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Abstract
In this article we are interested in positive classical solutions of
—Au+a(z) - Vu+ V(z)u = uP + yu? in RY,
and
—Au+ a(z) - Vu = uf 4+ ~|Vul? in RY,

in the case of N > 4, p > %—f%’ and v € R. We assume that V is a smooth non-

negative potential and a(z) is a smooth vector field, both of which satisfy natural
decay assumptions. Under suitable assumptions on ¢ we prove the existence of positive
classical solutions.
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1 Introduction and statement of main results

In this article we are interested in positive classical solutions of the following variants of the
Lane-Emden and viscous Hamilton-Jacobi equations given by

—Au+a(z) - Vu+ V(x)u = uP + yu? in RY, (1)

and
—Au+ a(z) - Vu = uP + v|Vul? in RY, (2)



where p,g > 1, v € R and

(A1) :  a(z) is a smooth vector field satisfing }%im A(R) = 0 where A(R) := sup |z||a(z)],

(A2) :  V(z) > 0is a smooth potential satisfing Rlim V(R) = 0 where V(R) := sup |z|*V ().

—Au = uP in €,
{ u = 0 on 0, (3)
where € is a bounded domain in RY with N > 3. Define the critical exponent p, = % and
note that it is related to the critical Sobolev imbedding exponent 2* := % =ps+ 1. For

1 <p<ps H}(Q) is compactly imbedded in LP™(2) and hence standard methods show the
existence of a positive minimizer of

Vul?d
min fQ [Vul'de —.
€ HG MO} ([ |ulp+ida) 7T

This positive minimizer is a positive solution of (3) see for instance the book [19]. For p > p,
H}(Q) is no longer compactly imbedded in LP™1(€) and so to find positive solutions of (3)
one needs to take other approach. For p > p, the well known Pohozaev identity [18] shows
there are no positive solutions of (3) provided (2 is star shaped. For general domains in the
critical /supercritical case, p > p;, the existence versus nonexistence of positive solutions of
(3) is a very delicate question; see [5, 7, 17].

We now recall (1) in the case of a(z) =0, V(z) = 0 and v = 0. There has been much work
done on the existence and nonexistence of positive classical solutions of

—Aw = w? in RY, (4)

As in the bounded domain case the critical exponent p, plays a crucial role. For 1 < p < pj
there are no positive classical solutions of (4) and for p > p, there exist positive classical
solutions, see [3, 4, 13, 12]. The moving plane method shows that all positive classical
solutions, satisfying certain assumptions, are radial about a point. In [6] the existence versus
nonexistence of stable positive solutions of —Au + a(x) - Vu = u? in RY was considered.
Results were obtained that depended on smallness assumptions on a and removing this
smallness assumption was the motivation for the current work. The interested reader should
consult [21, 14] for this question in the case of a = 0.

In the current work our approach to finding positive classical solutions of (1) and (2) are
motivated by the approach from Dévila-del Pino-Musso-Wei [10]. In [10] they examined
equations of the form —Au(z) + V(z)u(z) = u(x)? in RY and they treated the equation as a
perturbation of the pure power problem (4). To solve the perturbed problem they first needed
a detailed study of the linearized operator associated with (4) given by L(¢) := A¢+pwP~1¢,
where w is the positive radial solution of (4) with w(0) = 1 (see below for the asymptotics
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of w). This analysis had already been carried out on the weighted spaces X, and Y3 in
Dévila-del Pino-Musso [8] where they obtained positive solutions of (4) on exterior domains.
We now state their exact linear theory which requires us to define some Banach spaces on
the punctured domain RNM\{0}: for o > 0 define Xy := {¢ € C(RV\{0}) : ||¢|lx, < oo}
where

1¢llx, := sup Ifr|"|¢(f€)|+|Sl|1>1>1|x|a|¢($)l;

0<z|<1
Yy = {f € C(RV\{0}) : || f[ly, < oo} where

Ifllve == sup ||| f ()] + sup |2|**?|f(2)].

0<|z|<1 |z|>1

Theorem A. [8, 10] Suppose N > 4 and p > ]N\ﬁé Then for all 0 < 0 < N — 2 there is

some C' > 0 such that for every f € Y, there exists some ¢ € Xq such that L(¢) = f in
RM\{0} and [|9]lx, < CIIfly-

Asymptotics of w. The asymptotics of w are
w(r) = ﬁp%lrp%(l +o0(1)) asr — oo,

where

2 2
Bzﬁ(p,N)=p—<N—2——1)>0,

see [14] for this and for more detailed asymptotics.

As mentioned earlier (1) was examined in [6] in the case of v = 0 and V(z) = 0 under a
smallness assumption on a(x). This work involved an existence portion where the above
linear theory needed to be extended to a slightly different Banach space: X; := {¢ €
CHRM\{0}) : [|¢llx, < oo} where

I¢llx, = sup (|x| |6(2)] + |27V (2)])

0<|z|<

+sup (|z[*¢(x)] + 2| V(z)])

|z|>1

Corollary A. [6] Suppose N > 4 and p > %J’; For 0 < o < N — 2 there is some C > 0

such that for every f € Yy there exists some ¢ € X such that L(¢) = f in RV\{0} and
I9llx, < Cllflly-

1.1 Statement of main results

We now state our results. Our first theorem is with regards to (1).
Theorem 1. Suppose N >4, ¢ > p > N+1 and (A1), (A2) are satisfied.

1. Suppose v > 0. Then there is a smooth positive solution u of (1).



2. Suppose v < 0 and

I(div(@) = 2V )+ | g, < 28

where (div(a) —2V') is the positive part of div(a)—2V and Sy is the optimal constant
in the critical Sobolev imbedding, see Lemma 5. Then there is a smooth positive solution

u of (1).
Note that ||(div(a) — 2V)

now consider (2) for which we obtain various results; each result corresponds to a fixed point
argument on a different space. We feel the most natural approach to take when considering
(2) is given by the approach we take in part 4 of Theorem 2. This approach relies on a linear
Liouville theorem that we suspect should hold but we have not managed to prove it so we
add the needed condition to the hypothesis.

+l, @) < 2S5y is trivially satisfied if a(z) is divergence free. We

N+1

Theorem 2. Suppose y € R, N >4, p> 75

and q > 1%‘
1. Suppose a(x) = 0. Then there exists a positive classical solution of (2).

2. Suppose a(x) satisfies (Al) and q < 2. Then there is a positive classical solution of

(2).

3. Suppose a(x) is divergence free and satisfies (A1) and suppose ¢ > p. Then there is a
positive classical solution of (2).

4. Suppose a(x) is divergence free and satisfies (A1) and suppose for all0 < o < 1 the only
smooth solutions 1 of A(z) —a(z)-Vi(z) = 0 in RY, which satisfies |Vip(x)| < %,

are the constant solutions (see Remark 1 part (c) for comments on this assumption).
Then there is a positive classical solution of (2).

We now state our final result regarding (2). In the first two theorems we work on various
function spaces and in all cases we take the parameter o > 0 small (which relates to allowable
blow up at the origin) when we apply Banach’s fixed point theorem. In our final result we
don’t take o > 0 small. Doing this allows us to gain a range of allowable ¢ when solving (2).
Here we only consider the case of ¢ > 2 since the case of ¢ < 2 is handled in the previous
theorem. We will obtain positive solutions of (2) under the assumption that

2
—— (-1~ (¢—1)+1>0. (5)
p—1
We now examine this condition in some detail. For p < 9, (5) is satisfied for all g. For p > 9,
(5) has two zeros: ¢_ < ¢, which are explicitly given by

1
qi::1+p—<1i 1—i).
4 p—

We can now state our final result.

N+1
Theorem 3. Suppose ¢ >2, v € R, N >4, p> 75

(A1).

and a is divergence free and satisfies



1. Suppose p < 9. Then there is a positive classical solution of (2).

2. Suppose p>9 and 2 < q < q_ or q> qy. Then there is a positive classical solution of

(2).

