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Abstract

In this article we obtain positive singular solutions of{
−∆pu = |∇u|q in Ω,
u = 0 on ∂Ω,

(1)

where Ω is a small C2 perturbation of the unit ball in RN . For (p−1)N
N−1 < q < p < N we prove

that if Ω is a sufficiently small C2 perturbation of the unit ball there exists a singular positive
weak solution u of (1). For other ranges of p and q we prove the existence of Hölder continuous
positive solution (with optimal regularity) on a C2 perturbation of the unit ball.

1 Introduction

In this work we are interested in obtaining positive singular solutions of{
−∆pu(y) = C|∇u(y)|q y ∈ Ω,

u = 0 y ∈ ∂Ω,
(2)

where Ω is a small C2 perturbation of the unit ball in RN and where C > 0 is a constant. Note we
can rewrite this as

0 = |∇u|2∆u+
(p− 2)

2
∇u · ∇|∇u|2 + C|∇u|q−p+4 y ∈ Ω, (3)

with u = 0 on y ∈ ∂Ω. We can write this in terms of the components as

0 =

|∇u|2∆u+ (p− 2)
N∑

i,j=1

uyiuyjuyiyj

+ C|∇u|q−p+4, y ∈ Ω. (4)
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Note that we can re-write the equation as −∆pu − a(x) · ∇u = 0 in Ω with u = 0 on ∂Ω where
a(x) = |∇u|q−2∇u and hence if u sufficiently smooth we see that a(x) should be sufficiently smooth
so as to apply the maximum principle; hence the only solution should be u = 0. From this informal
argument we expect the only way to obtain a positive solution is for the solution to be somewhat
singular. The following example gives an explicit solution on the puncture of the unit ball. Our
approach will be to perturb an explicit solution on the ball.

Example 1. Let B1 denote the unit ball centered at the origin in RN .

1. Let 1 < p < N , (p−1)N
N−1 < q < p and define w(r) := r−σ − 1 where σ := p−q

q−p+1 and

C :=
(N − 1)(q − p+ 1)− (p− 1)

(q − p+ 1)σq−p+1
. (5)

Then u is a singular weak solution of (2) with Ω = B1. Note the restriction p − 1 < q < p
forces σ > 0 and the further restriction forces C > 0.

2. Let q > max
{
p, N(p−1)

N−1

}
and define u(r) := 1− rσ where σ := q−p

q−p+1 and

C :=
(N − 1)(q − p+ 1)− (p− 1)

(q − p+ 1)σq−p+1
. (6)

Then u is a positive Hölder continuous weak solution of (2) with Ω = B1. Note the restriction
p < q forces σ > 0 and the further restriction forces C > 0.

With the above example in mind we now state our main result.

Theorem 1. Suppose N ≥ 2.

1. Let p, q,N, σ, C be as in Example 1 part 1. Then for sufficiently small C2 perturbations of the
unit ball, say Ωε, there exists a positive singular weak solution u of (2) (with Ω = Ωε) which
blows up at exactly one point xε (near the origin) and behaves like u(x) ≈ |x−xε|−σ near xε.
The proof gives the exact behaviour near xε.

2. Let p, q,N, σ, C be as in Example 1 part 2. Then for sufficiently small C2 perturbations
of the unit ball, say Ωε, there exists a positive weak solution u of (2) (with Ω = Ωε) with
u ∈ C∞(Ωε\{xε}) and with u ∈ C0,σ(Ωε). In addition u is not in C0,σ+δ(Ωε) for any δ > 0.

1.1 Background

A well studied problem is the existence versus non-existence of positive solutions of the Lane-Emden
equation given by {

−∆u = up in Ω,
u = 0 on ∂Ω,

(7)

where 1 < p and Ω is a bounded domain in RN (where N ≥ 3) with smooth boundary. In the
subcritical case 1 < p < N+2

N−2 the problem is very well understood and H1
0 (Ω) solutions are classical

solutions; see [25]. In the case of p ≥ N+2
N−2 there are no classical positive solutions in the case of the
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domain being star-shaped; see [37]. In the case of non star-shaped domains much less is known;
see for instance [12,17–19,36]. In the case of 1 < p < N

N−2 ultra weak solutions (non H1
0 solutions)

can be shown to be classical solutions. For N
N−2 < p < N+2

N−2 one cannot use elliptic regularity to

show ultra weak solutions are classical. In particular in [32] for a general bounded domain in RN
they construct singular ultra weak solutions with a prescribed singular set. We mention that the
weighted Hölder spaces we use in our current work were developed in [32], see also [35].

We now return to (2). The first point is that it is a non variational equation and hence there are
various standard tools which are not available anymore. The case 0 < p < 1 has been studied in [5].
Some relevant monographs for this work include [22, 26, 39]. Many people have studied boundary
blow up versions of (2) in the case where ∆p = ∆2 and where one removes the minus sign in front
of ∆p; see for instance [29, 40]. See [1–11, 20, 21, 23, 24, 27, 28, 30, 31, 33, 34, 38] for more results
on equations similar to (2). In particular, the interested reader is referred to P.T. Nguyen [33]
for recent developments and a bibliography of significant earlier work, where the author studies
isolated singularities at 0 of nonnegative solutions of the more general quasilinear equation

∆u = |x|αup + |x|β|∇u|q in Ω \ {0},

where Ω ⊂ RN (N > 2) is a C2 bounded domain containing the origin 0, α > −2, β > −1 and
p, q > 1, and provides a full classification of positive solutions vanishing on ∂Ω and the removability
of isolated singularities.

1.2 Our approach

Before outlining our approach we mention that our work is motivated by [13–16, 32, 35]. Some of
these works deal with a full space or exterior domains; but the linear analysis is still quite similar
as compared to what we perform.

We now perform a change of variables to reduce the problem to one on the unit ball; this is
take from [16]. Fix ψ : B1 → RN be a smooth map and for ε > 0 define

Ωε := {x+ εψ(x) : x ∈ B1}.

This domain will be the small perturbation of the unit ball we work on. There is some small ε0 > 0
such that for all 0 < ε < ε0 one has that Ωε is diffeomorphic to the unit ball B1. Let y = x+ εψ(x)
for x ∈ B1 and note there is some ψ̃ smooth such that x = y + εψ̃(ε, y) for y ∈ Ωε. Given u(y)
defined on y ∈ Ωε or v(x) defined on x ∈ B1 we define the other via u(y) = v(x). So to find a
positive singular solution u(y) of (2) it is sufficient to find a positive singular solution v(x) of some,
to be determined equation, on the unit ball. To compute the equation for v(x) we will use the
chain rule, but we mentiond that the computation becomes quite involved. We know that

uyi =

N∑
k=1

vxk

(
δki +

∂ψ̃k

∂yi

)
= vxi + ε

N∑
k=1

vxk
∂ψ̃k

∂yi
.

