > 0 is a parameter
and a(x) is a nonnegative function with certain monotonicity. Here Ω is an annular
domain which is also a domain of double revolution. Our interest will be in the
question of the regularity of the extremal solution. There is a natural improvement
of compactness on annular domains. As in [18] there is a further increase of com-
pactness on annular domains with monotonicity. We now give a brief background
on (P )λ. We define a weak solution u of (P )λ to be function u ∈ L1(Ω) so that
λaf(u) ∈ L1

δ(Ω) = L1
(
Ω, δ(x)dx

)
, δ(x) = dist(x, ∂Ω) and∫

Ω

(−∆ϕ)u dx =

∫
Ω

λaf(u)ϕ dx,

holds for any ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω (see [4]). It is well known ([4, 19, 21, 36]) that
there exists a finite positive extremal parameter λ∗ such that for any 0 < λ < λ∗,
problem (P )λ has a minimal classical solution uλ, while no solution exists even in
the weak sense for λ > λ∗. The branch {uλ}0<λ<λ∗ is increasing and the increasing
pointwise limit u∗(x) = limλ↗λ∗ uλ(x) is a weak solution of (P )λ∗ , which is called
the extremal solution, moreover the extremal solution is the unique weak solution
of (P )λ∗ , see [29]. It is also well known that when f is convex then the minimal
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branch is stable in the sense that the operator −∆ − λaf ′(uλ) has a positive first
eigenvalue in H1

0 (Ω) and using the variational nature of this eigenvalue we arrive
at ∫

Ω

λaf ′(uλ)φ2dx ≤
∫

Ω

|∇φ|2dx, ∀φ ∈ H1
0 (Ω), (1)

which typically is called the stability inequality. Given a solution u of (P )λ we
denote the Morse index of u by the number of negative eigenvalues (counting mul-
tiplicity) of the linear operator −∆−λaf ′(u) and hence a stable solution has Morse
index zero.

1.1. The case of a = 1. The regularity properties of the extremal solution of
problem (P )λ (in the case of a = 1) have been studied extensively in the literature,
in particular after Brezis and Vázquez raised some open problems in [6, 5]. It was
shown that it depends strongly on the dimension N , domain Ω and nonlinearity f .
When f(u) = eu and Ω is an arbitrary smooth bounded domain, it is well known
that u∗ ∈ L∞(Ω) if N ≤ 9 (see [19, 30]), while u∗(x) = −2 log |x| and λ∗ = 2N−4 if
N ≥ 10 and Ω is the unit ball of RN (see [6, 28]). The geometry of Ω can also play
a role, for instance in [20] it is shown that if the domain is close enough to a ball
and N ≥ 11 then the extremal solution is unbounded. In the opposite direction
they also prove in [20] that certain thin convex domains in large dimension can
have a bounded extremal solution which was maybe unexpected. Our results in the
current paper will be along the flavour of this second result.
It may be noted here that a comprehensive study of the above Gelfand-type prob-

lem in the asymptotically linear case, that is limt→∞
f(t)
t := l ∈ (0,∞) is given

in [31], in particular, it is shown that when λ = λ∗ then there exists a classical
solution of the problem if and only if limt→∞ f(t)− lt < 0. We also refer the inter-
ested reader to the survey article [2] for the existence of positive solutions of elliptic
eigenvalue problems of the form Lu = λf(u) in Ω with u = 0 on ∂Ω, where L is a
strongly uniformly elliptic linear differential operator of second order with smooth
real coefficients. Also, see [39] for bifurcation results on a more general class of
problems Lu+H(u) = λu, u ∈ E, where E is a Hilbert space, L : E → E is linear
and H ∈ C1(E,E) is such that H(0) = H ′(0) = 0.

In the case of f(u) = (u + 1)p the Joseph-Lundgren exponent pJL = pJL(N)
plays a critical role where

pJL(N) :=

{
∞ if N ≤ 10,
(N−2)2−4N+8

√
N−1

(N−2)(N−1) if N ≥ 11.

In the case of 1 < p < pJL the extremal solution is bounded and for p > pJL the
extremal solution may be unbounded (for instance on the unit ball its unbounded),
see [6]. Note pJL > ps where ps := N+2

N−2 (for N ≥ 3) where H1
0 (Ω) ⊂ Lps+1(Ω) is

the critical Sobolev imbedding.
It is well known that regularity of solutions on bounded domains is closely related

to Liouville theorems of related equations on the full space or half spaces via blow up
arguments (see [15, 27, 26]). In the context of the polynomial problem we consider
there exist positive stable solutions of

−∆v = vp in RN , (2)
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when p > pJL. The related Liouville theorem would be: there are no positive stable
solutions of (2) for 1 < p < pJL which is exactly the same range of p where we
have the extremal solution is bounded. These blow up arguments lend themselves
more readily to questions relating the sequences of smooth solutions on bounded
domains with constraints on the Morse index and apriori bounds, see [23, 24, 38]
for related problems. The results in our current work easily extend to solutions
with finite Morse index; see Remark 2 part 1.