Remark 1. (a) For presentation purposes we decided to not include the term V(x)u in (2).

(b)

But the same methods can easily be applied to extend Theorem 2 and Theorem 3 to this
case.

We mention that if one assumes that a(x) decays more quickly than given by (Al) then
one can obtain existence results for (2) for a larger range of q; see Remark 2.

Here we consider the assumption on a(x) in Theorem 2 part 4. We suspect the linear
Liouville theorem assumed in Theorem 2 part 4 should hold assuming only (A1), but we
are unable to prove this. Here we show that with enough decay assumptions on a(x)
one does have the required Liouville theorem. Without loss of generality we can assume
B =1 and suppose 1 is a smooth solution of A(x) — a(z) - Vip(x) =0 in RV,

Claim. We first claim that a bounded solution 1) must be constant and for this we would
like to thank Connor Mooney for pointing this out to us. Set ¢(x) := 1p(x) — infyn ¥
and note that ¢ is a nonnegative bounded solution of the same equation. By the strong
maximum principle we can assume that ¢ does not attain its supremum or infimum on
RY. So we have infpp, ¢ = infp, ¢ — 0 as R — oco. For A > 0 set ¢5(r) := ¢(\z) and
s0 0 = Agy(z) — (Aa(Az)) - Vou(z) in Qo = {z € RN : 1 < |z| < 4}. Note that exists
some C > 0 (independent of ) such that Ma(Ax)| < C in Q. By Harnack’s inequality
there is some C such that
sup ¢y < C’lnf O,
Qoo
where Qoo = {x € RN : 1 < |z| < 2}. By the mazimum principle (and using the above
inequality) gives
sup ¢p(Az) = supp(Az) < C 1nf d(A\x) — 0,
lz|<2 Qoo |z[=2
as A — 00. From this we see supg, ¢ — 0 as R — oo and hence we must have ¢ = 0
implying 1 is constant. This completes the proof of the claim.

We now show under sufficient decay assumptions on a(x) that ¢ is bounded and then
from the above we see 1 is constant. Recall that —AyY(z) = —a(z) - Vy(z) = g(x)
(which is smooth) in RY and recalling we have decay on Vi (x) and assuming decay
assumptions on a(x) we see that g(x) can be made to decay as quickly as we like. Define

0= [ | et = )dy

and note that ¥ is bounded (provided g decays quick enough). So we have 9 — ¥ s
harmonic in RN and note that it grows at most sublinearly at |x| = oo. From this we
can conclude that ¢ — w = constant and hence ) = w—constant and hence 1 is bounded.



(d) Here we mention that the linear theory developed in [8, 10] (which closely corresponds
to our linear theory on Xy) is enough to handle (1) and (2) in the case of ¢ < 2. To
consider (2) in the case of ¢ > 2 one needs to consider a different class of function spaces
and this naturally brings up some interesting Liouville theorems. We believe these new
function spaces and associated linear theory is our main contribution in this work.

We mention that in the works [8, 10, 9] the case of % <p< %—J_’é was also examined but
one needs extra arguments and for this reason we choose to omit this case. We also mention
that many of these ideas extend to exterior domains and this is examined [1]. In that work
we were unable to handle (2) in the case of ¢ > 2.

1.2 Outline of the approach

For the outline of our approach we consider an equation which includes both (1) and (2) as
special cases. Consider the equation

—Au+a(z) - Vu+V(z)u =P +yu® + | Vu|®, in RV, (6)

To find a positive classical solution of (6) it is sufficient, via the scaling v(z) = )\P;jlu(/\*lx) =
A~%u(A"1x), to find a positive solution of

—Av +aMz) - Vo + VM) = 0P + A% 4 30%2|Vo|®2, in RY, (7)

for some A > 0 where 6; := 2(;1%1”) and 0y := (p+;)+_2p and where a*(z) := A"ta(A\"1x) and
VAx) := A2V (A1), Instead of solving (7) directly we replace the vP with |v[P and we will

show v > 0 after. We look for solutions of the form v = w + ¢; hence ¢ will need to satisfy

—Ly(¢) = |w+ ¢ —uw” —puw ¢
A w + ¢ + 722"V + V|
—a - Vuw — V> w, (8)

where
La(¢) = L(¢) = Ta(¢) = L(¢) — a’(x) - Vo — V*(2)¢.

We will look for solutions of (8) in the case of small A > 0 and we will treat the terms \%|w +
¢ and \2|Vw+V|% as perturbation terms. This will require that ¢, and 6, are both pos-
itive. To solve (8) the approach will be to apply a fixed point argument and hence the invert-
ibility of Ly, on a suitable space, will be crucial. By Theorem A [8] L : Xy — Y3 has a contin-
uous right inverse. Our idea is to view L) as a perturbation of L in the Fredholm sense; L) =
L—T) where T), is a compact operator. Of course T} : Xy — Y5 is not a compact operator and
so this forces us to adjust the spaces involved. We now define a suitable Banach space. Define
Xy = {¢ € CHRM\{0}) N HZ.(RM\{0}) : Ap € C(RM\{0}), and [|¢|x, < oo}, where

loc
Ipllx, = S (lz7lo(@)] + |27 V()| + 2| Ad()])

+sup (Jz|%|o(@)] + 2| V()] + || Ad(2)]) -

j@|>1



We then show that T\ : X — Y5 is a compact operator and hence L) and L have the
same Fredholm index. Using this we are able to show the existence of a continuous right
inverse of Ly : Xy — Y5 for sufficiently small A (whose norm is bounded in A). This re-
sult will essentially rely on a Liouville theorem of the form: the only smooth solution of
—AYp+a-Viy+Vip=0in RY with [¢(x)| < |z|77 is » = 0. This result will follow directly

from the maximum principle. We now return to the specific cases (1) and (2).

In Section 2 we consider (1) using the approach which is outlined above which results in
Theorem 1. We comment that the needed linear theory is the right inverse of Ly : X5 — Y5
whose operator norm is bounded independently of small \.

In Section 3 we consider (2). Using a fixed point argument on Xs, as outlined above, we
are able to obtain a positive solution for 1% < q < 2; which is part 2 of Theorem 2. The
condition z% < ¢ is completely natural since this condition is equivalent to 6, > 0 in (6).
The restriction ¢ < 2 is not expected and is not related to the the equation (2) but rather
is a result from our choice of space to perform a fixed point argument. To allow for larger
values of ¢ we need to apply a fixed point argument on a space whose functions are less
singular near the origin. Picking a space whose norm includes a term like supg |V¢| is a
good choice for obtaining positive solutions of (2) for any ¢ > 1%’ provided a(z) = 0. This
accounts for Theorem 2 part 1 and the function space we use here is denoted by Z.,, see
Lemma 3.

Another choice we consider is a space which allows slightly more blow up at the origin; Z;
where Zy := {¢ € C(RY) N C*(RNM\{0}) : ||§]|z, < oo} where

19l]z, = o (o) + A7 2|7V ()]) + sup (Izl*lo(@)] + |2[* [Ve(@)]) -

|z[>

To apply a fixed point argument on Z; we need to show that L, : Z; — Y7 has a continuous
right inverse, which is bounded independent of A, for small A > 0, where Y7 := {f €
C(R™M{0}) : [[fllyy < oo} and

£l == sup || f ()] + sup [2]**?|f(2)].

0<|z|<1 |z|>1

We are able to prove this result up to a needed linear Liouville theorem which we assume;
this accounts for Theorem 2 part 4.

Without assuming the needed linear Liouville theorem we can weaken slightly the space Z;
to obtain the needed result. We prove L) : Z), — Y; has a continuous right inverse whose
norm is bounded independently of A, for small A > 0. Note that the space Z, gives slightly
weaker estimates on the gradient after considering the fact that A is small. This will be
sufficient to apply a fixed point argument in Z, and enables us to find positive solutions of
(2) provided g > p. This is given in Theorem 2 part 3.