Also a computation shows

uyiyj = vxixj + ε
∑N

l=1 vxixlψ̃
l
yj + ε

∑N
k=1 vxkxj ψ̃

k
yi + ε2

∑N
k=1 vxkxj ψ̃

j
yj ψ̃

k
yi

+ε2
∑N

k,h=1 vxkxhψ̃
h
yj ψ̃

k
yi + ε

∑N
k=1 vxk ψ̃

k
yiyj .
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In addition

uyiuyjuyiyj =
(
vxi + ε

∑N
k=1 vxk

∂ψ̃k

∂yi

)(
vxj + ε

∑N
l=1 vxl

∂ψ̃l

∂yj

)
×
(
vxixj + ε

∑N
l=1 vxixlψ̃

l
yj + ε

∑N
k=1 vxkxj ψ̃

k
yi + ε2

∑N
k=1 vxkxj ψ̃

j
yj ψ̃

k
yi

+ε2
∑N

k,h=1 vxkxhψ̃
h
yj ψ̃

k
yi + ε

∑N
k=1 vxk ψ̃

k
yiyj

)
and hence∑

ij uyiuyjuyiyj =
∑

ij

{
vxivxjvxixj

+εvxivxj

{∑N
l=1 vxixlψ̃

l
yj +

∑N
k=1 vxkxj ψ̃

k
yi +

∑N
k=1 vxk ψ̃

k
yiyj

}
+ε2vxivxj

{∑N
k=1 vxkxj ψ̃

j
yj ψ̃

k
yi +

∑N
k,h=1 vxkxhψ̃

h
yj ψ̃

k
yi

}
+εvxivxixj

{∑N
l=1 vxlψ̃

l
yj

}
+ε2vxi

{∑N
l=1 vxixlψ̃

l
yj +

∑N
k=1 vxkxj ψ̃

k
yi +

∑N
k=1 vxk ψ̃

k
yiyj

}{∑N
l=1 vxlψ̃

l
yj

}
+ε3vxi

{∑N
k=1 vxkxj ψ̃

j
yj ψ̃

k
yi +

∑N
k,h=1 vxkxhψ̃

h
yj ψ̃

k
yi

}{∑N
l=1 vxlψ̃

l
yj

}
+εvxjvxixj

{∑N
k=1 vxlψ̃

k
yi

}
+ε2vxj

{∑N
l=1 vxixlψ̃

l
yj +

∑N
k=1 vxkxj ψ̃

k
yi +

∑N
k=1 vxk ψ̃

k
yiyj

}{∑N
k=1 vxk ψ̃

k
yi

}
+ε3vxj

{∑N
k=1 vxkxj ψ̃

j
yj ψ̃

k
yi +

∑N
k,h=1 vxkxhψ̃

h
yj ψ̃

k
yi

}{∑N
k=1 vxk ψ̃

k
yi

}
+ε2vxixj

{∑N
l=1 vxlψ̃

l
yj

}{∑N
k=1 vxk ψ̃

k
yi

}
+ε3

{∑N
l=1 vxixlψ̃

l
yj +

∑N
k=1 vxkxj ψ̃

k
yi +

∑N
k=1 vxk ψ̃

k
yiyj

}{∑N
l=1 vxlψ̃

l
yj

}{∑N
k=1 vxk ψ̃

k
yi

}
+ε4

{∑N
k=1 vxkxj ψ̃

j
yj ψ̃

k
yi +

∑N
k,h=1 vxkxhψ̃

h
yj ψ̃

k
yi

}{∑N
l=1 vxlψ̃

l
yj

}{∑N
k=1 vxk ψ̃

k
yi

}}
.

Now we will partially switch notation back; so we have (and any derivatives of v are understood to
be with respect to x)

N∑
i,j=1

uyiuyjuyiyj =
∇v · ∇(|∇v|2)

2
+ various terms in ε,
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and so we will now simplify the right hand side as

N∑
i,j=1

uyiuyjuyiyj =
∇v · ∇(|∇v|2)

2
+ g0(ε)

N∑
i,j,k=1

{
vxixjvxivxj + vxivxjvxk

}
,

where |g0(ε)| ≤ Cε for all |ε| small. We now make some comments on this simplification. Our
approach will be to look for solutions of the form v(x) = w(x) + φ(x) where w(x) = w(r) is the
above explicit singular radial solution. We will end up writing out fixed point argument but all
these terms that were simplified will not affect the linearized operator; but will only show up in the
nonlinear terms. So the exact nature of the terms is not overly important, and in fact if one checks
all the dropped terms, they see they are all of the exact for of the two terms we left. Additionally
we have dropped the smooth coefficients, but this won’t affect anything either.

By [16] we can write ∆yu(y) = ∆xv(x) +Eε(v) where Eε(v) is defined by (8). So the equation
for v on the unit ball now becomes (after taking into account the prior mentioned simplification)

0 = |∇v + εA0∇v|2(∆v + Eε(v)) +
p− 2

2
∇v · ∇(|∇v|2)

+g0(ε)
∑{

vxixjvxivxj + vxivxjvxk
}

+ C|∇v + εA0∇v|q−p+4

= (∆v)|∇v|2 +
p− 2

2
∇v · ∇(|∇v|2) + C|∇v + εA0∇v|q−p+4 +Hε(v)

where

Hε(v) := (∆v)2ε(A0∇v) · ∇v + ε2(∆v)|A0∇v|2 + Eε(v)|∇v|2

+Eε(v)(2εA0∇v) · ∇v + Eε(v)ε2|A0∇v|2

+g0(ε)
∑{

vxixjvxivxj + vxivxjvxk
}

and
Eε(v) := 2ε

∑
i,k

vxixk∂yiψ̃k + ε
∑
i,k

vxk∂yiyiψ̃k + ε2
∑
i,j,k

vxjxk∂yiψ̃jψ̃k. (8)

We now hope for small enough ε we can find a solution of the form v = w + φ. If we rewrite
the equation putting all the linear in φ terms on the left we arrive at{

−L(φ) =
∑7

k=1 Fk(φ) + Iε(φ) +Hε(w + φ) B1,
φ = 0 ∂B1,

(9)

where
F1(φ) = ∆w|∇φ|2, F2(φ) = (∆φ)(2∇w · ∇φ), F3(φ) = (∆φ)|∇φ|2,

F4(φ) =
p− 2

2
∇w · ∇(|∇φ|2), F5(φ) = (p− 2)∇φ · ∇(∇w · ∇φ), F6(φ) =

(p− 2)

2
∇φ · ∇|∇φ|2

Iε(φ) = C|∇w +∇φ+ εA0(∇w +∇φ)|q−p+4 − C|∇w +∇φ|q−p+4,

F7(φ) = C
{
|∇w +∇φ|q−p+4 − |∇w|q−p+4 − (q − p+ 4)|∇w|q−p+2∇w · ∇φ

}
.
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The linear operator L is given by

L(φ) := |∇w|2(∆φ) + (∆w)(2∇w · ∇φ) + (p− 2)∇w · ∇(∇w · ∇φ)

+
(p− 2)

2
∇φ · ∇|∇w|2 + C(q − p+ 4)|∇w|q−p+2∇w · ∇φ.

Of crucial importance will be the linear operator L and what functions spaces we work in. Before
we consider these issues we want to normalize L by dividing by |∇w|2. So instead of considering
(9) we will consider{

−L̃(φ) := −L(φ)
|∇w|2 =

∑7
k=1

Fk(φ)
|∇w|2 + Iε(φ)

|∇w|2 + Hε(w+φ)
|∇w|2 B1,

φ = 0 ∂B1.
(10)

To obtain a solution of this we will apply the Contraction Mapping Principle to the nonlinear
mapping Jε(φ) = ψ (for φ ∈ X where X is yet to be determined and of course this mapping is not
well defined yet) {

−L̃(ψ) =
∑7

k=1
Fk(φ)
|∇w|2 + Iε(φ)

|∇w|2 + Hε(w+φ)
|∇w|2 B1,

ψ = 0 ∂B1.
(11)

The exact form of L̃ will be crucial for us. A computation shows that we can write

L̃(φ) = ∆φ+ γφrr +
αφr
r
,

where γ := p− 2 and

α := 2(N − 1)− 2(p− 1)(σ + 1)− C(q − p+ 4)σq−p+1, (12)

where C is given by (5).
We will examine this operator in Section 2.

2 Linear theory

We study the linear theory for the problem in two different cases (1) The singular case and (2) The
Hölder continues case in the following subsections.

2.1 The singular case

We first define the function spaces. For 0 < s ≤ 1
2 define As := {x ∈ RN : s < |x| < 2s} and for

σ ∈ R and N < t <∞ define the spaces Y = Yt,σ and X = Xt,σ with norms given by

‖f‖tY := sup
0<s≤ 1

2

s(2+σ)t−N
∫
As

|f(x)|tdx and

‖φ‖tX := sup
0<s≤ 1

2

sσt−N
{∫

As

|φ|tdx+ st
∫
As

|∇φ|tdx+ s2t

∫
As

|D2φ|tdx
}
,
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where for the space X we impose the boundary condition φ = 0 on ∂B1. We now define the
closed subspecies of X and Y respectively X1, Y1 where we remove the first mode. So to define this
properly we need to introduce the spherical harmonics.

Consider the Laplace-Beltrami operator ∆SN−1 = ∆θ on SN−1 and the eigenpairs

−∆θψk(θ) = λkψk(θ), θ ∈ SN−1,

and note that λ0 = 0, ψ0 = 1 (multiplicity 1); λ1 = N − 1 with multiplicity N and λ2 = 2N . Given
φ ∈ X, f ∈ Y we write

φ(x) =
∞∑
k=0

ak(r)ψk(θ), f(x) =
∞∑
k=0

bk(r)ψk(θ),

and so we define

X1 :=

{
φ ∈ X : φ(x) =

∞∑
k=1

ak(r)ψk(θ)

}
, note there is no k = 0 mode

and anagolous for Y . Note we are abusing notation by not showing the correct multiplicity for
modes which have multiplicity greater than one; but this isn’t an issue for the procedures we
perform. For γ, α ∈ R we define the operator

L(φ)(x) := Lγ,α(φ)(x) := ∆φ(x) + γφrr(x) +
α

r
φr(x).

Note we can write the operator as

Lγ,α(φ)(x) = ∆φ+ γ
N∑

i,j=1

xixj
|x|2

φxixj +
α

|x|2
x · ∇φ(x).