The question regarding the regularity of the extremal solution for general f
(under suitable minimal assumptions; smoothness, increasing, f(0) = 1, convex
and superlinear at ∞) has been an extremely well studied problem see, [1, 7, 9, 10,
11, 12, 13, 14, 19, 21, 20, 23, 25, 30, 34, 35, 37, 40, 41]. A longstanding conjecture
due to Brezis is whether the extremal solution is bounded provided N ≤ 9. This
conjecture was recently proved after 25 years in [8].

Remark 1. We point out that our current work is not in the direction of extending
known results for a = 1 to general a. Also we are not using conditions on a to
increase compactness, as in the case of Hénon equation with a(x) = |x|α in the
unit ball B1 centred at the origin. In our case we can add a function a provided it
preserves the symmetry and, in the case of a monotonic domain, also preserves the
monotonicity. The added compactness we are getting is coming from the annular
nature of the domain and then further compactness is coming from the monotonicity
of domain and function.

1.2. Domains of double revolution. Unless explicity stated we are always as-
suming our domains will be domains of double revolution. We mention our motiva-
tion to study domains of double revolution originated from the work [12]. Consider
writing RN = Rm ×Rn where m,n ≥ 1 and m+ n = N . We define the variables s
and t by

s :=
{
x2

1 + · · ·+ x2
m

} 1
2 , t :=

{
x2
m+1 + · · ·+ x2

N

} 1
2 .

We say that Ω ⊂ RN is a domain of double revolution if it is invariant under
rotations of the first m variables and also under rotations of the last n variables.
Equivalently, Ω is of the form Ω = {x ∈ RN : (s, t) ∈ U} where U is a domain in
R2 symmetric with respect to the two coordinate axes. In fact,

U =
{

(s, t) ∈ R2 : x = (x1 = s, x2 = 0, ..., xm = 0, xm+1 = t, ..., xN = 0) ∈ Ω
}
,

is the intersection of Ω with the (x1, xm+1) plane. Note that U is smooth if and

only if Ω is smooth. We denote Ω̂ to be the intersection of U with the first quadrant
of R2, that is,

Ω̂ =
{

(s, t) ∈ U : s > 0, t > 0
}
. (3)

Using polar coordinates we can write s = r cos(θ), t = r sin(θ) where r = |x| =
|(s, t)| and θ is the usual polar angle in the (s, t) plane.
The domains under the consideration will be annular domains with a certain mono-
tonicity (or convexity) assumption in the polar angle θ. All domains will be bounded
domains in RN with smooth boundary unless otherwise stated. To describe the do-
mains in terms of the above polar coordinates we will write

Ω̃ :=
{

(θ, r) : (s, t) ∈ Ω̂
}
. (4)

Annular domains. We begin by considering an explicit annular domain in RN
and then we will generalize. The first example would be an annulus centred at the
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origin with inner radius R1 and outer radius R2; Ω = {x ∈ RN : R1 < |x| < R2}.
Then we have U = {(s, t) : R2

1 < s2 + t2 < R2
2} and finally we have Ω̃ = {(θ, r) :

g1(θ) < r < g2(θ), θ ∈
(
0, π2

)
} where g1(θ) = R1 and g2(θ) = R2.

We can now consider a slightly more general version where the inner and outer
boundaries are replaced with ellipsoids instead of balls. Take Ω to have outer
boundary given by the ellipsoid

m∑
k=1

x2
k

a2
+

N∑
k=m+1

x2
k

b2
= 1,

and the inner boundary given by

m∑
k=1

x2
k

c2
+

N∑
k=m+1

x2
k

d2
= 1,

where a, b, c, d > 0 are chosen such that the resulting domain is an annular region.
Note in this case we have

Ω̂ =

{
(s, t) : s, t > 0,

s2

a2
+
t2

b2
< 1 and

s2

c2
+
t2

d2
> 1

}
,

and

Ω̃ =
{

(θ, r) : g1(θ) < r < g2(θ), θ ∈
(

0,
π

2

)}
,

where the functions g1 and g2 are given by

g1(θ) =
1(

1
c2 + sin2(θ)

(
1
d2 −

1
c2

)) 1
2

, g2(θ) =
1(

1
a2 + sin2(θ)

(
1
b2 −

1
a2

)) 1
2

.

