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Abstract

In this article we obtain positive singular solutions of

—Apu = |Vul|? in Q, (1)
u=20 on 082,

(p=1DN

where (2 is a small C? perturbation of the unit ball in R". For % < g < p < N we prove

that if € is a sufficiently small C? perturbation of the unit ball there exists a singular positive
weak solution u of (1). For other ranges of p and ¢ we prove the existence of Holder continuous
positive solution (with optimal regularity) on a C? perturbation of the unit ball.

1 Introduction

In this work we are interested in obtaining positive singular solutions of

—Apu(y) = ClVu(y)l! yeq, @)
u= 0 y € 0192,

where € is a small C? perturbation of the unit ball in RY and where C' > 0 is a constant. Note we
can rewrite this as

-2
0= |Vul*Au + (b 5 )Vu SV|Vul? 4 C|Vul|TPT gy eQ, (3)

with u = 0 on y € 0£2. We can write this in terms of the components as

N
0= | |VulAu+ (p —2) Z Uy, Uy, Uy, | + CIVU|TPHE € Q. (4)

t,j=1
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Note that we can re-write the equation as —Apu — a(z) - Vu = 0 in Q with v = 0 on 992 where
a(z) = |Vu|?"2Vu and hence if u sufficiently smooth we see that a(x) should be sufficiently smooth
so as to apply the maximum principle; hence the only solution should be v = 0. From this informal
argument we expect the only way to obtain a positive solution is for the solution to be somewhat
singular. The following example gives an explicit solution on the puncture of the unit ball. Our
approach will be to perturb an explicit solution on the ball.

Example 1. Let By denote the unit ball centered at the origin in RYN.

1. Let 1< p <N, w < q < p and define w(r) :=r~7 — 1 where o := qf;qu and

(N-1)(g—p+1)—(p—1)
(g —p+1)orpHl

C:= (5)

Then u is a singular weak solution of (2) with Q@ = By. Note the restrictionp —1 < q¢ < p
forces o > 0 and the further restriction forces C > 0.

N 1 o — -
2. Let ¢ > max {p, (p_ )} and define u(r) :== 1 —r? where o := quf_l and
N-D(@g—-p+1)—(p—1)

C:=
(¢—p+1)orrtl

(6)

Then u is a positive Hélder continuous weak solution of (2) with Q = By. Note the restriction
p < q forces o > 0 and the further restriction forces C > 0.

With the above example in mind we now state our main result.

Theorem 1. Suppose N > 2.

1. Letp,q,N,o,C be as in Example 1 part 1. Then for sufficiently small C? perturbations of the
unit ball, say Qe, there exists a positive singular weak solution u of (2) (with Q = Q.) which
blows up at exactly one point x. (near the origin) and behaves like u(x) = |r — xc| ™% near z..
The proof gives the exact behaviour near x..

2. Let p,q,N,0,C be as in Example 1 part 2. Then for sufficiently small C? perturbations
of the unit ball, say ), there exists a positive weak solution u of (2) (with Q = Q.) with
u € C®(Q\{z.}) and with uw € CO° (). In addition u is not in CO°+(Q,) for any 6 > 0.

1.1 Background

A well studied problem is the existence versus non-existence of positive solutions of the Lane-Emden
equation given by

—Au = o in Q,
{ u = 0 on 0f2, (7)

where 1 < p and € is a bounded domain in RY (where N > 3) with smooth boundary. In the

subcritical case 1 < p < N +2 the problem is very well understood and H}(£2) solutions are classical

N+2

solutions; see [25]. In the case of p > there are no classical positive solutions in the case of the



domain being star-shaped; see [37]. In the case of non star-shaped domains much less is known;

see for instance [12,17-19,36]. In the case of 1 < p < NN 5 ultra weak solutions (non H{} solutions)

can be shown to be classical solutions. For NL <p< N +2

one cannot use elliptic regularity to
show ultra weak solutions are classical. In particular in [32] for a general bounded domain in RY
they construct singular ultra weak solutions with a prescribed singular set. We mention that the
weighted Holder spaces we use in our current work were developed in [32], see also [35].

We now return to (2). The first point is that it is a non variational equation and hence there are
various standard tools which are not available anymore. The case 0 < p < 1 has been studied in [5].
Some relevant monographs for this work include [22,26,39]. Many people have studied boundary
blow up versions of (2) in the case where A, = Ay and where one removes the minus sign in front
of Ap; see for instance [29,40]. See [1-11, 20,21, 23, 24, 27, 28, 30, 31, 33, 34, 38] for more results
on equations similar to (2). In particular, the interested reader is referred to P.T. Nguyen [33]
for recent developments and a bibliography of significant earlier work, where the author studies
isolated singularities at 0 of nonnegative solutions of the more general quasilinear equation

Au = |z]uP + |z|?|Vul|? in Q\ {0},

where Q ¢ RY (N > 2) is a C? bounded domain containing the origin 0, & > —2, f > —1 and
p,q > 1, and provides a full classification of positive solutions vanishing on 9€) and the removability
of isolated singularities.

1.2 Owur approach

Before outlining our approach we mention that our work is motivated by [13-16,32,35]. Some of
these works deal with a full space or exterior domains; but the linear analysis is still quite similar
as compared to what we perform.

We now perform a change of variables to reduce the problem to one on the unit ball; this is
take from [16]. Fix ¢ : By — R" be a smooth map and for ¢ > 0 define

Q. :={z+ey(x) :x € By}.

This domain will be the small perturbation of the unit ball we work on. There is some small g9 > 0
such that for all 0 < € < g one has that €2, is diffeomorphic to the unit ball B;. Let y = x + e (x)
for z € By and note there is some ¢) smooth such that z = y + (e, y) for y € Q.. Given u(y)
defined on y € Q. or v(z) defined on = € B; we define the other via u(y) = v(z). So to find a
positive singular solution u(y) of (2) it is sufficient to find a positive singular solution v(x) of some,
to be determined equation, on the unit ball. To compute the equation for v(x) we will use the
chain rule, but we mentiond that the computation becomes quite involved. We know that

N ¥ N -
oY~ oP*
Uy, :Z’l}xk 6]“—’—87 :Uxi+gzv$kT.
=1 Yi el Yi
Also a computation shows
— N Wl N Tk 2NV 7 .k
Uyiy; =  Vaay te Zl:l v$i11¢yj +e Zk:l Uy, ¢yi +e Zk:l Vzpa; @Z)y]’ ¢yi
2NV Th T
+e Zk‘,h:l ,U-Tkl"hwij te Zk’ 1 Umkwyzyj
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In addition