In this section we will prove various results regarding this operator L = Lγ,α. For explicit values
of γ, α this operator Lγ,α will be exactly the operator L̃ from the previous section. In this section
the values of γ, α, σ will satisfy a few constraints but are otherwise arbitrary. Of course when we
apply the results of this section to the explicit linear operator L = L̃ we have exact values of these
parameters in mind. So we state these assumptions now.

Values of parameters. We take 1 < p < N , (p−1)N
N−1 < q < p

γ := p− 2,

σ := p−q
q−p+1 ,

α := 2(N − 1)− 2(p− 1)(σ + 1)− C(q − p+ 4)σq−p+1, then a computation shows

N − 2− γ + α = p−1
q−p+1 − (N − 1)(q − p+ 1),

β−1 = −1
q−p+1 ,

σ + β−1 = −1.

(13)

For the definition of β±k see the proof of the following lemma. A computation shows that N−2−γ+α

changes sign in the interval (p−1)N
N−1 < q < p.

As we have already mentioned we want the various parameters to satisfy the above requirements.
But for various parts of the linear theory we can drop various assumptions.
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Lemma 1. Suppose −1 < γ < N − 2 and 0 < σ < −β−1 . Suppose φ ∈ X1 is such that L(φ) = 0 in
B1\{0}. Then φ = 0.

Proof. We write φ(x) =
∑∞

k=1 ak(r)ψk(θ) and note

(1 + γ)a′′k(r) +
(N − 1 + α)

r
a′k(r)−

λkak(r)

r2
= 0 0 < r < 1

with ak(1) = 0. Then we have ak(r) = Ck(r
β+
k − rβ

−
k ) after considering the boundary condition,

where

β±k := −(N − 2− γ + α)

2(1 + γ)
±
√

(N − 2− γ + α)2 + 4(1 + γ)λk
2(1 + γ)

.

Note that if σ < −β−k then to have φ ∈ X we must have Ck = 0. Hence we see the kernel is empty
provided σ < −β−1 after taking into account the monotonicity in k.

Lemma 2. (Onto ode estimates; k ≥ 1) Suppose −1 < γ < N − 2 and 0 < σ < −β−1 . Then for
each k ≥ 1 there is some Ck such that for each bk there is some ak such that L(akψk) = bkψk and
‖akψk‖X ≤ Ck‖bkψk‖Y and ak(1) = 0.

Proof. We now prove the desired onto estimate for each mode k ≥ 1. For each k ≥ 0 consider

(1 + γ)a′′k(r) +
(N − 1 + α)a′k(r)

r
− λkak(r)

r2
= bk(r) 0 < r < 1 (14)

with ak(1) = 0. Using the variation of parameters method we obtain solutions of the form

(γ + 1)(β−k − β
+
k )ak(r) = rβ

−
k

∫ r

T2

bk(τ)

τβ
−
k −1

dτ − rβ
+
k

∫ r

T1

bk(τ)

τβ
+
k −1

dτ + Ckr
β+
k +Dkr

β−k ,

where Ck, Dk are free parameters and we are free to choose Ti suitably; we need to pick these
parameters such that we get the desired estimate on ak and such that ak(1) = 0. We will choose
T2 = 0, T1 = 1, Dk = 0 and we leave Ck free for now and hence we get

(p− 1)(β−k − β
+
k )ak(r) = rβ

−
k

∫ r

0

bk(τ)

τβ
−
k −1

dτ − rβ
+
k

∫ r

1

bk(τ)

τβ
+
k −1

dτ + Ckr
β+
k ,

and note this is an acceptable choice of T2 provided bk(t)

t
β−
k
−1
∈ L1(0, 1), which we assume for now.

For simplicity we normalize ‖bkψk‖Y ≤ 1 and hence there is some C̃k such that∫ 2s

s
|bk(τ)|tdτ ≤ C̃ks1−t(2+σ) 0 < s ≤ 1

2
. (15)

We now prove that bk(τ)

τ
β−
k
−1
∈ L1(0, 1). To see this note that β−k = −σ − εk where εk > 0.

∫ 1

0

|bk(τ)|
τβ
−
k −1

dτ ≤
∞∑
i=0

∫ 2−i

2−i−1

|bk(τ)|τσ+1+εkdτ

≤ C

∞∑
i=0

(
1

2i

)σ+1+εk+ 1
t′
(∫ 2−i

2−i−1

|bk(τ)|tdτ

) 1
t

8



and using the above estimate on bk with s = 2−i−1 gives a result like∫ 1

0

|bk(τ)|
τβ
−
k −1

dτ ≤ Ĉk
∞∑
i=0

1

2iB
,

where B > 0 exactly when β−1 < −σ.

We first examine the term given by

rβ
−
k

∫ r

0

bk(τ)

τβ
−
k −1

dτ + Ckr
β+
k

and we choose

Ck := −
∫ 1

0

bk(τ)

τβ
−
k −1

dτ.

Note with this choice of Ck we have the needed zero boundary condition for this term (and its clear
the other term has the needed boundary condition) hence ak(1) = 0. We now get the estimate.
Firstly note by the previous argument to show the needed integrand is L1(0, 1) we have |Ck| is

bounded by a constant depending just on k and hence its clear that ‖Ckrβ
+
k ψk‖X is bounded by a

constant just depending on k. We now consider the integral term.
A computation shows∫ r

0

|bk(τ)|
τβ
−
k −1

dτ ≤ Ck
∞∑
i=0

(r2−i)1−β−k
∫ r2−i

r2−i−1

|bk(τ)|dτ

≤ CkC̃k

∞∑
i=0

(r2−i)1−β−k + 1
t′

(∫ r2−i

r2−i−1

|bk(τ)|tdτ

) 1
t

≤ CkC̃k

∞∑
i=0

(r2−i)1−β−k + 1
t′

≤ Ck,1

∞∑
i=0

(r2−i)1−β−k + 1
t′+

1
t
−2−σ

= r−β
−
k −σCk,1

∞∑
i=0

1

(2−β
−
k −σ)i

and since −β−k − σ > 0 we see we get the estimate

sup
0<r<1

rβ
−
k +σ

∫ r

0

|bk(τ)|
τβ
−
k −1

dτ ≤ Ĉk,

and from this one can show that ∥∥ψkrβ−k ∫ r

0

bk(τ)

τβ
−
k −1

dτ
∥∥
X
≤ Ck,2.

We now examine the term given by

rβ
+
k

∫ r

1

bk(τ)

τβ
+
k −1

dτ =: rβ
+
k gk(r).

9



Note that we can write (for integers n ≥ 1)

gk(2
−n) =

n∑
i=1

(gk(2
−i)− gk(2−i+1)) and hence |gk(2−n)| ≤

n∑
i=1

|gk(2−i)− gk(2−i+1)|.

A computation similar to the previous one shows

|gk(2−n)| ≤
n∑
i=1

∫ 21−i

2−i

|bk(τ)|
τβ

+
k −1

dτ

≤ Ck

n∑
i=1

2i(β
+
k +σ)

≤ Dk

(
1 + 2n(β+

k +σ)
)
,

and from this we see
(2−n)β

+
k +σ|gk(2−n)| ≤ D̃k

for all n ≥ 1. This gives us the desired zero order estimate at least for the values of r ∈ {2−n :
n ≥ 1 an integer}. One can extend the above estimate for all values of r and hence combining all
the above results gives us the needed zero order estimate on ak(r). The higher order portions of
the norm of ak can be obtained from the zero order estimates after consider the equation that ak
satisfies.

The following are some standard local estimates, at least in the case of Lγ,0 replaced with ∆.

Lemma 3. Let γ > −1 and 1 < t <∞. Then there is some C > 0 such that

‖φ‖W 2,t(1<|x|<2) ≤ C‖Lγ,0(φ)‖Lt( 1
2
<|x|<4) + C‖φ‖Lt( 1

2
<|x|<4),

for all sufficiently smooth φ. Then there is some C > 0 such that

‖φ‖W 2,t(1<|x|<2) ≤ C‖Lγ,0(φ)‖Lt( 1
2
<|x|<2) + C‖φ‖Lt( 1

2
<|x|<2),

for all sufficiently smooth φ with φ = 0 on |x| = 2.

Proof. Note when γ > −1 that Lγ,0 is uniformly elliptic and the coefficients are smooth away from
the origin. So the proof of the above results follow exactly as in the case of Lγ,0 replaced with
∆.