From this example we now introduce the idea of an annular domain with mono-
tonicity. Consider the annular region in the (s, t) variables if we make the further
restriction c ≤ d < b ≤ a; note we can consider this region as being obtained by
starting with two concentric spheres in the (s, t) plane and vertically compressing
the outer sphere and vertically stretching the inner one and then U is the region
between the two deformed spheres. In terms of gi note that g1 is increasing on
(0, π2 ) and g2 is decreasing on (0, π2 ).

Definition 1. We refer to a domain of double revolution in RN with N = m + n

an annular domain if its associated domain Ω̂ in the (s, t) plane in R2 is of the
form

Ω̃ =
{

(θ, r) : g1(θ) < r < g2(θ), θ ∈
(

0,
π

2

)}
(5)

in polar coordinates. Here gi > 0 is smooth on [0, π2 ] with g′i(0) = g′i(
π
2 ) = 0 and

g2(θ) > g1(θ) on [0, π2 ]. We will call Ω an annular domain with monotonicity if g1

is increasing and g2 is decreasing on (0, π2 ).

1.3. Main results. We begin by stating our assumptions on the a(x) term.

(A): Conditions on a(x). We take the function a to be a continuous nonegative
function of (s, t) that is a(x) = a(s, t). Moreover, we say that a satisfies (A) if a is

a continuously differentiable function with respect to (s, t) and sat − tas ≤ 0 in Ω̂.

We are allowing a to be zero in some regions of Ω̂ but we are not using this to gain
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compactness; recall in the Hénon equation the term |x|α allows one to gain some
extra compactness on a ball centred at the origin.

Theorem 1. The following assertions hold.

(1) (Annular domains without monotonicity) Suppose Ω is an annular domain
in RN = Rm × Rn and a = a(s, t) is nonnegative and Hölder continuous.
(a) Suppose f(u) = (u+ 1)p and

1 < p < min {pJL(n+ 1), pJL(m+ 1)} , (6)

where pJL(k) is the Joseph-Lundgren exponent in dimension k. Then
u∗ is bounded.

(b) Suppose f(u) = eu and m,n ≤ 8. Then u∗ is bounded.

(2) (Annular domains with monotonicity) Suppose Ω ⊂ RN = Rm × Rn is an
annular domain with monotonicity in RN with n ≤ m and a satisfies (A).
(a) Suppose f(u) = (u+ 1)p and

1 < p < pJL(n+ 1) = max {pJL(n+ 1), pJL(m+ 1)} . (7)

Then u∗ is bounded.
(b) Suppose f(u) = eu, Ω ⊂ RN = Rm × Rn is an annular domain with

monotonicity in RN and n ≤ 8. Then u∗ is bounded.

2. Elliptic problems on domains of double revolution

We shall begin by providing some more background on quantities related to
domains of double revolution that are essential in this work. Assume Ω is a domain
of double revolution and v is a function defined on Ω that just depends on (s, t),
then one has ∫

Ω

v(x)dx = c(m,n)

∫
Ω̂

v(s, t)sm−1tn−1dsdt,

where c(m,n) is a positive constant depending on n and m. Note that strictly speak-
ing we are abusing notation here by using the same name; and we will continuously
do this in this article. Given a function v defined on Ω we will write v = v(s, t) to
indicate that the function has this symmetry. Define

H1
0,G :=

{
u ∈ H1

0 (Ω) : gu = u ∀g ∈ G
}
,

where G := O(m)× O(n) where O(k) is the orthogonal group in Rk and gu(x) :=
u(g−1x).

To solve equations on domains of double revolution one needs to relate the equa-

tion to a new one on Ω̂ defined in (3). Suppose Ω is a domain of double revolution
and f is a function defined on Ω with the same symmetry (ie. gf(x) = f(g−1x) all
g ∈ G). Suppose that u(x) solves{

−∆u(x) = f(x) in Ω,
u = 0 on ∂Ω.

(8)

Then u = u(s, t) and u solves

−uss − utt −
(m− 1)us

s
− (n− 1)ut

t
= f(s, t) in Ω̂, (9)
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with u = 0 on (s, t) ∈ ∂Ω̂\({s = 0} ∪ {t = 0}). If u is sufficiently smooth then

us = 0 on ∂Ω̂∩{s = 0} and ut = 0 on ∂Ω̂∩{t = 0} after considering the symmetry
properties of u.