- N AP N !
Uy Uy; Uysy; = (vxi +e Zk:l Vi, By, ) (Ul‘j +e Zl:l Va1 By,

N 7 N 7 2 N 71 Tk
X (Uffiffj +ed Uwixzwgl;j +€D k=1 kaxj¢§i +e* > 1 Ve @Zjlj/ﬂl}yi

2 N Th Tk N Tk
+e Zk,h:l v1k$h¢yj wyi +e Zk:l /Umkwyiyj>
and hence

Zij Uy; Uy Uy;y; = Zij {vmivfﬂjvxﬂj

+EVg, U {Zfil U:ciml@éj + Eszl vxkquzlyci + El]cv=l U‘”qul?jz‘yj}

4205, Vg, {Z{f:l (U T%] 1;; + ch\fhzl v$kxh1;’£}jlj ’&52}

Vg, Va;z, {ZfL Um,dzgl,j}

+52U:E¢ {Zi\il Vs 112):{/] + Z]k;vzl Vzpa; J)chz + ij\/:1 Uzy, @Z)]ygiyj } {Zf\il ,led;zl]j}
+e3y, {Z;@\;l “mkwﬁ%j &lyi + Z]k\,[hzl Umkrh&g{}ﬁ;;} {Zl]\il ”wﬂ;zl/j}

+EVz,; Vg0 {fozl %1;51}

+&2u,, {Zi\il Uxixld;é,j + Zé\/ﬂ kalez)];i + Z}ivzl ka“ﬂ;iyj} {Zgzl ka/l[;];z}
—1-63?.1%. {Egzl kaqusz &chl + Z]]{;\{h::[ Uﬂﬁkzh&]yljﬂ;lgji} {lecvzl kaqzjlzjz}
ey, {0 v, } {0 vl )

+&3 {Z{il Ua:ixl@zgl/j + Zivzl Ve pa; 1;51 + chvzl Uﬂ?klzlyciyj} {Zi\il vallzjyl;j} {ijzl kaiz)l;l}

N e/ N ThoT N 7 N 7
"’54 {Zk:l kaijilj¢§i + Zk,h:l kaxh¢2j¢§i} {Zl:l lewéj} {Zkzl Ulk¢§z }} :

Now we will partially switch notation back; so we have (and any derivatives of v are understood to
be with respect to x)

N
_ Vu-V(|Vv]?) . :
E Uy Uy Uy = ——5 ——— + Vvarious terms in e,
ij=1



and so we will now simplify the right hand side as

al Vo - V(|[Vo[2) N
Z Uy, Uy; Uy, y; = f + 90(8) Z {UCCiCijil?iij + Ug;i?)xj'l)zk} )
=1 ij,k=1

where |go(¢)| < Ce for all |¢] small. We now make some comments on this simplification. Our
approach will be to look for solutions of the form v(z) = w(z) + ¢(z) where w(x) = w(r) is the
above explicit singular radial solution. We will end up writing out fixed point argument but all
these terms that were simplified will not affect the linearized operator; but will only show up in the
nonlinear terms. So the exact nature of the terms is not overly important, and in fact if one checks
all the dropped terms, they see they are all of the exact for of the two terms we left. Additionally
we have dropped the smooth coefficients, but this won’t affect anything either.

By [16] we can write Ayu(y) = Azv(x) + E-(v) where E,(v) is defined by (8). So the equation
for v on the unit ball now becomes (after taking into account the prior mentioned simplification)

-2
0 = |Vu+eAoVu]*(Av+ E.(v)) + pTVv -V(IVvl?)
+go(¢) Z {21, 02, V0, + Vo, Ve, Vay, } + C|VV + £AgVo|T7PH

-2
= (A0)|Vof + EEV0 - V([ Vo) + O Vo + eAgVel 7 + Ho(v)

where
H.(v) := (Av)2e(AgVv) - Vv + 2(Av)|AgVu|* + E-(v)|Vo|?
+E.(v)(2e AgVv) - Vv + E-(v)e?|AgVu|?
+9g0(¢) Z {Ves2, V0,02, + Vo V2, Vay, }
and _ - .
EE(U) = 2e Z Uxixkayiwk te Z ’Uzkayiyiwk’ + g2 Z ijzkayiijk‘ (8)
ik ik ij.k

We now hope for small enough € we can find a solution of the form v = w + ¢. If we rewrite
the equation putting all the linear in ¢ terms on the left we arrive at

{ ~L(9) = Yoy Fu(0) + I(¢) + He(w + 9) By, (©)
¢ = 0 631,

where

Fi(¢) = AwlVo?,  Fa(9) = (Ag)(2Vw - Vo), F3(¢) = (A¢)|[Ve|,

(p—2)
2

L(¢) = C|Vw + Vo + eAg(Vw + V)| TP — C|Vw + V| 77PH,
F7(¢)) =C {|Vw + v¢|fI*p+4 _ |Vw’qu+4 _ (q —p+ 4)|Vw‘Q*P+2vw ) V¢} .

Vo - V|Ve|

Fi(6) = "V V(VOP),  F(6) = (- 2)V6- V(Vw- V6), Fy(6) =



The linear operator L is given by

L(¢) = |Vw|*(A¢) + (Aw)(2Vw - V) + (p — 2)Vw - V(Vw - V)

+(p22)

V- V|Vw|? + Clq—p+4)|Vw|T PT2Vw - V.

Of crucial importance will be the linear operator L and what functions spaces we work in. Before
we consider these issues we want to normalize L by dividing by |Vw|?. So instead of considering
(9) we will consider

Fig) e —LO) _ T Bld) | Ie) | He(wto)
~L9) = Tt = Ther [But + ot o By, (10)
0 9B,.

To obtain a solution of this we will apply the Contraction Mapping Principle to the nonlinear
mapping J:(¢) = ¢ (for ¢ € X where X is yet to be determined and of course this mapping is not
well defined yet)

~ H:(w
~L(¥)= i |vw\2 + |V£f\)2 + Iéw|+2¢) B, (11)
o 0 oB,.

The exact form of L will be crucial for us. A computation shows that we can write

Z(¢) = A¢+’Y¢W + QTQbrv

where v :=p—2 and
a:=2(N —1)=2(p— 1)(o+1) = Clg — p+ 4)o" 7+, (12)
where C'is given by (5).
We will examine this operator in Section 2.
2 Linear theory

We study the linear theory for the problem in two different cases (1) The singular case and (2) The
Hoélder continues case in the following subsections.