We now come to Theorem 3. Here the approach is the same is in the proof of Theorem 2
part 3; a fixed point argument in Z,. The only difference now is we won'’t take o > 0 small.
This allows us to gain a larger range of g. With this larger range of ¢ one needs to be a bit
careful when applying various elliptic regularity results.



2 Equation (1); —Au+a-Vu+ Vu=u? + ~yul

In this section we obtain positive solutions of (1). The main issue will be to obtain a
continuous right inverse for L, : X — Y5 whose norm is bounded above by some constant
independent for all sufficiently small A\. The first subsection develops this theory and then
we move on to the fixed point argument.

2.1 The linear theory of Ly(¢) := A¢p+pu? Lop—a - Vo—-V3: Xy — Y,

Before examining L, on the desired spaces we need to examine the operator L(¢) = A¢ +
puwr~te.
N+1

Lemma 1. Suppose N >4 and p > §75. For 0 <o < N — 2 there exists some C' > 0 such

that for every f € Y, there exists some ¢ € Xy such that L(¢) = f in RV\{0}. In addition
10llx, < Cl fllyz-

Proof. Let f € Ys. By Corollary A there is some ¢ € X; and C' > 0 (independent of f and
®) such that ||¢||x, < C||flly,. Using the equation L(¢) = f in RV\{0} directly along with
the above X, bounds on ¢ and the asymptotic behaviour of w at r = oo gives

sup |z|7 | A¢(x)] + sup 2| Ad(z)| < Col flv,-

0<|a|<1 |z|>1
Combining this with the X; bounds on ¢, from Corollary A, gives the desired result. n

It follows from Lemma 1 and the fact that L : Xy — Y5 is continuous that L has a continuous
right inverse I’ : Yo — X,. Consequently, XQ = F(Y3) is a closed subspace of Xy, hence
a Banach space with the norm of X,. In fact we can decompose X, as Xy = ker(L) @ X,
where ker(L) is the finite dimensional kernel of L. In particular notice that L : X, — Yj
is a operator with Fredholm index zero. We now wish to examine the linear operator L), =
L—T: Xy — Y,. The first step will be showing the mapping 7T is compact.

Lemma 2. For each fixred 0 < A < oo the operator Ty, : Xo — Yo is compact.

Proof. Set T* : Xy — Y3 by T'(¢) := a(x) - Vé(x) and T?(¢) := V(x)¢(z) and note that if

T* is compact for ¢ = 1,2, then so is T} for all A > 0.

Consider a sequence ¢,,, € Xy with ||¢,,[|x, < C. Then note that we have |A¢,, ()|, |V ()], dm(2)
bounded provided we stay away from the origin. So we see that for any ¢ < oo we have ¢,
bounded in W24(4 < |z| < §') for any § > 0. So by a diagonal argument we see that there

is a subsequence {¢m }m (which we don’t rename) which is convergent in C2(5 < |z| < 671)

for all § > 0. We now show that T%(¢,,) is Cauchy in Y5.



Let € > 0 be small and fix R > 1 big enough such that sup|, ;> [2[[a(2)| < e. Then we have

sup |2[** T (¢m) = T'(d)| < sup |z[*"a(@) - V(¢m(z) — ¢r(2))]

|z]>1 I<|z|<R
+]§3‘P| |z[**a(z) - V(om(x) — ¢r(2))]
< R*™™ sup la(z)| sup |V(dm(x) — ¢r(x))]
1<|2|<R 1<|z|<R
+I§1<1‘P| |zl|a(@)] 2]V (¢m (@) — d1(2))]
< R¥™ sup |a(z)| sup |V(gm(x) — dx(2))]
1<[z|<R 1<[z|<R
+e2C.

From this we see that

lim sup <Sup 2T () — T1(¢k)|) < 2eC

k,m—oo \ |z|>1

but € > 0 was arbitrary and hence the limit is zero. We now consider the other portion of
the Y5 norm.
Fix & > 0 small and let 0 < ¢ < 1 be small such that supy, <;|z[|la(z)| < . Now note that

sup [>T (o) — T (dn)| < sup |zfla(z)| ([T Vom (@) — Vu(a)|)

|z|<1 || <5
+ sup 2?7 a(2)||[Vem(x) — Vor(2)]

§<lz|<1

< 2C+ sup |z[*™)a(x)] sup |Vém(x) — Vér(z)]
5<z|<1 5<el<1

and again using the convergence of the gradients away from the origin we see that

lim (Sup 21T (fm) — Tl(%)l) < 2¢C.

k,m—o0 |1.|S1

So combining with the previous result we have limsupy,,, o [|7"(¢m) — T (¢%)|ly, = 0 and
hence {T"(¢)}m is Cauchy in Y. An identical argument shows that T2 is a compact
operator. ]

We now state our main linear result for this section.

Proposition 1. (L) : Xo — Y;) Let N > 4, p > %—fé and suppose (A1) and (A2) hold.
Then for 0 <o < N =2 there is some \g > 0 small such that for all0 < \ < Xy the operator
Ly : X9 — Y5 is continuous, one to one and onto with continuous inverse. In addition the

norm of the inverse is bounded above by a constant independent of \.

Proof. Fix 0 <o < N —2. Recall that Ly, = L —T) : Xy — Y5, T is compact and hence the
Fredholm index of L, is equal to the Fredholm index of L, which is zero. So we first suppose
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that L, is not onto Y5 for small A\. Hence there is some \,, \, 0 such that L,, := L, is
not onto Y5 and hence there is some ¢, € X, with ||¢n|/x, = 1 such that Ly, (ém) = 0 in
R\ {0}. Now suppose that L, is onto but the inverse operator is not bounded uniformly in
A. Then there is some A, \, 0 and f,, € Y3, ¢, € X, such that Lp(¢m) = frn in RN\{0},
| fmllya = 0 and ||¢m||x, = 1. Now note we can view the first case as a special case of the
second case.

Hence if either condition fails there is some Ay, N\, 0, fr — 010 Y2, ¢ € Xo, [|fmllx, = 1
such that L,,(¢n) = fn in R¥\{0}. We now derive a contradiction.

We re-write Ly, (¢m) = fm as L(¢p) = fin + a*(z) - Ve, + VA (2)¢,,. Using the linear
theory for L we see that there is some C' > 0 such that

Clidmllx. < lfully +lla* - Ve + V" u|ly,. (9)

We now examine in detail the second Y5 norm on the right hand side. A computation shows
that
Ha)\m Vo + VAmﬁbm”lé = I+ I,

where [,,, is the portion of the norm in the unit ball and J,, is the portion outside the unit
ball. We first estimate .J,,,

T < sup 25 (0 @)][ V| + V7 ()]0 ())

|lz[>1

‘x| T +1
< sup —|a(—)||z|*"|Vo,,
< s Paly I 95
o N
+sup LV (g

2
j@l>1 A

< (AN VLD 16mllx..

Let 0 < o be small which we pick later and we now write I, < I} + I2 + I3 where

= < (272 (Ja* (@) [ Vo ()| + VA (2) | ()])
< s (Izlla(2)] + 12V (2)]) émllx,-

We now define

L= swp o] (o (@)][Vén(@)| + V(@) g (@)])

m
Ameo<|z|<Ameg
which we will later show goes to zero via a Liouville theorem. Finally we define

L= sup 2|72 (Ja* (@) V()| + V" (2)|dm()])

e P Am<[z|<1

We estimate I3, exactly as we did in the case of .J,, to see that
1< (A + V() Iomll

10



Now fix 0 < gy small enough such that

ol

sup (|2lla(z)] + [PV (2)]) + Aleg ) + V(eg ') <

|z|<eo

We can then combine the above estimates to arrive at
C _ ~
Slomle < Ifmllve + (AN + VD) émllx + 22,

which gives us a contradiction if we can show that 2 — 0.