Corollary 1. Let γ > −1, α ∈ R and 1 < t <∞. Then there is some C > 0 such that

‖φ‖W 2,t(1<|x|<2) ≤ C‖Lγ,α(φ)‖Lt( 1
2
<|x|<4) + C‖φ‖Lt( 1

2
<|x|<4) + C‖∇φ‖Lt( 1

2
<|x|<4) (16)

for all sufficiently smooth φ. Then there is some C > 0 such that

‖φ‖W 2,t(1<|x|<2) ≤ C‖Lγ,α(φ)‖Lt( 1
2
<|x|<2) + C‖φ‖Lt( 1

2
<|x|<2) + C‖∇φ‖Lt( 1

2
<|x|<2), (17)

for all sufficiently smooth φ with φ = 0 on |x| = 2.

10



Proof. The result follows by writing Lγ,α(φ) = Lγ,0(φ) + αx·∇φ
|x|2 and using the previous result.

Theorem 2. Suppose −1 < γ < N − 2 and 0 < σ < −β−1 . Then there is some C > 0 such that
for all f ∈ Y1 there is some φ ∈ X1 such that Lγ,α(φ) = f in B1\{0} and ‖φ‖X ≤ C‖f‖Y .

Proof. A standard argument along with Lemma 2 shows that for all m ≥ 1 there is some Cm such
for all f(x) =

∑m
k=1 bk(r)ψk(θ) there is some φ(x) =

∑m
k=1 ak(r)ψk(θ) (with ak(1) = 0) such that

L(φ) = f in B1\{0} and ‖φ‖X ≤ Cm‖f‖Y . So by a density argument it is sufficient to show that
Cm is bounded. Suppose not, then there is some φm ∈ X1 (finite number of nonzero modes) and
fm ∈ Y1 such that L(φm) = fm and ‖fm‖Y → 0, ‖φm‖X = 1.

Claim 1. We claim that sup0<s≤ 1
2

{
sσt−N

∫
As
|φm|tdx+ s(σ+1)t−N ∫

As
|∇φm|tdx

}
= sup0<s≤ 1

2
Φm(s)→

0; so towards a contradiction we assume this quantity is greater or equal 4ε0 > 0 for all m. So
there is some 0 < sm ≤ 1

2 such that Φm(sm) ≥ 2ε0.
Case (i). sm bounded away from zero. Case (ii). sm → 0.

Case (i). Using an argument as in the proof of (17) we see that for all 0 < s < 1 we have φm
bounded in W 2,t(s < |x| < 1). Hence by a diagonal argument we can pass to a subsequance to find
some φ such that φm ⇀ φ in W 2,t

loc (B1\{0}). Also note that fm → 0 in Ltloc(B1\{0}) and hence φ
satisfies Lγ,α(φ) = 0 in B1\{0} with φ = 0 on ∂B1. Since sm bounded away from zero we can use
the noted convergence to see φ is nonzero. Hence if we can show that φ ∈ X1 then we’d obtain
the desired contradiction after recalling the kernel is empty. Fix 0 < s ≤ 1

2 and note by the stated
weak convergence and weak lower semi continuity of Lp norms we see φ ∈ X1.

Case (ii). Define ζm(x) := sσmφm(smx) for 0 < |x| < 1
sm

. Note that since φm has no k = 0 mode
ζm also have no k = 0 mode. A computation shows that

Lγ,α(ζm) = gm(x) := s2+σ
m fm(smx) 0 < |x| < 1

sm
, (18)

with ζm = 0 on |x| = 1
sm

. For k a large integer we set Ek := {x ∈ RN : 1
k < |x| < k} and

Ẽk := {x ∈ RN : 1
2k < |x| < 2k}. By the local estimates there is some Ck such that

‖ζm‖W 2,t(Ek) ≤ Ck
{
‖gm‖Lt(Ẽk) + ‖ζm‖Lt(Ẽk) + ‖∇ζm‖Lt(Ẽk)

}
≤ C̃k,

and hence by a diagonal argument we see there is some ζ such that ζm ⇀ ζ in W 2,t
loc (R

N\{0}) and
hence we have Lγ,α(ζ) = 0 in RN\{0}. Also note that a computation shows that∫

1<|x|<2

{
|ζ(x)|t + |∇ζ(x)|tdx

}
≥ 2ε0,

and hence ζ 6= 0. We write ζ(x) =
∑∞

k=1 ak(r)ψk(θ) and as usual we have

(γ + 1)a′′k(r) +
(N − 1 + α)a′k(r)

r
− λkak(r)

r2
= 0, 0 < r <∞,

and hence, as before, we have ak(r) = Ckr
β+
k + Dkr

β−k . To get a contradiction we hope to show
that Ck = Dk = 0, but to do this we need some estimates on ζ near r = 0 and r =∞. For i ∈ R a

11



computation shows that∫
2i<|x|<2i+1

|ζm(x)|tdx ≤ (2i)N−σt,

∫
2i<|x|<2i+1

|∇ζm(x)|tdx ≤ (2i)N−(σ+1)t,

and we can pass to the limit in these estimates. Using the first estimate we see there is some C̃k > 0
such that ∫ 2i+1

2i
|ak(r)|trN−1dr ≤ C̃k2i(N−σt),

for all i ∈ R. Using a change of variables this gives∫ 2

1
sN−1

∣∣∣Cksβ+
k (2i)β

+
k +σ +Dks

β−k (2i)β
−
k +σ

∣∣∣tds ≤ C̃k
for all i ∈ R and note for all k we have β+

k 6= β−k . Hence the only way we can possibly have one of
Ck or Dk nonzero is that either we have β+

k +σ = 0 or β−k +σ = 0. We now recall the assumptions
on σ and using the monotonicity in k of β±k we have the desired result.

For the following lemma we use the exact values of the parameters.

Lemma 4. (Onto estimate for k = 0 mode) Suppose the parameters satisfy (13) and set β := N−1+α
1+γ

(which implies β − σ − 1 < 0). There is some C0 > 0 such that for all b0 there is some a0 which
satisfies (14) for k = 0 and ‖a0‖X ≤ C0‖b0‖Y .

Proof. We look for a solution a0(r) of

(1 + γ)a′′0(r) +
(N − 1 + α)

r
a′0(r) = b0(r), 0 < r < 1

with a0(1) = 0. We normalize b0 such that its Y norm is 1. Note we can use the integrating factor
method to get an explicit formula for the solution. If one does this (and taking a′0(1) = 0) we arrive
at

a0(R) =

∫ 1

R

{
1

rβ

∫ 1

r

τβb0(τ)

1 + γ
dτ

}
dr.

We now get the needed estimate on a0 but instead we get an estimate for a′0. So we have

(1 + γ)rβ|a′0(r)| ≤
∫ 1

r
τβ|b0(τ)|dτ.

Taking r = 1
2n for n a large integer, we have(

1

2n

)β ∣∣a′0( 1

2n

) ∣∣ ≤ 1

γ + 1

n∑
i=1

∫ 21−i

2−i
τβ|b0(τ)|dτ

≤ C

n∑
i=1

1

2iβ+ i
t′

(∫ 21−i

2−i
|b0(τ)|tdτ

) 1
t

C independent of n

≤ C
n∑
i=1

1

2i(β+ 1
t′+

1
t
−2−σ)

, after using (15)

≤ C1

(
1 + 2(1+σ−β)n

)
12



after using the fact this is a geometric series. Rearranging this we arrive at

(2−n)σ+1|a′0(2−n)| ≤ C1

(
1 + 2n(β−σ−1)

)
,

and recall β − σ − 1 < 0. From this we see the right hand side is bounded independently of n.
This shows that for r = 2−n we have the estimate rσ+1|a′0(r)| ≤ C. Standard arguments extend
the result to the other values of r. This will give us the needed estimates to bound the zero and
first order terms in the X norm of a0. To get bounds on the zero order terms one integrates these
first order estimates; to get the second order terms we use the ode directly; we omit the details.

Corollary 2. Suppose the parameters satisfy (13). Then there is some C > 0 such that for all
f ∈ Y there is some φ ∈ X which satisfies Lγ,α(φ) = f in B1\{0} with φ = 0 on ∂B1. Moreover
one has ‖φ‖X ≤ C‖f‖Y .

Proof. Given f ∈ Y we write f = f0 + f1 where f1 ∈ Y1 and f0 = f0(r). We claim there is
some C1 > 0 such that ‖f0‖Y ≤ C1‖f‖Y independent of f . To see this we use the fact that
f0(r) = CN

∫
|θ|=1 f(rθ)dθ where CN depends on N . We then write out the Y norm of f0 and apply

Jensen’s inequality to arrive at the desired result. From this we get the same estimate for f1 but
with a larger C1 if need be. Now let f ∈ Y and decompose as above and we let φ = φ0 + φ1 where
L(φi) = fi in B1\{0} with φi = 0 on ∂B1. Then if let C4 denote the maximum of the C’s from
Theorem 2 and Lemma 4. Then we have

‖φ‖X ≤ ‖φ0‖X + ‖φ1‖X ≤ C4‖f0‖Y + C4‖f1‖Y ≤ 2C4C1‖f‖Y ,

which gives us the desired estimate.