2.1 The singular case

We first define the function spaces. For 0 < s < § define A, := {z € RN : s < |z| < 2s} and for
o € Rand N <t < oo define the spaces Y =Y, , and X = X; , with norms given by

I7lb == sup sH)=N /A £ ()|t and

0<s§%

l6ll == sup sat—N{/A \¢|tdm+st/A \V¢|td:v+szt/A yD2¢|tdx},

1
O<SS§



where for the space X we impose the boundary condition ¢ = 0 on dB;. We now define the

closed subspecies of X and Y respectively X1,Y; where we remove the first mode. So to define this

properly we need to introduce the spherical harmonics.
Consider the Laplace-Beltrami operator Agn-1 = Ay on

—Dpbi(0) = M (0), 0 € SV,

and note that A\g = 0,1 = 1 (multiplicity 1); Ay = N — 1 with multiplicity N and A2 = 2N. Given
o€ X, feY we write

SN=1 and the eigenpairs

d(x) = ap(r)(0),  fl@) =D be(r)w(0),
k=0 k=0
and so we define

oo

X1 = {qb €eX:¢(x) = Z ak(r)wk(ﬂ)} , note there is no k£ = 0 mode
k=1

and anagolous for Y. Note we are abusing notation by not showing the correct multiplicity for

modes which have multiplicity greater than one; but this isn’t an issue for the procedures we

perform. For v,a € R we define the operator

L($)(x) = L.a(9)(2) = Ad() + 761 (2) + ~01(a).
Note we can write the operator as

N
TiTj o
Lya(d)(z) = Ad + 7 Z #@m@ + WJU -Vo(z).
ij=1
In this section we will prove various results regarding this operator L = L, . For explicit values
of v, a this operator L, , will be exactly the operator L from the previous section. In this section
the values of v, a, 0 will satisfy a few constraints but are otherwise arbitrary. Of course when we

apply the results of this section to the explicit linear operator L = L we have exact values of these
parameters in mind. So we state these assumptions now.

Values of parameters. We take 1 < p < N, (p ];i)lN <qg<p
Y i=P = 27
. _P=q
o = m,
a:=2(N-1)-2(p—1)(c+1)—C(qg—p+4)s9 P! then a computation shows (13)
-1
Ni—2—Y+a= - (N=1(g-p+1),
/81 = g—ptl’
o+ p; =-1

For the definition of ﬂki see the proof of the following lemma. A computation shows that N —2—~vy+a«

changes sign in the interval ® ];i)lN < g <p.

As we have already mentioned we want the various parameters to satisfy the above requirements.
But for various parts of the linear theory we can drop various assumptions.



Lemma 1. Suppose =1 <y < N —2 and 0 < o < —f; . Suppose ¢ € X is such that L(¢) =0 in
Bi\{0}. Then ¢ =0.

Proof. We write ¢(z) = > ar(r)¥r(0) and note

(1 +7)ag(r) + Ma%(r) _ Awar(r)

3 =0 O<r«l1
r r

with ax(1) = 0. Then we have ai(r) = C’;g(rﬁk+ — %) after considering the boundary condition,
where

(N-2—-v+a) \/(N—2—fy+a)2+4(1+7)xk_

+
= — :l:
%k 21+ ) 21+7)
Note that if o < —f," then to have ¢ € X we must have C = 0. Hence we see the kernel is empty
provided o < —f; after taking into account the monotonicity in k. O

Lemma 2. (Onto ode estimates; k > 1) Suppose —1 < v < N —2 and 0 < o0 < —f;. Then for
each k > 1 there is some Cy such that for each by there is some ay, such that L(agiy) = br)y and

larrl|x < Crllbxdklly and ax(1) = 0.

Proof. We now prove the desired onto estimate for each mode k& > 1. For each k > 0 consider

1+ alr) + D1 to‘)ak(’”) - A’f‘;’;m =bi(r) 0<r<1 (14)

with ag(1) = 0. Using the variation of parameters method we obtain solutions of the form

_ [Ty T _
(y+1)(B, — ﬁ;)ak(r) = P / ﬂd’i‘ — B / kET) dr + C’krﬁk+ + DyrPe
1> '7'61C -1 T ’7'6/C -1

where Cy, Dy are free parameters and we are free to choose T; suitably; we need to pick these
parameters such that we get the desired estimate on ay and such that ag(1) = 0. We will choose
T5=0,T7y =1, D =0 and we leave C}, free for now and hence we get

(p — 1)(5}; _ Bﬁ)ak('r) - /’” MdT _ ?”’Blj /1’” bk(T) dr + Ckrﬁlj,

- +
0 7P 1 7Pk 1

by (t)

P 1 .
For simplicity we normalize ||bx¢x|ly < 1 and hence there is some C} such that

and note this is an acceptable choice of T provided € L'(0,1), which we assume for now.

2s
/ bi(7)[fdr < Cios™ 120 0 < s <

S

(15)

We now prove that % € L'(0,1). To see this note that 3;, = —o — &5 where ¢ > 0.
"k

o\..
>,
N4 =
2
L2
Lol
.
IA

o0 92—t
S [ toesar
i—0 /2771

oo 1 a+1+ak+t% 9—i . i
CZ% (2) /2 by (7)

8
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and using the above estimate on by, with s = 27/~ gives a result like

b, ( = 1
[ <y g

B
Tk =0

where B > 0 exactly when ] < —o.

We first examine the term given by

P / be(7) dr + C'krﬁl;F
0

78 1

1
C := —/ Mdr.
o 781

Note with this choice of C} we have the needed zero boundary condition for this term (and its clear
the other term has the needed boundary condition) hence ax(1) = 0. We now get the estimate.
Firstly note by the previous argument to show the needed integrand is L'(0,1) we have |Cy| is

and we choose

bounded by a constant depending just on k and hence its clear that ||C'kr'81j Y|l x is bounded by a
constant just depending on k. We now consider the integral term.
A computation shows

—1

" lok(T ) "
/0 Dl < Zm /QZlybk(T)\dT

7B —

> ) _ r270 t
< CpC Z(r2_z)1_5k T </ . |bk(7)|td7'>
i=0 r2-it

< Cka Z 7'2 1 B+
=0
e 1,1
S Ck 1 Z(T2—i)l—ﬁk_+7+?—2—0’

- - U(jklz kaaz

and since —3, — o > 0 we see we get the estimate

sup rﬁk“’/ 10x (7 )|d < Cy,
0

0<r<1 Tﬁk

and from this one can show that
— (" bg(7)
Hwk’f'ﬁk /0 775,:*1617“)( < Cko.

We now examine the term given by

B:/ b (7) dr =: rﬁ;gk(T).
1

B -1




Note that we can write (for integers n > 1)

n

ge(27") = (9x(27") —gu(27)) and hence |g(27")] < Z l9k(277) — gk (271,
i=1

A computation similar to the previous one shows

21 7
@) < Z / 15w (7

Tﬁk
< Gy 2
=1
< Dy (1 + 2"(»31?*”)) ,

and from this we see . ~
(27" ) gp(27™)| < Dy,

for all n > 1. This gives us the desired zero order estimate at least for the values of r € {27 :
n > 1 an integer}. One can extend the above estimate for all values of r and hence combining all
the above results gives us the needed zero order estimate on ag(r). The higher order portions of
the norm of aj can be obtained from the zero order estimates after consider the equation that ay

satisfies.
O

The following are some standard local estimates, at least in the case of L, o replaced with A.