2.1. Improved compactness via annular domains and via monotonicity.
We now define a convex set K that we work on to give increased compactness. We
mention that this idea of restricting functions to ones which are monotonic in an
angle, to improve compactness, is coming from the work of [3] where they examined
some Lane-Emden type equations in an annulus. The current setting of nonradial
annular domains with (and without) monotonicity is coming from [18] where this
monotonicity is combined with an abstract nonsmooth variational principle, due to
A. Moameni, to obtain nontrivial solutions of supercritical problems, see [16, 17,
32, 33]. Here we are not considering this variational principle since we are only
considering the regularity of the minimal solutions which are known to exist; we
could also consider questions of regularity of solutions with finite Morse index again
without considering the variational principle.

We define K by

K = K(m,n) :=
{

0 ≤ u ∈ H1
0,G(Ω) : sut − tus ≤ 0 a.e. in Ω̂

}
, (10)

and note we can rewrite K as functions u such that if we write (s, t) in terms of

polar coordinates we have uθ ≤ 0 in Ω̃ defined in (4).

Theorem A. ([18]) (Imbeddings for annular domains) Let Ω denote an annular
region in RN .

(1) (Imbedding without monotonicity) Suppose Ω has no monotonicity and

1 ≤ p < min

{
2(n+ 1)

n− 1
,

2(m+ 1)

m− 1

}
.

Then H1
0,G(Ω) ⊂⊂ Lp(Ω) with the obvious interpretation in the case of

m = n = 1.
(2) (Imbedding with monotonicity) Suppose Ω is an annular domain with mono-

tonicity, n ≤ m and

1 ≤ p < 2(n+ 1)

n− 1
= max

{
2(n+ 1)

n− 1
,

2(m+ 1)

m− 1

}
.

Then K ⊂⊂ Lp(Ω) with the obvious interpretation if n = 1.

The idea of the imbedding is that on a annular domain one expects and improved
imbedding and this is what is given in the first part of Theorem A. If we have
monotonicity (in the right direction) we can further improve the imbedding and
that is given in the second part of the theorem. The above imbedding together
with a new nonsmooth variational principle enabled the authors in [18] to deal
with supercritical problems on annular doamins variationally, and to prove the
multiplicity of positive solutions for such problems.

3. Proofs

Lemma 1. Let Ω denote an annular domain with monotonicity and a satisfies (A).
Then for all 0 < λ < λ∗ one has uλ ∈ K.
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Proof. There are multiple ways to try and prove the result. We will use directly the
linear iteration that is used to construct the minimal solution to prove the result.
An alternate way would be to use the fact that the linearized operator satisfies the
maximum principle. For k ≥ 0 we set

{
−∆uk+1 = λa(x)f(uk) in Ω,
uk+1 = 0 on ∂Ω,

with u0 = 0. Then for 0 < λ < λ∗ one has that uk(x)↗ uλ(x) as k →∞. Writing
this in terms of the (s, t) coordinates we have{

−uk+1
ss − uk+1

tt − (m−1)
s uk+1

s − (n−1)
t uk+1

t = λa(s, t)f(uk) in Ω̂,

with uk+1 = 0 on the curved portions of ∂Ω̂ and ∂νu = 0 on the remaining portions

(ie. on Γ = ∂Ω̂ ∩ ({s = 0} ∪ {t = 0})). We now discuss the Neumann boundary
condition since this relies on the symmetry and smoothness of the function.

Since uk+1 = uk+1(s, t) is the restriction to the first quadrant of (x1, xm+1) plane

of an even C1,α function in x1 and xm+1 we see that uk+1
s , uk+1

t ∈ C0,α(Ω). This is

sufficient regularity for uk+1
s and uk+1

t to give the desired boundary conditions on

{s = 0} and {t = 0} portions of ∂Ω̂ respectively. Define vk = sukt − tuks = ukθ and
then note that

L(vk+1) = λf ′(uk)vk + λf(uk)(sat − tas) in Ω̂,

where

L(φ) = −φss − φtt −
(m− 1)φs

s
− (n− 1)φt

t
+

(m− 1)φ

s2
+

(n− 1)φ

t2
,

and note that, up to issues with singularities, L satisfies a maximum principle on

Ω̂; for the time being we assume there are no issues here.