We now define the rescaled functions ¢, (x) := A7 ¢ (Anx). Let e N\ 0 with g9 > &; and
set Ay == {z € RV : g, < |2| < g;'}. Using the bound SUp|y <1 [2]7|¢m(z)| < 1 one sees that
| ()] < |z|77 on |z] < Al. In particular, for each & > 0 we have 1), bounded on A,
for large enough m. Also note that 1, satisfies

Athy (1) =a(2) Vi () =V (@) (1) = A2 fin(Ant) =pw(An@)? T AL () in Ay (10)

Define g,,(x) to be the right hand side of (10) and note that g,, — 0 uniformly in Ay, ;. Fix
t > N large. By elliptic regularity theory there is some C} such that

[ Vmllwztay) < Crpllgmlloe g + Coplldmllrag,)-

Note that the right hand side of this inequality is bounded by some Cy. So using a diagonal

argument and the Sobolev imbedding we can assume that {1, }., (after passing to a suitable

subsequence) is bounded in C3 (Ay) for each k > 0 and there is some ¥ : R¥N\{0} — R such
1

that ¥, — ¢ in C’llo’c2 (RM\{0}). This is enough to pass to the limit in (10) to see that ¢ is

a weak solution of

Ay — a(z) - Vi — V(x)(z) = 0 in R¥\{0}.

Also note that () satisfies the pointwise bounds |¢(x)| < |#|77 and |Vi(x)| < |z]777L
Since 0 < ¢ < N — 2 we can apply Lemma 7 to see that ¢ is a distributional solution of
Ap—a(z)-Vip—V (z)y = 0in RY. We can then apply distributional elliptic regularity theory
to see that 1) is smooth on RY. We now show ¢) = 0. Firstly note that since ) is smooth and
decays to zero as |z| — oo, we can apply the strong maximum principle to see that @) > 0
in RY. We can then apply the maximum principle to see that sup B ¥ = supgp, ¥ — 0 as
R — o0. This shows that ¢» = 0. We now recall that v,,, = ¢ =0 in CL%(A;C) for any k£ and
in particular for k¥ = 0. Note that we can estimate I2, as

I, = sup 2|7 (Ja* (2) ||V (2)] + VA7 (2) | b ()]

)\mEOS‘x|§)\m€al

= suwp 27 (la(2)[Vim(2)] + V() [ (2)]) = 0,

e0<|2|<ey !

as m — oo after considering the above mentioned convergence of 1,,,. This shows that
I?, — 0 which gives us the desired contradiction.
O
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2.2 Equation (1); the fixed point argument

To find a positive classical solution of (1) it is sufficient (via a scaling argument) to find a
positive classical solution v of

—Av +aMx) - Vo + V) = vP + YA %1 RY, (11)
for some A > 0 where 0 := % > (. To do this we will find a positive classical solution of

—Av 4 aMx) - Vo + Vz)v = |[vP + y\0|v)? in RY. (12)

Considering our function spaces X and Y5 are spaces defined on the punctured domain we
first solve

—Av + a*x) - Vo + VM) = [o]f + )\ in RM\{0}. (13)

To do this we look for solutions of the form v = w + ¢ where w is as in the previous sections.
Then we need ¢ to satisfy

Lx(¢) = aMz) Vw +V(2)w
— (Jw+ ¢P — w? — puP~'o)
A+ g7 in RM\{0}.
To solve this equation for ¢ we apply a fixed point argument on a suitable closed ball in X,

centered at the origin. Fix 0 < o small and let 0 < A be as promised by Proposition 1.
Given 0 < A < Ag and ¢ € X, define Jy(¢) =: ¥\ € Xy where 1), satisfies

Lan) = d(a) Vo + VN (z)w
= (w0l — w? = pur 1)
— M w + ¢ in RM\{0}. (14)

We will now show that J, is a contraction on the closed ball of radius R centered at the
origin in X5, which we denote by Bpg, for suitable 0 < R and 0 < A < Ao.

Into. Let ¢ € Bg. We now estimate the terms on the right hand side of (14). By Lemma 6
we have

[|w + ¢F = pu? ¢ —w’| < C (w26 + |g]") .
Set I' = |w + @P — puwP~'¢ — wP. Then one sees

ITlly, < Csupl|fff|”+2(wp_2¢2+|¢|p)

el<
+C sup || (w6 + [9]")
j#f>1

= C]l + CIQ

b= sup (jaf* 7w (jaf"9(a))” + 2l (@)l ol"))

sup (27w 2llgll, + 12|77 611%,)
T|>

< Clélx, + Clelk,

IN
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for small enough ¢ > 0. One can similarly show, using 2 + a = pa and 2 — a = a(p — 2),
that

I < |s?>11(lw|“w)p_2ll¢|!§¢0+||¢||§(0
Tz

< Cllgllx, + 1l

For 0 < o sufficiently small and since ¢ > p a computation shows that ||w?|y, < C and
[[¢1"lly, < 2[[6[l,. Hence we have [[|w + ¢|*[ly, < C' + C[|l%,-

We now examine the [|a* - Vw + V*wlly, term. We decompose |z| < 1 into |z| < § and
§ < |z| <1 where we will specify 4 later. Set M, (z) := |a*(z)||Vw| + V*(z)w. First note
that a computation shows

sup || M (x) < (AAT) + VAT wlx..

|lz[>1
A similar computation shows that

sup |z[*F7 My (z) < €67,
z|<d

where C' depends on sup, g~ (|2]|a(2)] + |22V (2)). A similar computation shows that

sup |z My (z) < CANTL) + CV (A1)

s<fel<1
where C' is independent of A and §. Combining these three estimates gives
|a* - Vw + V*wlly, < CANTS) + CV(A16) + Co°. (15)
Combining these results and using the inverse bound on L, given in Proposition 1 gives
[allx, < CO% + CANTE) + CV(AT10) + CllIo]1%, + lI9ll%,) + CHIN(C + [lol%,)-
Now using the fact that ¢ € Bg gives
tallx, < C67 + CANTS) + CV (A1) + CR2 + CRP + CX(1 + RY).
So for Jy(Bgr) C Bg it is sufficient that 0 < d < 1, 0 < A < g and 0 < R satisfy
C67 + CANT0) + V(A1) + CR?+ CRP + CN + CAR? < R. (16)

Contraction. Let ¢,¢ € Bg C X, and set Jy(¢) = ¥y, Ja(¢) = . First note that by
Lemma 6 we have

A=)l < O (w21l + 19) + I~ + 18P ) 16 — o)
FON (Juwlt™ 4161 + 161 ) 16— 6l = Hy + Hy.
We now estimate the Y5 norms of the right hand side. So we have

13



sup |o|"*| Hy| < sup (Jol*w?"2(g] + [2*|oP~) sup [«[7|6 — ¢

l|<1 <1 jel<1

where we have dropped the ¢ terms for simplicity of notation. First note that SUD|, <1 |z |2wP2|¢| <
R and supy, <, |z]*[¢[P~" < RP~! since o > 0 is small and 0 < w < 1. Similarly we have

sup |2|*"*|Hy| < sup (|20~ + a*|0]"") sup ]| — ¢
j#f>1 j#f>1 el>1

and a computation shows supy,s, |7[*w?~?|¢| < C'R after considering the asymptotic decay of
w. Similarly supj, s |2[*|¢[P~" < RP~!. Combining the above two estimates gives || H|ly, <

C(R+ RPY)||¢ — ¢||x,. Similarly one can show that || Hyl|ly, < CA (1+ RTY) || — ¢||x, for
q > p. Using these estimates and the estimates on L) gives that

[y — Uallx, < C(R+ R4+ M (14 R |16 — ¢ x,-

So for Jy to have a Lipschitz constant on Bgr at most % it is sufficient that

C(R+ R4+ CN(14+R17Y < (17)

N —

We now pick the parameters R,d, A so that .Jy is a contraction on Bp; ie. it is sufficient
that (16) and (17) to be satisfied. The approach will be to fix R > 0 small and then to fix
0 < 0 < 1 sufficiently small and then to finally pick A > 0 small. Doing this one easily sees
they can satisfy both (16) and (17).