2.2 The Hölder continuous case

Here we examine the needed linear theory to linearize around the radial Hölder continuous solution
from Example 1 Case 2 where w(r) = 1− rσ where σ := q−p

q−p+1 . If one takes the same approach as
in the singular case, they see we need to examine the operator L = Lγ,α where

L(φ)(x) := Lγ,α(φ)(x) := ∆φ(x) + γφrr(x) +
α

r
φr(x)

and
γ := p− 2

σ := q−p
q−p+1 ,

α := 2(N − 1) + 2(p− 1)(σ − 1)− C(q − p+ 4)σq−p+1, C defined in (6).

The spaces we work in are the same as before (again we have N < t <∞) except now note the
change of sign in front of σ; define the spaces Y = Yt,σ and X = Xt,σ with norms given by

‖f‖tY := sup
0<s≤ 1

2

s(2−σ)t−N
∫
As

|f(x)|tdx and

‖φ‖tX := sup
0<s≤ 1

2

s−σt−N
{∫

As

|φ|tdx+ st
∫
As

|∇φ|tdx+ s2t

∫
As

|D2φ|tdx
}

where for the space X we impose the boundary condition φ = 0 on ∂B1. We now define the closed
subspecies of X and Y , respectively X1, Y1 where we remove the k = 0 mode.
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Lemma 5. Define α, γ, σ as above and define β±k as before and we set β := N−1+α
γ+1 . Then

β < 1− σ, β−k < −σ, β+
k > σ,

for all k ≥ 1.

Proof. Note that β − 1 = N−2−γ+α
γ+1 or β − 1 = 1

q−p+1 −
(N−1)(q−p+1)

p−1 and finally

β − 1 + σ = 1− (N − 1)(q − p+ 1)

p− 1
=

(p− 1)− (N − 1)(q − p+ 1)

p− 1
< 0

since q > N(p−1)
N−1 .

Also Note that β−1 + σ = −1 < 0. Thus β−1 < −σ and since β−k < β−1 , so we proved the claim.
Finally, notice that β+

1 − σ > 0

β−1 − σ = − (N−2−γ+α)
2(1+γ) +

√
(N−2−γ+α)2+4(1+γ)(N−1)

2(1+γ) − σ

= −
p−1
q−p+1

−(N−1)(q−p+1)

2(p−1) +
(N−1)(q−p+1)+ p−1

q−p+1

2(p−1) − σ

= (N−1)(q−p+1)
(p−1) − q−p

q−p+1

≥ 1− q−p
q−p+1 = 1

q−p+1 > 0.

This implies that β+
k > σ.

As in the previous section, our goal is to develop a linear theory to consider

L(φ) = Lγ,α(φ) = f in B1\{0}, φ = 0 on ∂B1. (19)

As before we use spherical harmonics

f(x) =

∞∑
k=0

bk(r)ψk(θ), φ(x) =

∞∑
k=0

ak(r)ψk(θ),

and then we need ak(r) to satisfy

(1 + γ)a′′k(r) +
(N − 1 + α)

r
a′k(r)−

λkak(r)

r2
= bk(r) 0 < r < 1, (20)

with ak(1) = 0. As before we separate the k = 0 mode.

Lemma 6. (k = 0 mode). There is some C0 > 0 such that for all b0(r) there is some a0(r) which
satisfies (20) and ‖a0‖X ≤ C‖b0‖Y .

Proof. For 0 < R ≤ 1 define

a0(R) :=

∫ 1

R

(
1

rβ

∫ 1

r

b0(τ)τβ

γ + 1
dτ − T

rβ

)
dr,

14



where we define T such that

T

∫ 1

0
r−βdr =

∫ 1

0

(
1

rβ

∫ 1

r

b0(τ)τβ

γ + 1
dτ

)
dr.

Note that β < 1 and hence the integrals over (0, 1) not involving b0 are finite. We normalize b0 via
‖b0‖Y ≤ 1. For the time being we adjust the Y norm via ‖b0‖Ŷ := sup0<|x|<1 |x|2−σ|b0(x)| (and we

again normalize b0) we then easily see that |T | ≤ C̃. Also note that

−a′0(R) =
1

Rβ

∫ 1

R

b0(τ)τβ

γ + 1
dτ − T

Rβ
,

and then note

|a′0(R)| ≤ C̃

Rβ
+

D

Rβ

∫ 1

R
τβ−2+σdτ,

which is bounded above by C̃R−β + D2R
−1+σ ≤ D3R

−1+σ and hence we obtain the estimate
R1−σ|a′0(R)| ≤ D4 for all 0 < R < 1. Let 0 < R < 1 and take 0 < ε < R and note we have

|a0(R)− a0(ε)| ≤
∫ R

ε
|a′0(r)|dr ≤

∫ R

ε
D4r

−1+σdr ≤ D5(Rσ − εσ),

and if we can show a0 is continuous at r = 0 with a0(0) = 0 then by sending ε ↘ 0 we’d have
|a0(R)| ≤ D5R

σ. Note we chose T exactly such that a0(0) = 0 and one easily sees the needed
continuity.

Of course since our space is Y and not Ŷ the above doesn’t show anything. One needs to use
Hölder’s inequality argument coupled with the dyadic intervals as we used before to show we can
replace the Ŷ norm with the Y norm and obtain the same estimate. The second order estimates
on a0 come directly from the ode; we omit the details.

We now consider obtaining the need estimates on the higher modes. As before we start with
the solution of (20) given by

(p− 1)(β−k − β
+
k )ak(r) = rβ

−
k

∫ r

0

bk(τ)

τβ
−
k −1

dτ − rβ
+
k

∫ r

1

bk(τ)

τβ
+
k −1

dτ + Ckr
β+
k .

We choose Ck such that ak(1) = 0. Note the condition that β+
k > σ implies that that rβ

+
k ∈ X

(except for the fact it doesn’t satisfy the needed boundary condition). As in the proof of the
estimate for the k = 0 mode, if we replace the Y norm with the Ŷ norm we see the conditions from
Lemma 5 are sufficient to show that

sup
0<r<1

(
r1−σ|a′k(r)|+ r−σ|ak(r)|

)
≤ Ck sup

0<r<1
r2−σ|bk(r)|.

As before one needs to replace the Ŷ norm with the Y norm and use some additional arguments
to obtain the desired result.

Finally one can argue as in the previous section and combine the modes to obtain the following
theorem.

Theorem 3. Let N ≥ 2, p > 1 and q > max
{
p, N(p−1)

N−1

}
and σ, γ, α be as above. Then there is

some C > 0 such that for all f ∈ Y there is some φ ∈ X which satisfies (19) and ‖φ‖X ≤ C‖f‖Y .
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3 Fixed point theory

We consider the singular and and Hölder continuous case separately in the following sections.

3.1 The singular case

Here, we know that σ = p−q
q−p+1 , p− 1 ≤ q ≤ p and the norms given by

‖f‖tY := sup
0<s≤ 1

2

s(2+σ)t−N
∫
As

|f(x)|tdx

and

‖φ‖tX := sup
0<s≤ 1

2

sσt−N
{∫

As

|φ|tdx+ st
∫
As

|∇φ|tdx+ s2t

∫
As

|D2φ|tdx
}
.

Also a computation shows that
∆w

|∇w|2
= σ(σ + 2−N)rσ.

Recall we have defined Jε(φ) = ψ, where ψ satisfies (11). In order to obtain a solution φ of (9)
we will show that Jε is a contraction on Br where Br is the closed ball of radius r centered at the
origin in X. First of all note that Jε is into X. Due to do this we have the following lemma.

Lemma 7. Assume φ ∈ X. Then

sup
As

|φ| ≤ C1
‖φ‖X
sσ

, sup
As

|∇φ| ≤ C1
‖φ‖X
sσ+1

. (21)

Proof. By a standard scaling argument and the Sobolev embedding theorem after noting the fact
that N < t <∞.

With respect to Lemma 7, one can conclude if φ ∈ BR ∈ X then

sup
As

|φ| ≤ C1R

sσ
, sup

As

|∇φ| ≤ C1R

sσ+1
.

By the above notes we can prove the following lemmas.