So the idea is to show that vk ≤ 0 in Ω̂ for all k ≥ 0. Suppose vk ≤ 0 in Ω̂ for

some k ≥ 0. We now claim that vk+1 = uk+1
θ ≤ 0 on ∂Ω̂. To see that vk+1 = 0 on

the portions of the boundary that correspond to {s = 0} and {t = 0} we use the

boundary conditions for uk+1
s and uk+1

t . For the curved portions of the boundary
note that we have uk+1 ≥ 0 in Ω and uk+1 = 0 on ∂Ω and hence ∂νu

k+1 ≤ 0
on ∂Ω and one can relate this the derivative in θ; instead of doing this it is much

easier to view the pde in Ω̃ and then note that since uk+1 ≥ 0 we immediately
get uk+1

θ ≤ 0 on the curved portions after noting the monotonicity assumptions
on gi. Since we were assuming that we could apply the maximum principle we

would then get vk+1 ≤ 0 in Ω̂. To complete the proof we just need to show that we
can start the iteration process; since u0 = 0 we have −∆u1 = λa in Ω and hence

L(v1) = λ(sat−tas) ≤ 0 in Ω̂ and hence we can start the iteration after considering
the boundary conditions for u1.

We now give more details about the maximum principle argument since there are
issues with the operator having singularities. Let ε > 0 be small and consider ψ =
(vk+1−ε)+ and note ψ = 0 near s = 0 and t = 0. Now set dµ(s, t) = sm−1tn−1dsdt
and note
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0 ≥
∫

Ω̂

{
λf ′(uk)vk + λ(sat − tas)f(uk)

}
ψdµ

=

∫
Ω̂

L(vk+1)ψdµ

=

∫
Ω̂

(ψ2
s + ψ2

t )dµ+

∫
Ω̂

(
(m− 1)vk+1ψ

s2
+

(n− 1)vk+1ψ

t2
)dµ

≥
∫

Ω̂

(
ψ2
s + ψ2

t + ψ2

{
(m− 1)

s2
+

(n− 1)

t2

})
dµ

and hence ψ = 0 a.e. in Ω̂ and hence vk+1 ≤ ε a.e. in Ω̂ which gives us the desired
result after noting ε > 0 is arbitrary.

Following the computation in [12] we have

uk+1
s =

m∑
i=1

uk+1
xi

xi
s

and uk+1
t =

N∑
i=m+1

uk+1
xi

xi
t
, (11)

and since uk+1
xi → (uλ)xi in C0,δ(Ω) we have uk+1

s → (uλ)s and uk+1
t → (uλ)t a.e.

in Ω̂. From this we can conclude that s(uλ)t − t(uλ)s = (uλ)θ ≤ 0 a.e. in Ω̂ which
gives us the desired monotonicity.

�

Remark 2. (1) For the proof of Theorem 1 (2a) we will use a blow up argu-
ment since for the proof of Theorem 1 (2b) we used an iteration argument
and the improved imbeddings. Either proof works but we decided to use both
methods for the interest of the reader. Note if one wanted to extend these
results to solutions with finite Morse index the natural approach would be
the blow up approach since the only difference would be the need of Liou-
ville theorems for finite Morse index solutions (which are available under
the same restrictions on the parameters).

(2) Recall the concentric ellipsoids can be thought of as a prototypical annular
domain with monotonicity under the correct assumptions on the parameters.
Note that the moving plane method would show that there is a strip near
the outer boundary where the solution cannot attain its maximum. This
relies on the convexity of the domain that one would obtain if they con-
sidered the domain induced by the outer boundary. One should note that
the monotonicity assumptions on g2 does not induce this convexity. For
example take g2(θ) = 2 + cos(2θ) and note this satisfies the assumptions on
g2 and yet it does not give the desired convexity condition.

In our proof using blow up analysis we will assume that we have this
added convexity to rule out a case where the maximums are close to the
outer boundary. This case can easily be handled with the blow up analysis
but since it is fairly standard we chose to omit it and more concentrate on
the other cases.

Proof of Theorem 1. (2b). Here we assume a(x) = 1, but the exact same proof
works if we assume a(x) satisfies the assumptions stated earlier. We will use an

approach that avoids having to use Lp regularity theory in Ω̂. For λ∗

2 < λ < λ∗

set u = uλ the minimal solution. All estimates will be uniform in λ and hence we
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can pass to the limit in λ. We assume 2 ≤ n ≤ 8 (for n = 1 we use a different
argument) and n ≤ m. Then standard test function argument shows that there is
some C (indepedent of λ) such that∫

Ω

e(2τ+1)uλdx ≤ C,

for all 1 < τ < 2 and hence we have a uniform (in λ) LT (Ω) estimate on euλ for all
T < 5. For the readers convenience we now give the argument. Put φ = eτuλ − 1
into the stability inequality (1) to arrive at∫