Lemma 3. Let v > —1 and 1 <t < oco. Then there is some C' > 0 such that
[Dllw=t(1<tai<2) < CllLy,0( N Lot <jaj<ay T ClON et <puj<ays
for all sufficiently smooth ¢. Then there is some C > 0 such that
[Dllw=2t(1<tai<2) < CllLy0(@N o1 <aj<2) + ClON e (2 <poj<2)s
for all sufficiently smooth ¢ with ¢ =0 on |x| = 2.

Proof. Note when v > —1 that L, o is uniformly elliptic and the coefficients are smooth away from
the origin. So the proof of the above results follow exactly as in the case of L., replaced with

A. O

Corollary 1. Let v > -1, a € R and 1 <t < oo. Then there is some C' > 0 such that

”¢”W2»t(1<|x|<2) < CHL%Q((b)HLt(%<\x|<4) + CH¢\|Lt(%<|x|<4) + C”VébHLt(%<\x|<4) (16)

for all sufficiently smooth ¢. Then there is some C > 0 such that
éllwaecacinies) < Cllval@ s apren + Clolaapien + CIVl i apieny (A7)

for all sufficiently smooth ¢ with ¢ =0 on |z| = 2.

10



Proof. The result follows by writing L. o(¢) = L 0(¢) + a‘ilqu and using the previous result. [

Theorem 2. Suppose —1 < v < N -2 and 0 < o < —p; . Then there is some C > 0 such that
for all f €Yy there is some ¢ € Xy such that L, o(¢) = f in B1\{0} and ||¢|x < C||f|y-

Proof. A standard argument along with Lemma 2 shows that for all m > 1 there is some C), such
for all f(z) = > 1t br(r)yr(0) there is some ¢(x) = Y 1t ar(r)yr(d) (with ag(1) = 0) such that
L(¢) = f in B1\{0} and ||¢]|x < Cnl|f|ly- So by a density argument it is sufficient to show that
Cyn, is bounded. Suppose not, then there is some ¢, € X; (finite number of nonzero modes) and
fm € Y1 such that L(¢m,) = fm and || filly — 0, ||¢m|lx = 1.

Claim 1. We claim that SUP( o< 1 {s"t*N Ja, | |tda + s(OHDE=N Ja. ]qum]tdx} = SUPy_ <1 D,,(s) —
0; so towards a contradiction we assume this quantity is greater or equal 4e9 > 0 for all m. So
there is some 0 < s,, < % such that ®,,(s,,) > 2&.

Case (i). s, bounded away from zero. Case (ii). s, — 0.

Case (i). Using an argument as in the proof of (17) we see that for all 0 < s < 1 we have ¢y,
bounded in W?*(s < |z| < 1). Hence by a diagonal argument we can pass to a subsequance to find
some ¢ such that ¢, — ¢ in Wi;(E\{O}) Also note that f,,, — 0 in L! (B1\{0}) and hence ¢
satisfies Ly o(¢) = 0 in B1\{0} with ¢ = 0 on 0B;. Since s,, bounded away from zero we can use
the noted convergence to see ¢ is nonzero. Hence if we can show that ¢ € X; then we’d obtain
the desired contradiction after recalling the kernel is empty. Fix 0 < s < % and note by the stated
weak convergence and weak lower semi continuity of LP norms we see ¢ € X;.

Case (ii). Define ¢ (z) := s7,¢om(smz) for 0 < |z| < i Note that since ¢, has no k = 0 mode
(m also have no k = 0 mode. A computation shows that

1
Ly a(Cm) = gm(x) := 572n+afm(3m1:) 0 <zl < P (18)
m
with ¢, = 0 on |z| = i For k a large integer we set Ej = {z € RV : } < |z| < k} and

Ej = {z € RN : &- <|z| < 2k}. By the local estimates there is some C, such that

[Cmllw2t(m,) < C {HQmHLt(Ek) + [Cmll e (i) + HVCmHLt(Ek)} < Cy,

and hence by a diagonal argument we see there is some ¢ such that (,, — ¢ in I/Vlzgct (RM\{0}) and
hence we have L, ,(¢) =0 in RV\{0}. Also note that a computation shows that

/1<| 2 {1¢(x)|t + |V¢(@)[tdx} > 2,

and hence ¢ # 0. We write {(z) = > ar(r)yx(6) and as usual we have

(N =1+ a)ap(r)  Agag(r)
r 72

(v + 1)a/lé(7“) + =0, 0<7r< oo,

and hence, as before, we have a(r) = C’krﬂlj + DyrPx . To get a contradiction we hope to show
that Cp = Dy = 0, but to do this we need some estimates on { near r =0 and r = co. For i € R a

11



computation shows that
Lo @ <@ [ VG < (2
2i< |z <2i+1 2 <|z|<2i+1

and we can pass to the limit in these estimates. Using the first estimate we see there is some Cj, > 0

such that ,
27,+1

[t tar < G,

7

for all ¢ € R. Using a change of variables this gives

2 , T ~
/ sN_llC’ksﬁlj(QZ)B:Jm + Dyps™ (20 +9| ds < O,
1

for all ¢ € R and note for all k£ we have ﬁk # [, . Hence the only way we can possibly have one of
C or Dj. nonzero is that either we have Bk +o =0or 3 +0c=0. We now recall the assumptions
on ¢ and using the monotonicity in k of Bk we have the desired result. O

For the following lemma we use the exact values of the parameters.
Lemma 4. (Onto estimate for k = 0 mode) Suppose the parameters satisfy (13) and set 5 := NI_TT"
(which implies f — o — 1 < 0). There is some Cy > 0 such that for all by there is some ay which

satisfies (14) for k =0 and ||ao||x < Collboly -
Proof. We look for a solution agy(r) of

(1+v)ag(r) + (N_:—i_a)ag(r) =by(r), 0<r<l1

with ap(1) = 0. We normalize by such that its Y norm is 1. Note we can use the integrating factor
method to get an explicit formula for the solution. If one does this (and taking ag(1) = 0) we arrive

at
L1 1 m8u(1)
ao(R)—/R {TB/T T+ dT}dT.