Hence we can apply Banach’s contraction mapping principle to see that there is some ¢ € Bg
such that Jy(¢) = ¢. From this we can conclude that v = w + ¢ satisfies (13). Moreover
notice that by taking 0 < R < 1 small enough we can assume that the v > 0 in say
{z : |z| > 3}. By taking o > 0 smaller, if necessary, we can now apply Lemma 7 to see
that v satisfies (12) in the sense of distributions. By taking ¢ > 0 smaller again we can now
apply elliptic regularity theory to see that v is a classical solution of (12). To complete the
proof we need to show that v is positive. The approach depends on the sign of ~.

Case 1. 0 < ~v. One can now apply the strong maximum principle on B 1 to see that v > 0
in B 1 and hence v > 0 in RY. This complete the proof of Theorem 1 part 1.
Case 2. v < 0. We now fix 0 < R < 1 as above. Then note that we are free to take \ as

small as we like. So let \,,, \( 0 and let ¢,, € B C X, be a fixed point for J, on Bg. We
set vy, := w + ¢, and so v, is positive outside of B 1 C RY and satisfies

— AV 4+ Vg, + VA0, = [P+ A |Jo,|f RY. (18)

Our goal is to show that for large enough m that v, > 0 in RY. Towards this define
Q= {x € RY : v,,(z) < 0} and lets assume (2, is non-empty for all m. Also note that €2,
is contained in the unit ball in RY. Now note that v,, satisfies

—Avy, + Vo, + Co ()0 = |vp|? in Q,,
v, = 0 on 0Q,,, (19)
Um < 0 in Qm;

14



where C,, () 1= VA — X |y||v,, |97
We now apply Corollary 1 to see that v, > 0 in {2, provided

I(div(a™) = 2V + 220 Il | )4l , | < 2SN

(Qm)

and hence it is sufficient that

I(div(a™) =2V ) || x4 20 A o] 5

L < 25N

(Qm)

Now note that a change of variables shows that it is sufficient that

I(div(a) = 2V)4 |,y

Sy T 2Nl < 25

Now recalling that v,, is bounded in X, we see that for sufficiently small ¢ > 0 that the
second term converges to zero and hence to have v,, > 0 in €, for large m it is sufficient
that ||(div(a) — 2V)+||L%(RN) < 2Sy. We can now apply the strong maximum principle to

(18) see that v, > 0 in RY. We can then apply elliptic regularity to see that v, is smooth.
We can now remove the absolute values and the proof of Theorem 1 part 2 is complete. O

3 Equation (2); —Au+a-Vu=u’ 4+ v|Vul!

In this section we are interested in obtaining positive solutions of the nonlinear problem
(2). As before we first perform a scaling argument to show it is sufficient to find a positive
solution v of

—Av(x) + a*(x) - Vo(z) = v(2)? + Y| Vo (x)|? (20)
where 6 = (% +1)q — z% — 2, (in this section ¢ will always refer to this quantity which
differs from the previous section). Instead of solving this we consider

—Av(x) + a*(x) - Vo(z) = |v(z) [P + Y\ | Vo (x)|?. (21)

We look for solutions of the form v = w + ¢ and so we need ¢ to satisfy

La(0) = o~ — g
—a* - Vw + N |Vw +Vel?  in RY (22)

where Ly(¢) := A¢ + pwP~1¢p — a*(z) - V.

3.1 The linear theory

Proposition 2. Suppose N > 4, p > %J’é, 0 <o <1 and suppose a is a smooth divergence

free vector field which satisfies satisfies (Al).

1. Suppose the only smooth solutions ¥ of Av(z)—a(x)-Vip(z) = 0 in RN, which satisfies
|V (z < (for some Cy > 0), are the constant solutions. Then there is some small
0< /\0 (md é’ > 0 such that for all0 < X\ < Ay and every f € Y; there is some ¢y € Z;
such that Ly(¢y) = f in RY. Moreover ||oxllz, < Clf|lv;-
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2. There is some small 0 < A\g < 1 and C > 0 such that for every f € Y; there is some
b € Zy such that Ly(¢y) = f in RY. Moreover ||oxllz, < C|Ifllv;-

Proof. 1. We begin by proving the desired result on the small class Y; N L* and we then
extend to all of Y; later; note that Y; N L™ is not dense in Y;. So show there is some small
0 < X < 1and C > 0 such that for all 0 < A < \g and f € L®(RY)NY; there is some
¢/\ S Z1 such that L)\(¢)\) = f in RN and H(b)\Hzl < CHf”yl

We now prove this result. Let 0 < \g, and C' > 0 be from Proposition 1 and suppose 0 < A <
Mo and f € L®(RY)NY;. Using 1, Lemma 7 there is some ¢, € Z; such that Ly(¢y) = f in
RY. In addition we have the estimate that |dx|lx, < C||flly, < C||f|lv;- By elliptic regular-
ity we also see there is some C) such that ||¢x]|z, < C)||f]ly;- We would like to now show this
constant C can be taken independently of A\. So towards a contradiction we suppose there is
some f,, € Y1 N L>®°(RY) such that f,, — 0 in Y] and there is some ¢,, € Z; N C’llo’g (RY) such
that Ly, (¢n) = fm in RY with \,, — 0 and ||¢,,]|z, = 1. Also note that Proposition 1 we
have that [¢,[|x, — 0 and hence we must have supy, s, (|£]*|dm (x)| + [2[*TH V@ (2)]) = 0
and this would then imply supy, <;(|¢m(z)| + [2]7|Vdn(z)]) — 1. We now try and estimate

these two terms to obtain a contradiction. First we fix % <t < X and then notice that

o+1
[ frall 2ty < Cllfmllya-
L>(B;) estimate on ¢,,. B A
Decompose ¢,,, on By as ¢, = @,,, + ¢, Where
Ag,, —a N, = fm —pw’ ¢, in By,  $,=0 ondbB, (23)
and R R X
A¢y, —a* -V, =0 in By, Gm = ¢ on OB. (24)

We will now use Lemma 1.3 from [2] which we restate for the reader convenience. Suppose
Q a bounded domain in RY, and b(z) a divergence free vector field defined on Q and T' > %
Then there is some C' = C (2, N, T) (independent of b) such that for all g € LT(Q), there is
a solution w of —Aw + b(z) - Vw = ¢ in Q with w = 0 on 9. Moreover ||w| -~ < C||g]7r.
Now we return to our problem. Since a is divergence free we see there is some C; > 0 such
that supp, [0, < Cill fn — P Gullri(m) < Cill finllzemy + Coplldmllzes,)- Using the Xo
estimate on ¢,, and the prior estimate relating the L' norm of f,, to the Y; norm, gives
supg, |6l < Cill finllys + Cill finlly,- Using the maximum principle we see that supy, |G| <
SUP|y(=1 |Pm| < O fmlly,- Combining the estimates gives sup ;<1 [¢m| < C| finlly; — 0.

Gradient estimates on ¢,,.