Ω

λeuλ(eτuλ − 1)2dx ≤ τ2

∫
Ω

e2τuλ |∇uλ|2dx,

where 1 < τ < 2. Now mulitply (P )λ by e2τuλ − 1 and integrate by parts to arrive
at

τ2

∫
Ω

e2τuλ |∇uλ|2dx =
τλ

2

∫
Ω

euλ
(
e2τuλ − 1

)
dx,

and now you can equate the terms with the gradient to arrive at∫
Ω

euλ (eτuλ − 1)
2
dx ≤ τ

2

∫
Ω

euλ
(
e2τuλ − 1

)
dx,

and now one can expand the integrals and collect like terms. Note the highest order
term will be e(2τ+1)uλ and we can use Hölder’s inequality to control the lower order
terms provided τ

2 < 1 or τ < 2.

Fix γ0 >
1
2 and τ > 0 such that

τγ0 >
n− 1

4
and τγ0 < 2.

For k ≥ 0 we set

γk+1 :=
(n+ 1)γk
n− 1

− 1

2τ
.

Under the assumptions on γ0 and τ we see that γk ↗∞ as k →∞. Note we have
γk > γ0 >

1
2 for all k ≥ 1. Define v = vτ = eτu − 1.

Claim. Given k ≥ 0 and suppose the right hand side of (12) is finite. Then (12)
holds where (∫

Ω

v2γk+1+ 1
τ dx

)n−1
n+1

≤ Cnλτγ
2
k

2γk − 1

∫
Ω

(v + 1)1+ 1
τ v2γk−1dx. (12)

So note if there is some C > 0 such that∫
Ω

v2γ0+ 1
τ dx ≤ C,

uniformly in λ then for all k ≥ 0 there is some Dk such that∫
Ω

v2γk+1+ 1
τ dx ≤ Dk, (13)

uniformly in λ.
We now prove the claim. First note that v satisfies

−∆v = −eτuτ2|∇u|2 + λτe(τ+1)u ≤ λτ(v + 1)1+ 1
τ Ω,
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with v = 0 on ∂Ω; in the last line we dropped the quadratic in |∇u| term and
rewrote the remaining term in terms of v. For ε > 0 set φ(x) = v(x)2γk−1 − ε2γk−1

for v > ε and 0 otherwise and note this is a nonnegative H1
0 (Ω) test function and

hence testing the equation for v (and sending ε↘ 0) gives

(2γk − 1)

∫
Ω

v2γk−2|∇v|2dx ≤ τλ
∫

Ω

(v + 1)1+ 1
τ v2γk−1dx,

which we can rewrite as∫
Ω

|∇vγk |2dx ≤ τλγ2
k

2γk − 1

∫
Ω

(v + 1)1+ 1
τ v2γk−1dx.

Now since v ∈ K we can show that vγk ∈ K and hence we can use Theorem A to
see that (∫

Ω

v
γk2(n+1)

n−1 dx

)n−1
n+1

≤ Cnτλγ
2
k

2γk − 1

∫
Ω

(v + 1)1+ 1
τ v2γk−1dx,

and hence we have(∫
Ω

v2γk+1+ 1
τ dx

)n−1
n+1

≤ Cnτλγ
2
k

2γk − 1

∫
Ω

(v + 1)1+ 1
τ v2γk−1dx,

since γk2(n+1)
n−1 = 2γk+1 + 1

τ and this completes the proof of the claim. We now show
we can start the process at k = 0 and so its sufficient to show that∫

Ω

(v + 1)2γ0+ 1
τ dx ≤ C,

uniformly in λ. Note that

(v + 1)2γ0+ 1
τ = e(2τγ0+1)u,

and note under the assumptions on γ0 and τ we have 2τγ0 + 1 < 5 and hence we
have the desired integral is uniformly bounded in λ. From this we see that for all
1 < T < ∞ we have v is bounded in LT (Ω) uniformly in λ. Set w = wλ denote

a solution of −∆w = λτ(v + 1)1+ 1
τ in Ω with w = 0 on ∂Ω and note 0 ≤ v ≤ w.

From the LT (Ω) bound on v we see that w is bounded in L∞(Ω) uniformly in λ
and hence we have the same for v and from this we get the same for u.