Lemma 8. Let φ ∈ BR ⊂ X. Then there exists C11 such that ‖ F1(φ)
|∇w|2 ‖

t
Y ≤ C11‖φ‖2tX .

Proof. ‖ F1(φ)
|∇w|2 ‖

t
y = ‖∆w|∇φ|2

|∇w|2 ‖
t
Y and

‖∆w|∇φ|2
|∇w|2 ‖

t
Y = sup0<s≤ 1

2
s(2+σ)t−N ∫

As
|∆w|∇φ|

2

|∇w|2 (x)|tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
|σ(σ + 2−N)|x|σ|∇φ|2|tdx

≤ C11‖φ‖2tX .
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Lemma 9. Let φ ∈ BR ⊂ X. Then there exists C22 such that ‖ F2(φ)
|∇w|2 ‖

t
Y ≤ C22‖φ‖2tX .

Proof. Since ‖F2(φ)‖ty = ‖2∇w∇φ∆φ
|∇w|2 ‖tY and

‖2∇w∇φ∆φ
|∇w|2 ‖tY = sup0<s≤ 1

2
s(2+σ)t−N ∫

As
|2∇w∇φ∆φ
|∇w|2 (x)|tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| 2σ |x|

σ+1∇φ∆φ(x)|tdx

≤ C22‖φ‖2tX .

Lemma 10. Let φ ∈ BR ⊂ X. Then there exists C33 such that ‖ F3(φ)
|∇w|2 ‖

t
Y ≤ C33‖φ‖3tX .

Proof. Since ‖ F3(φ)
|∇w|2 ‖

t
y = ‖ (∆φ)|∇φ|2

|∇w|2 ‖
t
Y and

‖ (∆φ)|∇φ|2
|∇w|2 ‖

t
Y = sup0<s≤ 1

2
s(2+σ)t−N ∫

As
| (∆φ)|∇φ|2
|∇w|2 (x)|tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| |x|

2σ+2

σ2 (∆φ|∇φ|2)(x)|tdx

≤ C33‖φ‖3tX .

Also it easy to see that

Lemma 11. Let φ ∈ BR ⊂ X. Then there exists C456 such that

‖ F4(φ)
|∇w|2 ‖

t
Y = ‖

p−2
2
∇w·∇(|∇φ|2)

|∇w|2 ‖tY ≤ C456‖φ‖2tX ,

‖ F5(φ)
|∇w|2 ‖

t
Y = ‖ (p−2)∇φ·∇(∇w·∇φ)

|∇w|2 ‖tY ≤ C456‖φ‖2tX ,

‖ F6(φ)
|∇w|2 ‖

t
Y = ‖

p−2
2
∇φ·∇(|∇φ|2)

|∇w|2 ‖tY ≤ C456‖φ‖3tX .

Lemma 12. There exists C77 such that ‖ F7(φ)
|∇w|2 ‖

t
Y ≤ C77(‖φ‖2tX + ‖φ‖(q−p+4)t

X ).

Proof. with respect to part (2) of Lemma 15 (in Appendix) one can show that

‖ F7(φ)
|∇w|2 ‖

t
Y =

∥∥∥C |∇w+∇φ|q−p+4−|∇w|q−p+4−(q−p+4)|∇w|q−p+2∇w∇φ
|∇w|2

∥∥∥t
Y

≤ Cp

∥∥∥ |∇φ|q−p+4+|∇w|q−p+2|∇φ|2
|∇w|2

∥∥∥t
Y

≤ Cp

∥∥∥ |∇φ|q−p+4

|∇w|2

∥∥∥t
Y

+ Cp

∥∥∥ |∇w|q−p+2|∇φ|2
|∇w|2

∥∥∥t
Y
.
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For the first term, we have∥∥∥ |∇φ|q−p+4

|∇w|2

∥∥∥t
Y

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| |∇φ|

q−p+4

|∇w|2 |
tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| |x|

2σ+2

σ2 |∇φ|q−p+4(x)|tdx

≤ C74‖φ‖(q−p+4)t
X .

Since σ = p−q
q−p+1 and (σ + 1)(q − p+ 4)− 2σ − 2 = σ + 2. Also∥∥∥ |∇w|q−p+2|∇φ|2

|∇w|2

∥∥∥t
Y

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| |∇w|

q−p+2|∇φ|2
|∇w|2 |tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| σq−p

|x|(σ+1)(q−p) |∇φ|2|tdx

≤ C7‖φ‖2tX sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| σq−p

|x|(σ+1)(q−p) |x|−2(σ+1)|tdx

= C7‖φ‖2tX sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| σq−p

|x|(σ+1)(q−p)+2σ+2 |tdx

= C7‖φ‖2tX sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| σq−p

|x|σ(q−p+1)+q−p+σ+2 |tdx

≤ 7C77‖φ‖2tX .

Since σ = p−q
q−p+1 and σ(q − p+ 1) + q − p+ σ + 2 = σ + 2.

Finally we have

Lemma 13. Let φ ∈ BR ⊂ X. Then there exists C8 such that

‖ Iε(φ)

|∇w|2
‖tY = ‖C |∇w +∇φ+ εA0(∇w +∇φ)|q−p+4 − |∇w +∇φ|q−p+4

|∇w|2
‖tY ≤ C8ε

t(1 + ‖φ‖(q−p+4)t
X ).

Proof.

‖ Iε(φ)
|∇w|2 ‖

t
Y = ‖C |∇w+∇φ+εA0(∇w+∇φ)|q−p+4−|∇w+∇φ|q−p+4

|∇w|2 ‖tY

≤ C81ε
t(‖|∇w|q−p+2‖tY + ‖ |∇φ|

q−p+4

|∇w|2 ‖
t
Y )

≤ C8ε
t(1 + ‖φ‖(q−p+4)t

X ).

Lemma 14. Suppose φ ∈ BR ⊂ X, then

‖Hε(w + φ)

|∇w|2
‖tY ≤ C9ε

t.
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Proof. Note that

‖Hε(w+φ)
|∇w|2 ‖

t
Y := sup0<s≤ 1

2
s(2+σ)t−N ∫

As
| 1
|∇w|2 {(∆(w + φ))2ε(A0∇(w + φ)) · ∇(w + φ)

+ε2(∆(w + φ))|A0∇(w + φ)|2 + Eε((w + φ))|∇(w + φ)|2

+Eε((w + φ))(2εA0∇(w + φ)) · ∇(w + φ) + Eε(w + φ)ε2|A0∇(w + φ)|2

+g0(ε)
∑{

(w + φ)xixj (w + φ)xi(w + φ)xj + (w + φ)xi(w + φ)xj (w + φ)xk
}}
|tdx.

The above equation include the following terms

∆w|∇w|2
|∇w|2 , ∆φ|∇w|2

|∇w|2 , ∆w|∇φ|2
|∇w|2 , ∆φ|∇φ|2

|∇w|2 , ∆w∇w·∇φ
|∇w|2 , ∆φ∇w·∇φ

|∇w|2 ,

Eε(w)|∇w|2
|∇w|2 , Eε(w)|∇φ|2

|∇w|2 , Eε(w)∇w·∇φ
|∇w|2 , Eε(φ)|∇w|2

|∇w|2 , Eε(φ)|∇φ|2
|∇w|2 , Eε(φ)∇w·∇φ

|∇w|2 ,

wxixjwxiwxj
|∇w|2 ,

wxixjwxiφxj
|∇w|2 ,

wxixjφxiφxj
|∇w|2 ,

φxixjφxiφxj
|∇w|2 ,

wxiwxiwxj
|∇w|2 ,

wxiwxiφxj
|∇w|2 ,

wxiφxiφxj
|∇w|2 ,

φxiφxiφxj
|∇w|2 .

Similar to the last lemmas, a computation shows that ‖each term‖tY is bounded. Definition of
Hε(w + φ) shows one can factor εt out. Thus εt times the last estimated bound of each term will
give us the desired result.

Theorem 4. Assume φ ∈ BR ⊂ X. Then the following estimates holds:

(I) ‖ F1(φ)
|∇w|2 ‖

t
Y ≤ C11‖φ‖2tX .

(II) ‖ F2(φ)
|∇w|2 ‖

t
Y ≤ C22‖φ‖2tX .

(III) ‖ F3(φ)
|∇w|2 ‖

t
Y ≤ C33‖φ‖3tX .

(IV) ‖ F4(φ)
|∇w|2 ‖

t
Y ≤ C456‖φ‖2tX .

(V) ‖ F5(φ)
|∇w|2 |

t
Y ≤ C456‖φ‖2tX .

(VI) ‖ F6(φ)
|∇w|2 ‖

t
Y ≤ C456‖φ‖3tX .