Considering the above L*(B;) and the earlier X, estimate on ¢,, one sees there must be
some 0 < |z,,| — 0 such that |2,,|7|Vm(2,,)| > 2. We now consider the rescaled functions
Ui () = 2] (D (|Tm|T) — G (|Tm]T0)) Where 20| = 1 is fixed. Then note that v, (xy) =
0 and Vb, ()| < |z|77 for |z| < ﬁ and |V, (2m)| > 3 where 2, == 2= € SV~!. Now

|Zm|
1

consider the annuli 4;, := {z € RY : < |z| < k} where k > 2 an integer. Using the
Arzeld-Ascoli Theorem along with a diagonal argument one can find some ¢ € C(R¥\{0})

and a subsequence of v, such that 1, — 9 uniformly on each A, for k£ > 2. In addition
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note that v, satisfies
Atpn (1) = Bma(Bm) - Vb (2) = gm(2),
where
g (@) = 2| frn (2l 2) — pw(|m|2)P am [ (@) — p(|zm|2) ™ |2m] 7 ¢ ([2m]z0),

and 3, = % Note that g,, — 0 uniformly in A, for any k£ > 2. Using elliptic regularity
and the Sobolev imbedding theorem we see that 1, is bounded in C'?(A}) for each k > 2
and hence we can pass to another subsequence to obtain that 1, — v in C*°(4,) for all
k > 2. One should note that advection term does not cause any problems on the annuli,
even if §,, — oo, after considering the assumptions on a. By passing to a subsequence we
can assume that /3,, — 3 € [0, o0].

Hence 1) satisfies the bound |V (z)] < |z|7° and Ay(z) — Ba(Bz) - Vib(z) = 0 in RM\{0}
where we interpret this equation as just Ay = 0 in the case of § = co. The bound on @ near
the origin is sufficient to show that 1 is a smooth solution of AY(z) — Ba(fx) - Vip(xz) =0
in RY. We now separate the two cases:

(i) B € {0,00}, (ii)) 0 < B < o0.

In the first case we have Ay = 0 in RY with the stated decay assumption on V. Hence
1., is a harmonic function on RY which decays to zero and hence the maximum principle
shows that 1,, = 0 and hence 1) is constant.

(i) Set ¢o(z) := ¥(3) and note Ag(z) — a(z) - Vo(z) = 0 in RN with the desired decay of
the gradient. We can then apply the hypothesis to see ¢ is constant and hence ) is constant.
But we now recall that we have v, — ¢ = 0 in C19(Ag) for all k£ > 2. In particular we
have |V, (2m)| — 0 giving us the desired contradiction. This completes the proof of the
apriori estimate.

We now extend the result to the full space Y;. Let o, C, A\ be as above and let 0 < A < Ay and
f €Y. Then there is some ¢ € X, such that Ly(¢) = f in R¥\{0} and we can extend the
pde to the full space after noting the regularity of f. Also we have ||¢||x, < C|/fllv, < C|fllva
from our earlier estimates. Define the continuous cut off of f(x) by f,.(z) where f,(x) is
defined by f,,(z) = f(z) for [f(x)] < m and f(x) = m for f(x) > m and lastly define
fm(x) = —m for f(x) < —m. Note that f,, is bounded and for large m, f,, and f may
only differ near the origin. In addition note that ||f.|lyv; < [/f|ly,- By the above esti-
mates there is some ¢, € Z; such that Ly(¢,,) = fm and ||omllz, < Cllfmllve < Cllfllw-
Also note that f,, — f in Y5 and hence ¢,, — ¢ in X, and hence for all € > 0 we have
Vo (z)] — |Vé(x)| uniformly on ¢ < |z| < 1. Using this and the estimates on ¢,,
one sees that supy, < [2|7|Vé(z)| < Cflly;. Also note that since ¢,, — ¢ in X and
supp, [¢om| < C||f]ly; we see that supg, |¢| < C||flly,. Using this and the X, bound on ¢ we
see that ¢ € Zy and [|¢]|z, < C| f|ln:-

We now give a claim which we will need for the proof of part 2 of this proposition.

Claim. Let N >4, 0 <o < 1and 0 < ¢ < 1. Then there is some C; = C;(N,0) > 0
(independent of ¢) such that for all f € Y™ there is some ¢ € Z{" such that

—A¢p=fin B.,, ¢=0ondB.. (25)
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In addition one has the estimate ||¢|
and ||y 1= supjy <. 274 f ().
To prove this claim one first sees, via a scaling argument, that it is sufficient to prove the
result for e = 1. A local regularity argument then shows that the only possible problem with
the gradient estimate is near the origin. One then applies the same rescaling argument as
in the proof of part 1 of the proposition. The main difference now being that since a(x) =0
we have the needed Liouville theorem to complete the proof.

zin < Chll f] yjn Where 9] zin = SUP|g|<e 2|7V ()|

2. We now prove part 2. Let 0 < o0 < 1 and let C, A\ > 0 be as promised from Proposition
1 and by taking Ay small we can assume it is less than one. Let f € Y;. By Proposi-
tion 1 there is some ¢, € X, such that Ly(¢y) = f in RM\{0}. In addition we have that
loallx, < Cllfllva < C|lf|ly, and noting that the norms agree outside B; we need only obtain
estimates inside the unit ball. Additionally note that one can show that Ly(¢y) = f in RY
and not just on the punctured domain. As in the first part of this proposition one can show
there is some C' such that supp, |¢x| < C||f]ly;- So to complete the proof we need only to
obtain the desired gradient bounds on the unit ball.

Gradient estimates on ¢,. First note that using the X, bound on ¢, gives

Ao SUD1 j4)<1 |z|7|Vor(x)| < O fllv,- So we need only prove the gradient estimate in Bi.
The proof will 1nvolve splitting 31 into two regions:

(i) de < |z < 1, and (ii) |z| < )\z—:

where € > 0 Wlll be some small but fixed parameter.

Region (i); \e < |z| < 3.
Fix € > 0 small, Ae < |z| < } and consider the rescaled functions ¥, (y) := ¢x(z + |z|y) for
Yy € B%. Then note that v, satisfies

A%(y)—'i' <$+A|$Iy) Viay) = |2 f(at]ely)—plePw(e+[zly)" " ¥a(y) == gr(y)  in By

(26)
Also note that the gradient term satisfies |i/\||a(%)| < 2A(%) < 2supgcp 2A(R). Fix
N < t. Using elliptic regularity shows that

Sup (Vihy| < CHQAHU(B%) + CWHD(B%)-
1

Writing this estimate out gives

sup [V | < Cla" Il £l + Cleall sy < Clal I fllv + Cllflv < Cllfllys-

! <
Writing this out in terms of ¢, gives |z||[Vor(z)| < C| f|ly;. Now recall that Ae < |z] < 1
and hence ' A\'77|z2]7|Vox(z)] < O f|ly, and so

silily

—0

A7 sup |27 |[Vor(z)| <

)\s<|z|<i
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Region (i), |z| < Ae.

We now fix ¢ > 0 sufficiently small such that 1 — C supp,_|y||a(y)| > 0; this constant C is
from the Claim stated at the end of the proof of part 1 of this proposition. Now consider
the rescaling 1, (y) = ¢x(A\y) for |y| < 2e. We decompose ¥y on Bo. via 1)) = 15 + 13 where

AU (y) = aly) - VI ) = KT (y) = pAw(dy)’ "y in By
with ¢} = 0 on 9By, and where ¥3(y) satisfies
AYi(y) —aly) - VYi(y) =0 in Bo
with 13 = 1) on OBa..

Estimate on 1)5. Re-write the equation for ¢} as

AP (y) = aly) - Vir(y) + A fhy) — pA?w(Ay)" "'y =1 ga(y) in Ba.
with ¥} = 0 on dB,.. We now apply the above Claim to see we have

sup [y|”7|Vr(y)] < Cr sup |y ga(y)l.

ly|<2e ly|<2e

To estimate the right hand side of this consider

sup [y|" o) < sup |ylla(m)|y]7| VL)

ly|<2e ly|<2e

+ sup Ny|”f(\y)|
ly|<2e

+pA? sup [y|7a(y)]
ly|<2e

(sup \y!l&(y)l) o bl V()

Ba.

+AT7 sup 2] f(2)]

|| <2e

A7 fllye.