(2a.) Again we assume a(x) = 1 for the proof, but the same proof works for more
general a(x). Suppose the result is false and hence there is some λk ↗ λ∗ such

that uk = uλk is such that ‖uk‖L∞ = Tk → ∞. There is some (sk, tk) ∈ Ω̂ such
that uk(sk, tk) = Tk and note by monotonicity assumption on uk we have tk = 0.
We will now assume the outer boundary has some added convexity to rule out the
maximums being attained near the boundary; under the assumptions we have im-
posed this is not true but the proof could easily be adjusted to handle this case;
see Remark 2 part 2. So with this assumption we have (sk, 0) bounded away from
the outer boundary; so there is some δ0 > 0 such that sk < g2(0)− δ0 for all k. We
now consider the three cases:

(i) (sk − g1(0))T
p−1
2

k →∞,

(ii) (sk − g1(0))T
p−1
2

k → γ ∈ (0,∞),

(iii) (sk − g1(0))T
p−1
2

k → 0.
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For rk > 0, to be determined later, set

vk(s, t) =
uk(sk + rks, rkt)

Tk
, (s, t) ∈ Ω̂k = {(s, t) : (sk + rks, rkt) ∈ Ω̂}.

Then a computation shows that vk = vk(s, t) satisfies

−vkss − vktt −
(m− 1)rkv

k
s

sk + rks
− (n− 1)vkt

t
= λkr

2
kT

p−1
k (vk + T−1

k )p in Ω̂k, (14)

with vkt = 0 on ∂Ω̂k ∩ {t = 0} and vks = 0 on ∂Ω̂k ∩ {s = −sk
rk
} and vk = 0 on the

remainder of the boundary.

Case (i). Take rk such that r2
kT

p−1
k = 1 and so rk → 0. We suppose we are in

the case of sk bounded away from g1(0). In this case its clear that for any R > 0

(large) there is some kR such that for all k ≥ kR we have (−R,R) × (0, R) ⊂ Ω̂k.
Using a standard compactness argument we can pass to the limit in (14) to find
some 0 ≤ v ≤ 1 a solution of

−vss − vtt −
(n− 1)vt

t
= λ∗vp in R× (0,∞), (15)

with v(0) = 1 and vt = 0 on t = 0. Note instead of using boundary regularity one
could extend evenly in t and then use interior regularity to get the needed estimates
to pass to the limit near t = 0. Note we can view this equation as being satisfied in
Rn+1 = R×Rn after noting we can view the function v as radial in the t coordinate
in Rn. Since uk is a stable solution of (P )λk in Ω one has∫

Ω̂

(φ2
s + φ2

t )dµ ≥
∫

Ω̂

λkp(u
k)p−1ψ2dµ ∀φ ∈ H1

0,G(Ω),

where, as before, dµ = sm−1tn−1dsdt. By using a change of variables in this sta-
bility inequality one can show that vk is a stable solution of (14) and then one can
pass to the limit in this inequality to see that v is a nonzero semi stable solution
of (15). But we now recall that 1 < p < pJL(n + 1) which gives us the needed
contradiction.

We now suppose we are still in case (i) but sk ↘ g1(0) (by the boundary condition
on the inner boundary we know that sk > g1(0) and we already know sk is bounded
away from g2(0). We now suppose there is the maximal τk > 0 such that

Qk =

(
sk + g0(0)

2
, g2(0)− δ0

)
× (0, τk) ⊂ Ω̂.

If τk is bounded away from zero the problem becomes easier so lets assume τk → 0.
Then for large enough k we can assume the upper left corner of this rectangle hits

the inner boundary of Ω̂. Near (s, t) = (g1(0), 0) we can write s = h(t) for some h
smooth and h(0) = g1(0) and h′(0) = 0. By the mean value theorem there is some
τ̂k ∈ (0, τk) such that

h′(τ̂k)τk =
g1(0) + sk

2
− g1(0) =

sk − g1(0)

2
,

and hence

|h′(τ̂k)|
∣∣∣τk
rk

∣∣∣ =
|sk − g1(0)|T

p−1
2

k

2
→∞,
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and since |h′(τ̂k)| → 0 we see that τk
rk
→∞. We now define

Q̂k := {(s, t) : (sk + rks, rkt) ∈ Qk} ⊂ Ω̂k,

and note we can write this as

Q̂k =

(
g1(0)− sk

2rk
,
g2(0)− sk − δ0

rk

)
×
(

0,
τk
rk

)
,

and note that Q̂k → R× (0,∞). The rest of argument follows as in the case of sk
bounded away from g1(0).