We now get the needed estimate on agp but instead we get an estimate for aj. So we have

1
(1 -+ )8 laly(r)] < / 72|bo(7)dr.

r

Taking r = 2% for n a large integer, we have

1 ﬁ/ 1 211
() lab (35) mz/ T lbo(r)ldr

. 1
n 1 2171 T
< CZ o (/ |b0(7)\td7'> C independent of n
: 2’ ¥ —i
< C'Z 22(/3+ Ty after using (15)
< Cl (1 +2(1+0—6)n>

12



after using the fact this is a geometric series. Rearranging this we arrive at
@) ap(2 ™) < €1 (14 27—,

and recall 8 — o — 1 < 0. From this we see the right hand side is bounded independently of n.
This shows that for » = 27" we have the estimate 77 "!|af(r)| < C. Standard arguments extend
the result to the other values of r. This will give us the needed estimates to bound the zero and
first order terms in the X norm of ag. To get bounds on the zero order terms one integrates these

first order estimates; to get the second order terms we use the ode directly; we omit the details.
O

Corollary 2. Suppose the parameters satisfy (13). Then there is some C > 0 such that for all
f €Y there is some ¢ € X which satisfies L o(¢) = f in Bi1\{0} with ¢ =0 on 0B;. Moreover
one has [[¢]x < C| flly-

Proof. Given f € Y we write f = fo + fi where fi € Y; and fo = fo(r). We claim there is
some C7 > 0 such that ||folly < Ci|f|ly independent of f. To see this we use the fact that
fo(r) =Cn f|9|:1 f(r)do where Cy depends on N. We then write out the Y norm of fy and apply
Jensen’s inequality to arrive at the desired result. From this we get the same estimate for f; but
with a larger C4 if need be. Now let f € Y and decompose as above and we let ¢ = ¢¢ + ¢1 where
L(¢i) = fi in B1\{0} with ¢; = 0 on 0B;. Then if let Cy denote the maximum of the C’s from

Theorem 2 and Lemma 4. Then we have

[6llx < lldollx +l¢nllx < Callfolly + Callfrlly < 2CiChll £y

which gives us the desired estimate. O

2.2 The Holder continuous case

Here we examine the needed linear theory to linearize around the radial Holder continuous solution
from Example 1 Case 2 where w(r) =1 — r? where o := qﬁ;ﬁl. If one takes the same approach as
in the singular case, they see we need to examine the operator L = L, , where

L(O)(x) i= Lyal@)(z) i= AG(@) +70rr(2) + Z0(2)

and
yi=p—2
q—p
~ q—p+1?

a:=2(N-1)+2(p—1)(c —1)—C(q—p+4)o? P+ C defined in (6).

The spaces we work in are the same as before (again we have N < t < 00) except now note the
change of sign in front of o; define the spaces Y =Y; , and X = X; , with norms given by

17y == sup )N /A £ ()|t and

0<s§%

Il == sup N{ [ otasst [ votas s | 1D2¢|fdx}

1
0<SS§

where for the space X we impose the boundary condition ¢ = 0 on 9B1. We now define the closed
subspecies of X and Y, respectively X1, Y] where we remove the k = 0 mode.

13



Lemma 5. Define a,y,0 as above and define /B,;t as before and we set §:= Y12 Then

7+
8<1—o, B, < —o, ﬂ:>a,
for all k > 1.
Proof. Note that §—1 =220 or g1 = L W*}f_‘l;p*l) and finally
B—l+o=1- (N—lz)?(quJrl) _ (P—l)—(]\;—i)(q—erl) -0

since ¢ > %.

Also Note that 3, +0 = —1 < 0. Thus 3; < —0o and since 3, < f;, so we proved the claim.
Finally, notice that 87 — o > 0

_ _ (N—2—v+a (N—2—y+0a)2+4(147)(N-1)
By —o= 2(1+77) Ly v 2(1+7)

— 0

WD (@ptl) | (N1 (g-pt D)+ P

- 2-1) 2(-1) — 7
_ WN=D(g—p+l) _ _g—p
(r—1) q—p+1
¢—p _ 1
z l-Sa =m0
This implies that B,j > 0. O

As in the previous section, our goal is to develop a linear theory to consider

L(6) = Lya(@) = f i B\{0}, ¢=0 ondB (19)

As before we use spherical harmonics
F@) = be(r)n(0), o) = ar(r)r(0),
k=0 k=0

and then we need ag(r) to satisfy

(N—1+a) /

(1 + af(r) + 2 (r) - 2%

with ag(1) = 0. As before we separate the £k = 0 mode.

Lemma 6. (k=0 mode). There is some Cy > 0 such that for all bo(r) there is some ao(r) which
satisfies (20) and |lao||x < C||bo]|y -

Proof. For 0 < R <1 define

Lot Yog(r)rh T
CLO(R) = /]'% (7‘6/7, ﬁdT — 7“6> d'l“,

14



where we define T such that

1 L/1 [y 8
T/ T‘Bd’l”:/ </ o(7)7 d7'> dr.
0 o \"? S y+1

Note that 8 < 1 and hence the integrals over (0, 1) not involving by are finite. We normalize by via
[bolly < 1. For the time being we adjust the ¥ norm via [|bo||y := supgc|s|<1 |22~ |bg(x)| (and we

again normalize by) we then easily see that |T| < C. Also note that

1 (Y o(r)rP? T
—_q —_ -
“0(R) = 73 /R i1 T R

and then note

¢ D [!
/ ~ -~ B—2+0

(R)| < 75 + 5 [ 7720
which is bounded above by CR™® 4+ DyR™1% < D3R~ and hence we obtain the estimate
R'Y7aj(R)| < Dyforall 0 < R < 1. Let 0 < R < 1 and take 0 < ¢ < R and note we have

R R
lag(R) — ap(e)] < / lag (r)]dr < / Dyr 1 %dr < Ds(R° —£7),

and if we can show ag is continuous at » = 0 with ag(0) = 0 then by sending £ ~\, 0 we’d have
lap(R)| < DsR?. Note we chose T exactly such that ap(0) = 0 and one easily sees the needed
continuity.

Of course since our space is Y and not Y the above doesn’t show anything. One needs to use
Hoélder’s inequality argument coupled with the dyadic intervals as we used before to show we can
replace the Y norm with the ¥ norm and obtain the same estimate. The second order estimates
on ag come directly from the ode; we omit the details. O

We now consider obtaining the need estimates on the higher modes. As before we start with
the solution of (20) given by

_ [T T b
- + . k(T) + k(T) +
(p— 1)(@ - Bk Jag(r) = 7P /0 T dr — P /1 7.6,;"*1 dr + Ckrﬂk .
We choose Cj, such that aj(1) = 0. Note the condition that 8 > o implies that that e X
(except for the fact it doesn’t satisfy the needed boundary condition). As in the proof of the
estimate for the k£ = 0 mode, if we replace the Y norm with the ¥ norm we see the conditions from
Lemma 5 are sufficient to show that

sup (rl_alagg(r)] +r77|ar(r)]) < Cr sup 277 by ().