IN

So combining the above estimates give

(1 -G Suplylla(y)l) Sup W7 IVeA)l < CIAT7 sup [2|7 ] f(2)] + CCN || fllye, (27)

Bae y|<2e |z|<2e

and hence there is some Cy = Cy(¢) such that

sup Y7 IVer @) < CoA7 f v (28)
Yy|s<e

Estimate on ¢%. Using the fact that a(z) is a smooth vector field we can apply elliptic
regularity theory to see for ¢ > N there is some C; . such that

[ lbwasca < Cre [ W3

Bae
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The Sobolev imbedding theorem and the maximum principle, along with our uniform esti-
mate on ¢, gives

sup [V < Cos | 6§00y < Coy sup [42(0)] = Cor sup [63(0)] < Cicll
e Ba. y|=2¢ x|=2\e
(29)

Combining the 1 estimates.
Combining (28) and (29) gives

Vo) < Ol fllva (1+ A Jy[77)

for all 0 < |y| < e. Writing this out in terms of ¢, gives

A7 sup [2]7|Vén ()] < (€7 + M) Fllvi-
|z|<Xe
This is the desired estimate on region (ii). We can now combine with the estimate on region
(i) to see we have
pmd sup 2|7 [Vor(x)| < Ol fllv:-
1
1

O

We include one last linear result which we will use to prove Theorem 2 part 1; the case of
a(z) = 0. We mention we really do not need to prove this separately since this result can be
proven using another of our approaches, but it is much easier to prove it this way. This will
require that we define another class of function spaces. Define

I fllv.. := sup |f(x)]| + sup |2|*"?|f(x)|, and

|z|<1 2| >1
9]z = ls?g(lszﬁ(x)l +|Vé(z)|) + ‘Slllg(lwlalcb(wﬂ + [z TV (x)]),

and note that our notation for the function spaces Z, for 0 < A < A\g and Z; are consistent
with each other but that Z., is not consistent with the others.

Lemma 3. Let N > 4 and p > %—fé Then there is some C' > 0 such that for every f € Y

there is some ¢ € Zy, such that L(¢) = f in RN and ||d||z. < C| fllv.. -

Proof. The existence of a solution follows from Theorem A and then one applies elliptic
regularity to complete the proof. O]

3.2 Equation (2); the fixed point arguments

In this section we prove Theorem 2 which contains four different parts. To prove this result
we apply fixed point arguments in a variety of different spaces to obtain a solution ¢ of
(22). We now formally define the nonlinear mapping. Given ¢ in a suitable space we define
Jr(¢) =: ¥ where 1, satisfies

—La(y) = |w+ ol —w? —pulo
—a - Vw + N\ |Vw 4+ V|2, (30)
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where the domain where the equation is satisfied on is either all of RY or the punctured
space RV\{0}; which will depend on which function space we are working. To show the Jy
is well defined we require that the right hand side of (30) is in a suitable space and we can
then apply the appropriate linear theory; these computations are included below in the part
we label into. When showing J) is contraction mapping there will be, as usual, two portions.
One portion will be showing the mapping is into add the other part will be the contraction
part. Since we are considering a number of spaces we will collect all the calculations associ-
ated with the into portion into one section and the contraction portion into another. After
this we return and examine each space individually and perform the contraction mapping
on each space. Note that in the case of a(x) = 0 that Ly is just L. To avoid unnecessary
duplication we will continue to write this as L). Keep in mind that the spaces Y., and Z
will only be utilized in the case of a(x) = 0.

3.2.1 Some computations.

Here we collect various computations that we will need when performing the fixed point
arguments later.
Into. For k € {1,2,00} we have

ILA@)]lve < Nllw+ 6P — w? — puP~' Iy,
+Ha* - Vwlly, + CX ([[Vwlly, + [IVellly,) - (31)

We now examine these terms in the various spaces.

(i) |lJw+ ¢|P — w? — pwP¢|ly,. In the previous section we have shown that |||w + ¢[F —
w? — puP ' olly, < C([|9l%, + lI¢ll%,). The identical calculation shows that

llw + ¢ —w? —pu~ ']y, < C(l9lz, + ll%,),

for 0 < A < Ag and A = 1. One also sees that

llw+ ¢ —w? — pu~'¢llv,, < C(lI6lZ, + lol%.,)-

(i) |l@* - Vwl|ly,. Let 0 < § < 1. In the previous section we obtained the estimate
|a* - Vw + VA2wlly, < CANT8) + CV(A7L6) + C§°. If one carries out the same proof but
drops the V* term one sees that [|a* - Vwl|y, < CA(A 1) + C67+2 where C is independent
of 6 and 0 < A < \g. The identical calculation shows that ||a* - Vw|y, < CA\18) +C§ L.
As mentioned above we will only utilize Y., Zo in the case of a(z) = 0.

(i) |[Vw|ly, + IIVP|?y,. Here we show some details since this term was not examined
in the previous sections. We begin with w. Note

C

sup [of** V()] < sup o

|z|>1 jz|>1
which is finite provided ¢ > g—ﬁ We now consider |z| < 1. Note that since w is smooth we

have sup|, < |2|?|Vw(z)|? < C for all 0 < B < co. In particular we have ||| Vw!|?|y, < C for
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k € {1,2,00} provided the above condition on ¢ is satisfied. We now examine |||V¢|?||y,.
First note that for |z| > 1 we have |z|*™|V¢(z)| < ||¢]|x for X € { X5, Z1, Zx, Zoo}- So we

have sup, s, [2]*T[Vo(z)|? < ¢l for X € {Xy, Z1, Z), Zoo} provided ¢ > g—ﬁ We now

consider |z| < 1 and now the results will depend on which space we are in. First note that
for |x| <1 we have

|27 V()] < |9llxe,  [Vo(@)| < N10llze, ATzl Vo(2)] < 6|2,

where the last result holds for 0 < A < A\g and A = 1. Using these estimates gives
L. for &5 < ¢ < 27 one has |||Vg|’ly, < 2(9[I%,,

2. for &2 < ¢ < 1 +1 one has [||[Vo]|ly, < [¢]|%, (A=) 1) for 0 < A < Ao and
A=1.

3. for Z—ﬁ < q one has |||[Vo||ly., < 2[|¢]|7_.

Contraction. Let é, ¢ € Br where Bp is the closed ball of radius R centered at the origin
in either Xy, Zy, 71 or Z. We set ¥, := J\(¢) and 9 := Jy(¢). Then

Ly =) = |w+of — |w +A¢|p — " () — 9)
+ X (IVw + Vol — [Vw 4 Vo). (32)

Hence, for k € {1,2,00} we have

1ZA@x =)l < Mllw + 6 — [+ oF - pw? (& = )|y,
H A IVw + VoIT — [Vw + V| |ly,. (33)

We now estimate the various quantities from (33). We begin with the first term on the right,
llw + @F — [w + ¢P — pwP™ (¢ — ) |lv;.-

4. For ¢, ¢ € By C X the previous section shows [|w+ P —|w+ P —pwP(d— )|y, <
C(R+ R — ollx,-

5. For (5,(? € Br C Z) where 0 < A < Ag, or A = 1 we have, by a similar calculation,
llw + o — [w+ P — puwP~ (¢ — @)|lv; < C(R+ RP1)[¢ — ¢l|z,.

6. For ¢, ¢ € Br C Zo, we have |||w+ @l — |w+o[P —puw? (¢ — @) |lyv.. < C(R+RP1)|p—
Ol z...-

We now estimate the nonlinear gradient term; |||[Vw + V|? — |[Vw + V|?||y,. Firstly note
that by Lemma 6 we have

IV + V3|7 — |V + Vg|?| < C (le\q’l + [Vt + \V¢|‘H) Vé— V. (34)
From this we see that

sup [2|**2||Vw + V|7 — [Vw + V|| < CKq sup |2]°H Ve — Vg, (35)

la|>1 j2|>1
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where

Ko = sup fz| (|Vul?™ + [V + [Vg|")

| >1
< s (™ 19+ (Jaf™ [V + (a1 Vol
< C+ sup <(|x|a+1|vqg|)q—1 i (|$|a+1|v¢|)q—1>
z[>1

a+2

provided (a + 1)(g — 1) > 1, which is equivalent to ¢ > &

7. Let ¢, ¢ € Brin Zo.. Then using (34) one sees that SUD|4 <1 | Vw+Vo|1—|Vw+Ve|1| <
C(1+ R7Y)||¢ — ¢||z. and combining this with the above estimate for |z| > 1 we see

IIVw + Vol = |Vw + Vo'l < C(1+ R = ¢ll...

a+2

provided ¢ > &=5.