Case (ii). In this case we have sk ↘ g1(0). In this case we take rk = sk−g1(0) and

then note that Ω̂k → {(s, t) : s > −1, t > 0}. Using boundary regularity argument
on (14) we can pass to the limit to find a classical solution of

−vss − vtt −
(n− 1)vt

t
= λ∗γ2vp in (s, t) ∈ (−1,∞)× (0,∞), (16)

with v = 0 on the left boundary and with vt = 0 on the bottom boundary. Also
recall we have 0 ≤ v ≤ 1 with v(0) = 1. By extending evenly in t we have a positive
solution on a half space. We can now apply Liouville results of either [24] or [22]
to obtain the needed contradiction.

Case (iii). In this case we again we have sk ↘ g1(0) and we take rk = sk − g1(0).
We can argue as in case (ii) (the only difference is γ = 0) to arrive at a classical
solution of

−vss − vtt −
(n− 1)vt

t
= 0 in (s, t) ∈ (−1,∞)× (0,∞), (17)

with v = 0 on the left boundary and with vt = 0 on the bottom boundary. Also
recall we have 0 ≤ v ≤ 1 with v(0) = 1. We can extend in t evenly to arrive at
a nonconstant solution v of ∆v(x) = 0 which attains its maximum at an interior
point which contradicts the strong maximum principle.

(1a) and (1b). In this case we are not assuming any monotonicity of the do-
main. In the case of the polynomial nonlinearity we can perform a similar blow
up argument. Here the solutions are not monotonic in θ and so there are extra
cases to consider for the limiting problem. This will introduce the minimum of the
Joseph-Lundgren exponents in the appropriate dimensions. For the exponential
nonlinearity one can use a proof similar to the monotonic one we used but they
would need to use the imbedding without monotonicity in place of the imbedding
we used. Alternatively one could use a blow up argument for the exponential. 2
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[11] X. Cabré, A. Capella, and M. Sanchón, Regularity of radial minimizers of reaction

equations involving the p-Laplacian, Calc. Var. Partial Differential Equations 34

(2009), 475-494.
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[14] X. Cabré, M. Sanchón and J. Spruck, A priori estimates for semistable solutions

of semilinear elliptic equations, Discrete Contin. Dyn. Syst. Series A, 36 (2016),
601-609.

[15] L. Caffarelli, B. Gidas and J. Spruck. Asymptotic symmetry and local behaviour
of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl.

Math. 42 (1989), 271–297.

[16] C. Cowan and A. Moameni, A new variational principle, convexity, and supercritical
Neumann problems, Transactions of the American Mathematical Society 371 (2019),

(9), 5993-6023.

[17] C. Cowan, A. Moameni and L. Salimi, Existence of solutions to supercritical Neu-
mann problems via a new variational principle, Electron. J. Differential Equations

2017 (213), 1-19.

[18] C. Cowan and A. Moameni, Supercritical elliptic problems on nonradial domains
via a nonsmooth variational approach, (2021) preprint.

[19] M.G. Crandall and P.H. Rabinowitz, Some continuation and variational methods

for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech.
Anal. 58 (1975 ), 207-218.

[20] J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem,

Communications in Contemporary Mathematics 9 (05), 639-680.
[21] L. Dupaigne, Stable solutions of elliptic partial differential equations, Chap-

man & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 2011.
[22] L. Dupaigne, B. Sirakov and P. Souplet, A Liouville-type theorem for the Lane-

Emden equation in a half-space, International Mathematics Research Notices, 2021.
[23] P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semi-

stable and unstable solutions for an elliptic problem with a singular nonlinearity,

Comm. Pure Appl. Math. 60 (2007), 1731-1768.

[24] A. Farina, On the classification of solutions of the Lane–Emden equation on un-
bounded domains of RN , J. Math. Pures Appl. 87 (2007) 537-561.

[25] N. Ghoussoub and Y. Guo, On the partial differential equations of electro MEMS
devices: stationary case, SIAM J. Math. Anal. 38 (2007), 1423-1449.

[26] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic

equations, Comm. Partial Differential Equation 6 (1981) 883-901.

[27] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear
elliptic equations. Comm. Pure Appl. Math., 34, 4 (1981)525-598.



14 A. AGHAJANI, C. COWAN, AND A. MOAMENI

[28] D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive

sources, Arch. Ration. Mech. Anal. 49 (1973), 241-269.

[29] Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems,
Houston J. Math. 23 (1997), 161-168.

[30] F. Mignot, J.-P. Puel, Sur une classe de problemes non lin´eaires avec non

lin´eairit´e positive, croissante, convexe, Comm. Partial Differential Equations 5
(1980), 791-836.
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