0<r<1 0<r<1
As before one needs to replace the ¥ norm with the ¥ norm and use some additional arguments
to obtain the desired result.

Finally one can argue as in the previous section and combine the modes to obtain the following

theorem.

Theorem 3. Let N > 2, p > 1 and ¢ > max {p, N]E,p__ll)} and o,v,a be as above. Then there is

some C' > 0 such that for all f €Y there is some ¢ € X which satisfies (19) and ||¢||x < C| fl|y-

15



3 Fixed point theory

We consider the singular and and Holder continuous case separately in the following sections.

3.1 The singular case
p—q
q—p+1’

Iflh = sup s+ /A (@)l

0<s§%

Here, we know that o = p—1 < ¢ < p and the norms given by

and

ol == sup sUtN{/A \¢|tda:+st/A \v¢|fdx+32t/A ]D2¢|tdx}.

D<s§%
Also a computation shows that
Aw
[Vw|>
Recall we have defined J.(¢) = v, where 9 satisfies (11). In order to obtain a solution ¢ of (9)

we will show that J. is a contraction on B, where B, is the closed ball of radius r centered at the
origin in X. First of all note that J; is into X. Due to do this we have the following lemma.

o(c+2—N)r?

Lemma 7. Assume ¢ € X. Then

llx

0 < 1oL o)

su p|¢>|<C

Proof. By a standard scaling argument and the Sobolev embedding theorem after noting the fact
that N <t < oco. O

With respect to Lemma 7, one can conclude if ¢ € Br € X then

CiR C’lR
sup [¢] < ——, ‘V¢|
As S
By the above notes we can prove the following lemmas.
Lemma 8. Let ¢ € B C X. Then there exists C11 such that || @fj’ 14 < Cuallo)|%.
F Aw|V¢|?
Proof. [[igi1lY = || 3ehpt [l and
Aw|Vo|? o)t— Aw|Vo|?
[ f%‘w(?' I3 = SUPp<s<1 sHo)=N fAS | fuv‘w@ (z)|"dx
= SUPy <1 sPHN [ Jo(o +2 = N)z|7 | Ve[| da
< Culgl¥

16



Lemma 9. Let ¢ € B C X. Then there exists Caa such that || Fa(¢) 14 < Canllg]|%.

[Vuwl?
Proof. Since || Fa()|}, = | 2eri2|l5 and
2VwV oA _ IV AA
” |u$w(‘;52 d)HY = sup0<5§% S(2+O')t NfAS ‘l%iw(f;qb(x)‘tdx

— SUP0<5§% S(2+U)t—N fAS |%|$|U+1V¢A¢($)|tdl‘

< Cxllo)¥

Lemma 10. Let ¢ € Bgr C X. Then there exists Cs3 such that H

|vw\2 HY < C33H¢HX'

. F3( A@)|V
Proof. Since |||V‘°’w(T%||t = ||( %Lg' 5 and
A v 2 _ A \% 2
ISR = supcuey sCF0 N [, 1R @) o
_ §(2+0)t—N \x|2”+2 AoV |2 td
= B eey ST [ [ (AT ) e
< Csslloll3

Also it easy to see that

Lemma 11. Let ¢ € Bg C X. Then there exists Cys6 such that

=291V (|V¢|?)
|||vw|2||t = | —I% < Cussll 913,
Fs( VeV (Vv
Il = =22 < CussllolR,
2Vp-V(|Ve[?)
|||Vw|2H = |’2|T\2HY<C56H¢H

Lemma 12. There exists Cr7 such that || f;% 14 < Crr(|ol1% + 185 (@-pra)t ).

Proof. with respect to part (2) of Lemma 15 (in Appendix) one can show that

!M |2”Y: HC\Vw+V¢>\q*p+4—\Vw|Q*P+4—(q—p+4)\Vw|w+2vwv¢Ht
Vw

Vol
< C H\V¢|4—P+4+|Vw|q—P+2\V¢|2 !
> D Vw2 v
_ t —p+2 2|t
[Volo—rtt [Vult—P+2|vg|
< 6|5, + o [P

17



For the first term, we have

‘ |V g|a—pta t

[Vwl?

(24+0)t—N [Volr—PH? ¢
v SUPg<s< 18 fAS | [Vuwl2 |"dx

|f’5‘20+2

[Vo|1=PH ()| dx

— 2+0)t—N
= 5“po<s§%5( ) Ja, |

Crallgl| 2",

IN

Since o0 = 27 and (0 +1)(¢ —p+4) —20 —2=0+2. Also

2+a)thf [Vw|?— pHW‘b‘Q\tda:
A,

[Vuwls—P+2|vg)2 ||
[Vwl?

[Vuwl?

SU, 1 S(
v Po<s<i

od—p

2 —N 2
= supgeoc 15N [ | | Vo de

< 07||¢||§§ Sup0<8§%5(2+o)t—N fAs ||z|($%\x|_2(”+l)|tdx

= C7||¢||§§ SUP0<5§%3(2+0)FN fAS | |m|<0+1§f<2:2>+za+2 |td33

= C&Hqﬁ”%f sup0<8§%3(2+0)t7N fAs ||m|a(q—pif;rpq_p+a+2 dz

< TCrel%
Sinceozqf;il and o(¢—p+1)+q¢—p+o+2=0c+2. O

Finally we have
Lemma 13. Let ¢ € Bgr C X. Then there exists Cg such that

1(9) s [Vw + V¢ + edo(Vw + V)77 — [Vw + V|oPH

+4
gl = 1€ ol I < Ceet(1+ [lo]l 7).
Proof.
[E= || _ HCIVw+V¢+8Ao(Vw+V¢)\q’P+4—\Vw+V¢\q’p+4Ht
|Vw|2 Y — NVw]? Y
_ Vo|a—rt+4
< Caet([[Vwlrr2 ) + 111 )
< Csel(1+ [l 7.

Lemma 14. Suppose ¢ € Br C X, then

He(w+ ¢)

wup S O
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Proof. Note that

IS = supgegeys® N [ b {(Aw + 0)26(A0V (w + 6)) - V(w + ¢)

+e*(A(w + ¢))[ AoV (w + 9)[* + E-((w + ¢)) |V (w + ¢)|?
+E.((w+ ¢)(2eAgV(w + ) - V(w + ¢) + E-(w + ¢)*[AgV(w + ¢)[?