(VII) ‖ F7(φ)
|∇w|2 ‖

t
Y ≤ C77(‖φ‖2tX + ‖φ‖(q−p+4)t

X )

(VII) ‖ Iε(φ)
|∇w|2 ‖

t
Y ≤ C8ε

t(1 + ‖φ‖(q−p+4)t
X ).

(VIII) ‖Hε(w+φ)
|∇w|2 ‖

t
Y ≤ C9ε

t for all φ ∈ BR with R ≤ 1.

Proof. The proof is straightforward of the Lemmas 8-14.
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Combining the above results we see that for 0 < R < 1 chosen sufficiently small and then ε > 0
chosen sufficiently small we have Jε(BR) ⊂ BR.

Contraction: We want to show that for small enough ε > 0 that Jε is a contraction on BR ⊂ X
for suitably (small) R. Let Jε(φ) = ψ and Jε(φ0) = ψ0 with φ, φ0 ∈ Br. Note that

L̃(ψ)− L̃(ψ0) =
∑7

k=1
Fk(φ)−Fk(φ0)
|∇w|2 + Iε(φ)−Iε(φ0)

|∇w|2 + Hε(w+φ)−Hε(w+φ0)
|∇w|2 . (22)

Theorem 5. Jε : BR → BR is a contraction, where ε and R are small enough.

Proof. We have to show that for sufficiently small ε and R, Jε : BR → BR is a contraction. In
other words we need to show there exists a kR,ε < 1 such that

‖Jt(φ)− Jt(φ0)‖Y ≤ kR,ε‖φ− φ0‖X .

We need to prove there exist kR,ε such that∥∥∥Fk(φ)−Fk(φ0)
|∇w|2

∥∥∥
Y
≤ kR,ε ‖φ− φ0‖X for k = 1, 2, · · · , 7

∥∥∥ Iε(φ)−Iε(φ0)
|∇w|2

∥∥∥
Y
≤ kR,ε ‖φ− φ0‖X and

∥∥∥Hε(w+φ)−Hε(w+φ0)
|∇w|2

∥∥∥
Y
≤ kR,ε ‖φ− φ0‖X .

(23)

Each of the above inequalities are studied in the following Steps 1-9:
Step 1. k = 1. We have

‖F1(φ)−F1(φ0)
|∇w|2 ‖tY = ‖ ∆w

|∇w|2
(
|∇φ|2 − |∇φ0|2

)
‖tY

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| ∆w
|∇w|2

(
|∇φ|2 − |∇φ0|2

)
|tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
|σ+2−N

σ |x|σ
(
|∇φ|2 − |∇φ0|2

)
|tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
|σ+2−N

σ |x|σ (|∇φ|+ |∇φ0|) (|∇φ| − |∇φ0|) |tdx

≤ (C1
σ+2−N

σ R)t‖φ− φ0‖tX .

Step 2. k = 2. We need to show∥∥∥∥F2(φ)− F2(φ0)

|∇w|2

∥∥∥∥
Y

≤ kR,ε ‖φ− φ0‖X .
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By the definition we have∥∥∥F2(φ)−F2(φ0)
|∇w|2

∥∥∥t
Y

=
∥∥∥2∇w(∇φ∆φ−∇φ0∆φ0)

|∇w|2

∥∥∥t
Y

=
∥∥∥( 2∇w
|∇w|2 (∇φ−∇φ0) ∆φ− (∆φ0 −∆φ)∇φ0

)∥∥∥t
Y

≤ k1t

{∥∥∥ 2∇w
|∇w|2 (∇φ−∇φ0) ∆φ

∥∥∥t
Y

+
∥∥∥ 2∇w
|∇w|2 (∆φ0 −∆φ)∇φ0

∥∥∥t
Y

}
=: k12t (K21(φ, φ0) +K22(φ, φ0)) .

A computation shows for each each term we have as:

K21(φ, φ0) = sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| 2∇w
|∇w|2 (∇φ−∇φ0) ∆φ|tdx

≤ k2t

(
sup0<s≤ 1

2
s(2+σ)t−N ∫

As
|∆φ|t

) (
‖φ− φ0‖tX

)
≤ k2tR

t‖φ− φ0‖tX .

where we have applied Sobolev embedding s(σ+1) supAs |∇φ| ≤ C1‖φ‖X . For K22(φ, φ0) we have

K22(φ, φ0) = sup0<s≤ 1
2
s(2+σ)t−N ∫

As
|2∇w−w2

r
(∆φ0 −∆φ)∇φ0|tdx

≤ K2tR
t sup0<s≤ 1

2
s(2+σ)t−N ∫

As
| (∆φ0 −∆φ) |tdx

≤ k2tR
t ‖φ− φ0‖tX .

Consequently ∥∥∥F2(φ)−F2(φ0)
|∇w|2

∥∥∥t
Y
≤ k2tR

t ‖φ− φ0‖tX .

Step 3. k = 3. We have∥∥∥F3(φ)−F3(φ0)
|∇w|2

∥∥∥t
Y

=
∥∥∥ (∆φ)|∇φ|2−(∆φ0)|∇φ0|2

|∇w|2

∥∥∥t
Y

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| (∆φ)|∇φ|2−(∆φ0)|∇φ0|2

|∇w|2 |tdx

= sup0<s≤ 1
2
s(2+σ)t−N ∫

As
| |x|

2σ+2

σ2

(
(∆φ−∆φ0)|∇φ|2 + (∇φ−∇φ0)(∇φ+∇φ0)∆φ0

)
|tdx

≤ k3tR
2t‖φ− φ0‖tX .
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Step 4. k = 4. We have∥∥∥Fk(φ)−Fk(φ0)
|∇w|2

∥∥∥t
Y

=

∥∥∥∥ p−2
2
∇w

|∇w|2 ·
(
∇(|∇φ|2)−∇(|∇φ0|2)

)∥∥∥∥t
Y

=

∥∥∥∥ p−2
2
∇w

|∇w|2 · ∇(|∇φ|2 − |∇φ0|2)

∥∥∥∥t
Y

≤
∥∥∥(p− 2) |∇w||∇φ||D

2(φ−φ0)|+|∇w||D2φ0||∇φ−∇φ0|
|∇w|2

∥∥∥t
Y

≤ k4tR
t‖φ− φ0‖tX ,

where we applied Lemma 16 in Appendix.
Step 5. k = 5. We have∥∥∥F5(φ)−F5(φ0)

|∇w|2

∥∥∥
Y

= ‖(p− 2)∇φ·∇(∇w·∇φ)−∇φ0·∇(∇w·∇φ0)
|∇w|2 ‖tY

= ‖(p− 2) |D
2w||∇φ||∇φ−∇φ0|+|∇w||D2φ||∇φ−∇φ0|+|∇φ0||D2w||∇φ−∇φ0|+|∇φ0||∇w||D2(φ−φ0)|

|∇w|2 ‖tY

≤ k6tR
t‖φ− φ0‖tX .

Step 6. k = 6. We have∥∥∥F6(φ)−F6(φ0)
|∇w|2

∥∥∥
Y

= ‖p−2
2
∇φ·∇(|∇φ|2)−∇φ0·∇(|∇φ0|2)

|∇w|2 ‖tY

≤ k60

∥∥∥(p− 2) |∇φ0|
2|D2(φ−φ0)|+|D2φ0||∇φ+∇φ0||∇φ−∇φ0|

|∇w|2

∥∥∥t
Y

≤ k6tR
2t‖φ− φ0‖tX .

Step 7. k = 7. I mean we need to prove∥∥∥∥F7(φ)− F7(φ0)

|∇w|2

∥∥∥∥
Y

≤ kR,ε ‖φ− φ0‖X ,

by the definition we have∥∥∥F7(φ)−F7(φ0)
|∇w|2

∥∥∥t
Y

=
∥∥∥ |∇w+∇φ|q−p+4−|∇w|q−p+4−(q−p+4)|∇w|q−p+2∇w∇φ

|∇w|2

− |∇w+∇φ0|q−p+4−|∇w|q−p+4−(q−p+4)|∇w|q−p+2∇w∇φ0
|∇w|2

∥∥∥t
Y

=
∥∥∥ |∇w+∇φ|q−p+4−|∇w+∇φ0|q−p+4−(q−p+4)|∇w|q−p+2∇w(∇φ−∇φ0)

|∇w|2

∥∥∥t
Y

≤ C
∥∥∥ 1
|∇w|2

(
|∇w|q−p+2 (|∇φ|+ |∇φ0|) + |∇φ|q−p+3 + |∇φ0|q−p+3

)
|∇φ0 −∇φ|

∥∥∥t
Y
,
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where we applied part (4) of Lemma 15 (in Appendix). Thus with respect to the definition of ‖ · ‖Y
we have ∥∥∥ 1

|∇w|2

(
|∇w|q−p+2 (|∇φ|+ |∇φ0|) + |∇φ|q−p+3 + |∇φ0|q−p+3

)
|∇φ0 −∇φ|

∥∥∥t
Y

≤ k71

(∥∥∥ 1
|∇w|2 |∇w|

q−p+2 (|∇φ|+ |∇φ0|) |∇φ0 −∇φ|
∥∥∥t
Y

+
∥∥∥ 1
|∇w|2

(
|∇φ|q−p+3 + |∇φ0|q−p+3

)
|∇φ0 −∇φ|

∥∥∥t
Y

)
:= k71 (K11(φ, φ0) +K12(φ, φ0)) .