+g0(e) > {(w + ¢)xzx3 (w+ })e; (W + ¢)w1 + (w + ¢)w1 (w+ ¢)IJ (w+ ¢)zk}} ’tdx-
The above equation include the following terms

Aw|Vw|? A¢|Vw|?2 Aw|Ve|2 A¢|V]2 AwVw Ve ApVw Ve
|vw|2 ’ \Vw|2 9 \Vw|2 I |vw‘2 I |Vw|2 ’ \Vw|2 ’

Ee(w)|[Vwl®> Ee(w)|V]* Ee(w)VwVé Ec(9)|Vw|® E:(9)|[VY® E:(¢)Vw-Ve
|Vw\2 ) \Vw|2 9 |Vw|2 ) |Vw\2 9 |Vw\2 ) |V'w|2 )

wzzzjwzlwzj wzlz]wz ¢z w1i1j¢zi¢lj Qszlzjd)zZQL’zj wziwziwzj wzzwzz¢zj w1i¢zi¢lj ¢z¢zl¢)z]
Vw7 Vw2 > Vw2 0 Vw7 Vel 2 Vw2 0 Vw2 7 [Vw]?

Similar to the last lemmas, a computation shows that ||each term|} is bounded. Definition of

H.(w + ¢) shows one can factor € out. Thus € times the last estimated bound of each term will
give us the desired result. O

Theorem 4. Assume ¢ € Bgr C X. Then the following estimates holds:
0 12915 < culloll

(1) | 2911 < Conllo)12

(1) |21 < Csll o]

(1V) B9t < Cusollol2
(V) | 29

(VD) |l |Wp M4 < Cussll 113

< Cusel 9|13

(VID) [l < Cor(g% + 61§

(VID) S 1% < Coet(1+ [l €7").

(vID) BG4 < Cost for all ¢ € Br with R < 1.

Proof. The proof is straightforward of the Lemmas 8-14. 0
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Combining the above results we see that for 0 < R < 1 chosen sufficiently small and then £ > 0
chosen sufficiently small we have J.(Br) C Bg.

Contraction: We want to show that for small enough € > 0 that .J. is a contraction on Bg C X
for suitably (small) R. Let J.(¢) = and Jz(¢o) = o with ¢, ¢9 € B,. Note that

L) — L(yy) = 22:1 Fk(@?)v—wl*‘jg(%) + Is(ﬁ)v—qjis;(bo) + Hs(w+ﬁ)v_wﬁ[§(w+¢0)' (22)

Theorem 5. J. : B — Bp is a contraction, where € and R are small enough.

Proof. We have to show that for sufficiently small ¢ and R, J. : Bgp — Bp is a contraction. In
other words we need to show there exists a kg, < 1 such that

|J:(¢) — Jie(@0)lly < krelld — dollx-

We need to prove there exist kr . such that

F; —F;
P00 | < kel = dollx for k=12, .7
I —I.
% y S kR,E ||¢ - ¢0||X and (23)

H (w+¢)—H:(w+¢o)
[Vw|?

v < kR,a qu— ¢0”X .

Each of the above inequalities are studied in the following Steps 1-9:
Step 1. kK = 1. We have

|*Gr N = i (V6P = [V60?) I

= supg 15N [ | Bt (V6] — (Vo) [fda
= Supo<s§§5(2+g)t7N fAS !#W (’V@z - \V%P) |'dz
= supy 18NN [ TN 2|7 (V6] + [Vol) (V6] — [Vo|) 'de

< (OFEEER) ¢ — dolly-
Step 2. kK = 2. We need to show

‘ Fy(¢) — Fa(¢o)
V|

< kR,a H¢ - (Z)OHX :
Y
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By the definition we have

|

F(9)-Fa(g0) ||° _  ||2Vw(VeAs—VeoaAd) ||
V]2 v [V w]? v

~ [ (5 (76— Ton) 20— (a0 - 20) V)|

IN

b { | 5 (70 = Vo) a0 + 58 (800 - a0 Ve |

= k12t (K21(¢7 ¢0) + K22(¢7 ¢0)) .

A computation shows for each each term we have as:

K¢, ¢0) = supg 1 sEHN [ B0 (Vo — Vo) Agl'da

IN

ot (supge ey sEHN [ 1A61) (16 = doll’)

IA

ko R || — o' -

where we have applied Sobolev embedding sV sup, |V¢| < C1[|¢||x. For Kas(¢, o) we have

K2a(d, do) = supy_,1 s@FO=N [ !2_215 (Apy — Ag) Vo ltda

IN

thRt Sup0<s§% 8(2+U)t_N fAS | (A¢O - A(ZS) |td‘7:

IN

kot R || — doll'y -

Consequently

Fo(¢)—F(¢o)

t
T 2|, < kR |6 — oy

H(A¢)|V¢|2—<A¢o)|wo|2 t

Step 3. k = 3. We have

F3(8)—Fs(¢0) ||* _
Va2 =

[Vwl?

Y Y
= SUpyc1 5(2+0)t=N fAS |(A¢)|V¢IT§L(U?2¢0)IV¢0\2 It da
= supg_yc1 STV [ EEEE (A6 — Ao) VI + (V6 — V60) (Vo + Vo) Adko) [!d
< k3R ¢ — ol
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Step 4. kK = 4. We have

t
Fi(¢)—Fi(¢0)

L | = 7
[Vwl? -

. o (V(IVo]?) = V(IVol?))

Y

t
p—2
==Vuw

o V(IVo]* = [Vgol?)

Y

t

204 2 _
< (p—2) [Vw||V3||D?(¢ ¢o|)|v+y\J‘VQwHD ¢0[|Vo—V |

Y

< kR — ¢olly,

where we applied Lemma 16 in Appendix.
Step 5. kK =5. We have

F5(¢)—F5(¢o)

Vo-V(Vw-V¢)—Voo-V(Vw-V
e =l - 2) TR Rl

v [Vw|?

= |(p — 2)22wlVelIVé-Véol+|Vw||D>4|[Vé— Vo | +Vo||D*w|[ Vo=V ol +V ol Vel D> (6=do)] ¢
[Vw]? Y

< kR — doll’y-

Step 6. kK = 6. We have

p=2 Vé-V(|V6[*)~Véo-V([Veol?) ¢
1% Iy

[Vwl[? - [Vw[?
Vo|?|D?(6— D24o||V o+ Vol Vo—Vaol ||t
< kﬁo"(p_Q)l 02D (¢ ¢>0)\+|WZ>)(|)2|| $+V ol |[Vé—V ol )

< ketR*[ ¢ — doll’y-

Step 7. kK =7. I mean we need to prove

‘ F7(¢) — Fr(o)

|Vwl?
H |Vw+V |4~ P+ — | V|9~ P+ — (q—p44)|[Vw|I P2 VwVe
[Vw[?

S kR,E H¢ - ¢0HX7
Y

by the definition we have

Fr(¢)—Fr(¢0) ||*

Vol

Y

[Vw Vo 14— | Vuw|9=PH4 — (g—p+4) | Vw| 7 PH2Vw Ve ||

[Vwl]?

Y

t

H |Vw+v¢|q*p+4—|w+v¢o|Q*P‘+4—|(g—p+4)\Vw|qw+2w(v¢—v¢0)
YVw

Y

IN

t
C || (I7wI* (V6] + [Vgol) + V9177 + [V0|* ) [V — Vo | .
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where we applied part (4) of Lemma 15 (in Appendix). Thus with respect to the definition of || - ||y
we have

| b (IVwl™7%2 (1] + 9 60l) + (V9177 + [T aol7 ) V60 — V|

IN

trs (| ke (9007242 191+ 1¥0]) V60 - W

ek (17617 4 [0l 1900 - vl )

= k71 (Ku(d), ¢0) + K12(¢> ¢0)) .

A computation shows
Kui(,00) = |k (V772 (V6] +960]) (V60 — Vol |

< (2(Co)PC1R) |6 — dollly

and

Ki@.60) = | e (17617772 + Vg0l 7+2) 1960 - Vol |

2(C R)(a—p+3) t
(2A") 6 = goll’-

IN

Thus

Fr(¢)—Fr7(¢0)
[Vwl[?

|

;S k71 (K11(, ¢0) + K12(9, ¢0))

(g—p+3)\ t
< in ((Copra) + (ABET)Y o -l

[ x-
Step 8. We need to show

I.(¢) — 1:(¢0)

< — .
Sop < kre 16— dollx

Y
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With respect to part (4) of Lemma 15 (in Appendix) one can write

HMW
Y

[Vwl?
- Ct” |Vw+Vo+edo(Vw+Ve)|[9—PT4—|Vw4Ve[a—PHe \Vw+V¢0+aA0(Vw+V¢>0)|‘1*P+4—\Vw+V¢o|q*P+4)Ht
B [Vwl|? [Vwl? Y
< ke (|| |Vw+Vo+eAo(Vw+Ve) |9 PH— | Vw4 Vo +e Ao (Vw+Veo) |9 P4 —(1+¢) (g—p+4) [ Vw|? P2V w(Vo—Vo)
- |Vw\2
+| [Vw+V¢|9=P T —|[Vwt Vol TP —(g—p+4)|[Vw|?T P2 Vw(Vd—Vo) [
[Vwl|? Y
+l e(g—p+4)| V| P2 Vw(Vé—Veo) [
[Vwl? Y
<

kgo (|| [|Vw\q—p+2(\V¢>+€(Vw+V¢)\+|V¢0+8(Vw+v¢0)|)+|v¢+€(vw+v¢)|q_p+3
[Vwl?

w —PHs
+\v¢o+5(v‘vzﬁ¢o)lq ? ] (14¢) Ve — Volll§

[[Vw|1=PH2(|Ve|+|Vo|)+| V|1 PH3+[Veo |9 PH3]|Vé—Veol | 4
+|| Sl 1%

e(q—p+4)|[Vw|17P 2| Vw||Vé—Vo| |1t
+ s It

< kgy [(L+e) {Rt+ (1 + RY) + Rla—P+3)t 4 (a=p3)t(1 4 R(qu+3)t)}

+(Rt + R(q—p+3)t) + 5t(q —p+ 4)t] o — ¢0|’§<-

Or it means that
[Vw|?

Step 9. We need to show that

H He(w+¢) = He(w + ¢o)
[Vwl?

ly < krellé — ¢ollx-

< krello — doll x -
y
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We know that
t

H HS(w+(;T)V_wJL\I§(w+¢O)

y
ol licd

2e (A(w + ¢)(AoV(w + ¢)) - V(w + ¢) — A(w + ¢0)(AoV(w + ¢0)) - V(w + ¢o))

+e% (A(w + 9)| AV (w + §)[* — A(w + ¢0) | AoV (w + o))

+E-((w + ¢))|V(w + ¢)|* = E=((w + ¢0))|V (w + ¢o)[*

+2¢ (Ee(w + ¢)(AoV(w + ¢)) - V(w + ¢) — Ec(w + o) (AoV(w + do)) - V(w + ¢o))

% (Be(w + 0)| AoV (w + 6)|” — Ex(w + ¢0)| AoV (w + ¢0)|*)

+90() {3 { (W + @)asa; (W + D)y (W + Gy + (W + B)a; (W + D)o, (W + D)oy }

=3 {(w + G0)ia; (W + G0) (W + P0)z; + (w + Po), (w + Go)ay (w + o)y } 1] I3

Similar to the other cases (which is done above), a computation shows each of the above differences
is bounded by koe!||¢ — ¢ol|-
O

Note to see the solution v is positive we note that v(z) = w(z) + ¢(x) and then note by taking
R > 0 small enough and using the pointwise estimate on ¢ and its gradient that we have v > 0 in
B;.
3.2 The Holder continues case

To apply the fixed point theorem in this section we argue exactly as in the previous section. In
other words, by the same argument one can show that for 0 < R < 1 chosen sufficiently small and
then € > 0 chosen sufficiently small we have J.(Bg) C Bpg, and for small enough ¢ > 0, J; is a
contraction on Br C X for suitably (small) R.

4 Appendix

Here we recall the following lemma which is necessary to follow the problem.
Lemma 15. Suppose p > 1. There exists a constant C' such that the following hold:
(1) For all numbers w > 0 and ¢, ¢ € R,

lw + ¢P — puwP~te — wP| < C (wP~2¢? + [¢|F) ,
and

-+ 317 — [w+ 8 = pur (6 — 9)| < © (w2 (1] + 161) + 6P~ +10171) [6— ¢
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(2) For all z,y,z € RV,
e +ylP o+ 2P] < C (JalP™ + [y~ + 2P71) |y — =],
(8) For p > 1, there exists C), such that for and x,y € RN and (x #0) and |y| small enough

|z + ylP = [zfP — plzlP 2z - y| < Cp (lyP + [2[P2|y[?) -
(4) For x,y,z € RN,

|z +yP — |z + 2P = plafPe - (y — 2)| < C (|22 (lyl + [2]) + [y~ + 2P [y — 2]
Recall that Fy(¢) = %Vw -V (IV¢[?) and F5(¢) = (p — 2)Vé - V(Vw - Vo), then we have the
following lemma.

Lemma 16. Let ¢y, ¢1 € X. Then there exist C1 and Co such that
[Fu(¢1) — Fa(go)| < C1 (|Vw||[Vér1]|[D*(d1 — do)| + [Vw||D>¢o| V1 — Vo) ,
|F5(¢1) — F5(¢0)] < Ca (|D*w|[V1||[Vé1 — V| + [Vw||[D?¢1[|[V1 — Vol (24)

+H Vol D*w[[Vr — Vol + Vol [Vl [ D*(¢1 — ¢o)l) -
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