A computation shows

K11(φ, φ0) =
∥∥∥ 1
|∇w|2 |∇w|

q−p+2 (|∇φ|+ |∇φ0|) |∇φ0 −∇φ|
∥∥∥t
Y

≤ (2(Cσ)q−pC1R)
t ‖φ− φ0‖tX

and

K12(φ, φ0) =
∥∥∥ 1
|∇w|2

(
|∇φ|q−p+3 + |∇φ0|q−p+3

)
|∇φ0 −∇φ|

∥∥∥t
Y

≤
(

2(C1R)(q−p+3)

C2σ2

)t
‖φ− φ0‖tX .

Thus ∥∥∥F7(φ)−F7(φ0)
|∇w|2

∥∥∥t
Y
≤ k71 (K11(φ, φ0) +K12(φ, φ0))

≤ k71

(
(2(Cσ)q−pC1R)

t
+
(

2(C1R)(q−p+3)

C2σ2

)t)
‖φ− φ0‖tX

≤ kR,ε‖φ− φ0‖X .

Step 8. We need to show ∥∥∥∥Iε(φ)− Iε(φ0)

|∇w|2

∥∥∥∥
Y

≤ kR,ε ‖φ− φ0‖X .
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With respect to part (4) of Lemma 15 (in Appendix) one can write

‖ Iε(φ)−Iε(φ0)
|∇w|2 ‖tY

= Ct‖ |∇w+∇φ+εA0(∇w+∇φ)|q−p+4−|∇w+∇φ|q−p+4

|∇w|2 − |∇w+∇φ0+εA0(∇w+∇φ0)|q−p+4−|∇w+∇φ0|q−p+4)
|∇w|2 ‖tY

≤ k81

(
‖ |∇w+∇φ+εA0(∇w+∇φ)|q−p+4−|∇w+∇φ0+εA0(∇w+∇φ0)|q−p+4−(1+ε)(q−p+4)|∇w|q−p+2∇w(∇φ−∇φ0)

|∇w|2 ‖tY

+‖ |∇w+∇φ|q−p+4−|∇w+∇φ0|q−p+4−(q−p+4)|∇w|q−p+2∇w(∇φ−∇φ0)
|∇w|2 ‖tY

+‖ ε(q−p+4)|∇w|q−p+2∇w(∇φ−∇φ0)
|∇w|2 ‖tY

)
≤ k82

(
‖
[
|∇w|q−p+2(|∇φ+ε(∇w+∇φ)|+|∇φ0+ε(∇w+∇φ0)|)+|∇φ+ε(∇w+∇φ)|q−p+3

|∇w|2

+ |∇φ0+ε(∇w+∇φ0)|q−p+3

|∇w|2

]
(1 + ε) |∇φ−∇φ0|‖tY

+‖ [|∇w|q−p+2(|∇φ|+|∇φ0|)+|∇φ|q−p+3+|∇φ0|q−p+3]|∇φ−∇φ0|
|∇w|2 ‖tY

+‖ ε(q−p+4)|∇w|q−p+2|∇w||∇φ−∇φ0|
|∇w|2 ‖tY

)
≤ k83

[
(1 + ε)t

{
Rt + εt(1 +Rt) +R(q−p+3)t + ε(q−p+3)t(1 +R(q−p+3)t)

}
+(Rt +R(q−p+3)t) + εt(q − p+ 4)t

]
‖φ− φ0‖tX .

Or it means that

‖Iε(φ)− Iε(φ0)

|∇w|2
‖Y ≤ kR,ε‖φ− φ0‖X .

Step 9. We need to show that∥∥∥∥Hε(w + φ)−Hε(w + φ0)

|∇w|2

∥∥∥∥
Y

≤ kR,ε ‖φ− φ0‖X .
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We know that∥∥∥Hε(w+φ)−Hε(w+φ0)
|∇w|2

∥∥∥t
Y

=
∥∥∥ 1
|∇w|2 [

2ε (∆(w + φ)(A0∇(w + φ)) · ∇(w + φ)−∆(w + φ0)(A0∇(w + φ0)) · ∇(w + φ0))

+ε2
(
∆(w + φ)|A0∇(w + φ)|2 −∆(w + φ0)|A0∇(w + φ0)|2

)
+Eε((w + φ))|∇(w + φ)|2 − Eε((w + φ0))|∇(w + φ0)|2

+2ε (Eε(w + φ)(A0∇(w + φ)) · ∇(w + φ)− Eε(w + φ0)(A0∇(w + φ0)) · ∇(w + φ0))

+ε2
(
Eε(w + φ)|A0∇(w + φ)|2 − Eε(w + φ0)|A0∇(w + φ0)|2

)
+g0(ε)

{∑{
(w + φ)xixj (w + φ)xi(w + φ)xj + (w + φ)xi(w + φ)xj (w + φ)xk

}
−
∑{

(w + φ0)xixj (w + φ0)xi(w + φ0)xj + (w + φ0)xi(w + φ0)xj (w + φ0)xk
}}]
‖tY .

Similar to the other cases (which is done above), a computation shows each of the above differences
is bounded by k9ε

t‖φ− φ0‖tX .

Note to see the solution v is positive we note that v(x) = w(x) + φ(x) and then note by taking
R > 0 small enough and using the pointwise estimate on φ and its gradient that we have v > 0 in
B1.

3.2 The Hölder continues case

To apply the fixed point theorem in this section we argue exactly as in the previous section. In
other words, by the same argument one can show that for 0 < R < 1 chosen sufficiently small and
then ε > 0 chosen sufficiently small we have Jε(BR) ⊂ BR, and for small enough ε > 0, Jε is a
contraction on BR ⊂ X for suitably (small) R.

4 Appendix

Here we recall the following lemma which is necessary to follow the problem.

Lemma 15. Suppose p > 1. There exists a constant C such that the following hold:

(1) For all numbers w > 0 and φ, φ̃ ∈ R,∣∣|w + φ|p − pwp−1φ− wp
∣∣ ≤ C (wp−2φ2 + |φ|p

)
,

and∣∣∣|w + φ̃|p − |w + φ|p − pwp−1(φ̃− φ)
∣∣∣ ≤ C (wp−2

(
|φ|+ |φ̃|

)
+ |φ|p−1 + |φ̃|p−1

) ∣∣∣φ̃− φ∣∣∣ .
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(2) For all x, y, z ∈ RN ,

||x+ y|p − |x+ z|p| ≤ C
(
|x|p−1 + |y|p−1 + |z|p−1

)
|y − z|.

(3) For p > 1, there exists Cp such that for and x, y ∈ RN and (x 6= 0) and |y| small enough

||x+ y|p − |x|p − p|x|p−2x · y| ≤ Cp
(
|y|p + |x|p−2|y|2

)
.

(4) For x, y, z ∈ RN ,∣∣|x+ y|p − |x+ z|p − p|x|p−2x · (y − z)
∣∣ ≤ C (|x|p−2 (|y|+ |z|) + |y|p−1 + |z|p−1

)
|y − z| .

Recall that F4(φ) = p−2
2 ∇w · ∇(|∇φ|2) and F5(φ) = (p− 2)∇φ · ∇(∇w · ∇φ), then we have the

following lemma.

Lemma 16. Let φ0, φ1 ∈ X. Then there exist C1 and C2 such that

|F4(φ1)− F4(φ0)| ≤ C1

(
|∇w||∇φ1||D2(φ1 − φ0)|+ |∇w||D2φ0||∇φ1 −∇φ0|

)
,

|F5(φ1)− F5(φ0)| ≤ C2

(
|D2w||∇φ1||∇φ1 −∇φ0|+ |∇w||D2φ1||∇φ1 −∇φ0|

+|∇φ0||D2w||∇φ1 −∇φ0|+ |∇φ0||∇w||D2(φ1 − φ0)|
)
.
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