8. Let (;3,(/5 € Br in X5. Then we have

sup 2|72 |[Vw + V|7 — [Vw + V|| < CKy sup |27 Vo — V),

lal<1 jel<1

whmek@:z&mmgl<MHVwP”=%MHV$H4—kMHV¢H4>.N%eﬂmt@P*HVé@ﬂfg

R for |z| < 1 and hence supy,<; [z[|[Vé(x)|?"! < R~ provided 1 > (o + 1)(¢ — 1),
a+2

241+ So combining this with the

and then note this condition on ¢ is equivalent to ¢ <
above results for |z| > 1 we see that

[|Vw + Vo|? — [Vw + Vo||ly, < O(1+ RI)||d — ¢l|x,,
provided 3—ﬁ <g< 2

o+1°

9. Let (]3,<b € Br in Z) where 0 < A < A\g or A = 1. Then we have

N CK
sup 2|7 |[Vw + Vo|? — [Vw + Vo] < ——

= 5up [2["A7|V6 — Vo

|z]<1 A7 <t

where K := sup, < (\xHVwP_l + |z||Vo|r! + ]xHV¢\q_1>. Note that for |z| < 1
we have A'~7|z|7|V¢(z)| < R and hence |z||Vg(x)|?! < A\~(=2)@=D R provided
1> 0(q —1). Combining this with the estimates for outside the unit ball gives

A B 1 Ra1 R
[IVw + Vol — [Vw + Vollly, < C (1 R W_U)) 1# = ¢lz.

forall 0 < A < )gand A\ = 1.
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We now perform the fixed point arguments. For clarity we separate by the various spaces.
In all cases we let ¢, ¢ € Bgr and Jy(¢) = 1y, Jr(¢) = ¥, where Bp is in the appropriate
space.

Fixed point argument in Z,,. Completion of proof of Theorem 2 part 1. Recall in this
case we are taking a(z) = 0. Since Ly = L : Z,, — Y, has a continuous right inverse and
after considering (31), (i) and (iii) we have

]|z < C(R?+ RP) + CA\?(1 4+ RY), (36)

provided g > z—ﬁ By (33), 6 and 7 we see

[0 — ¥allze < C(R+ RPN+ N R 16— ¢ 2. (37)

Also note that 6 > 0 exactly when ¢ > g—ﬁ So for Jy to be a contraction on Bg in Z it is

sufficient that C(R? + RP) + CA’(1+ R%) < Rand C' (R+ RP~1 + A’ + MR71) < 1. One
easily sees that they can satisfy the two conditions by first fixing R > 0 sufficiently small and
then taking A > 0 sufficiently small. One then can apply Banach’s fixed point argument to
see there is some ¢ € By such that Jy(¢) = ¢ and hence ¢ satisfies (22). We then have that
v = w+ ¢ satisfies (21) in R and by taking R > 0 small enough we have that v = w+¢ > 0
in RY. We then see that v is a positive classical solution of (20).

Fixed point argument in X,. Completion of proof of Theorem 2 part 2. Suppose 3—ﬁ <
g < 2 and hence we can take ¢ > 0 sufficiently small such that g—ﬁ < q < g—ﬁ Since

L, : Xs — Y5 has a continuous right inverse for small A whose norm is independent of
0 < A < Ap and after considering (31), (i), (ii) and (iii) we have

thallx, < C(R*+ RP) + CAANL) + C67*2 + CN(1 + RY),
and by (33), 4 and 8 we have
l0x = dallx, < CR+ R+ X+ X RI|[6 = 6 x,.

So for Jy to be a contraction on Bg in X, it is sufficient that C'(R? + RF) + CA(A™1§) +
Co°? + CN(14+ R%) < Rand C(R+ RP' + A% + APR971) < 1. As in the previous case we
can satisfy both conditions provided we fix R > 0 sufficiently small and then fix 0 < 6 < 1
sufficiently small and then lastly take A\ > 0 sufficiently small. We can then apply Banach’s
fixed point argument to see there is some ¢ € Bg such that Jy(¢) = ¢ and hence ¢ satisfies
(22). We then have that v = w + ¢ satisfies (21) in R¥\{0} and by taking R > 0 small
enough we have that v = w + ¢ > 0 for |x| > 1, for instance. By taking o > 0 small enough
(21) is satisfied in a suitable weak sense in RY. Also note that since o > 0 is small the term
|v|P will not cause any regularity issues. The only potential problematic term is the nonlinear
gradient term |[Vv|9. Note that we can re-write (21) as —Av + a* - Vo = |[v|? +y\(x) - Vv
where b(z) := |Vv|?"2Vo. Then note by taking ¢ > 0 small enough we have b € L% (RY)

loc

for some Q > N. We can then apply elliptic regularity to see that v € C}%, for some small

loc»

e > 0, and we then apply elliptic regularity again, after noting the right hand side of (21)
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is Holder continuous, to see that v € Cfo’io for some small g > 0. We then re-write (21) as
—Av + (a*(z) — yA%(z)) - Vv = |[v|P and we can then apply the maximum principle to see
that v > 0 in RY.

Fixed point argument in Z;. Completion of proof of Theorem 2 part 4. Recall we are
assuming sufficient conditions on a(z) such that there is some continuous right inverse of
Ly : Z; — Y; whose norm is independent of 0 < A < A¢. Using (31), (i), (ii) and (iii) we
have

1]z, < C(R* 4+ RP) + CANTLS) + Co° T + CA(1 + RY)

provided we have g—ig <g¢<21+1. By (33),5and9 we sece

s —allzy < C((R+ R + M (1+ RTY) (¢ — ¢l 2,

Note carefully that the only A’s which are present are from the scaling factor in front of the
nonlinear gradient term; \?, they are not coming from a Z, norm. So for Jy to be a contrac-
tion on By in Z; it is sufficient that C(R? + RP) + CA(A716) + C6°*' + CN(1 + R?) < R
and C' (R+ RP') + A°(1+ R7')) < 4. Note these conditions are precisely the condi-
tions which we needed to apply the fixed point argument in X5. Note the restriction on
q is weaker and by taking o > 0 small enough we can obtain a fixed point for J, for any
q > g—ﬁ One can now carry on as in the previous case to show the solution is sufficiently
regular and positive. One comment we make is that once one has a suitable weak solution
of —Av + a* - Vv = |[v]P + y\?|Vo|? in RY then immediately we obtain a C1¢ solution, for
some small € > 0, after picking o > 0 small enough. To see this note that |Vo|? < Clz|~79
in By and hence |Vv|? € LgC(RN ) for some Q > N after taking o > 0 sufficiently small.
Fixed point argument in Z,. Completion of proof of Theorem 2 part 3. There is no need
to consider ¢ < 2 since we can already obtain a positive solution in this case without the
divergence free assumption on a(x). Recall that for 0 < ¢ < 1 that L) : Zy — Y has a
continuous right inverse whose norm is bounded above by a constant independent of 0 < A
for small \. We now assume that g—ﬁ < q and by taking ¢ > 0 smaller we can assume that
q < %+ 1. Considering this and using (31), (i), (i) and (iii) gives

[9allz, < C(R*+ RP) + CAN10) + Co7™ + CAN(1 4+ RI(A1797 4 1)),
By (33), 5 and 9 we see

[y — ¥z,

. C(R+ R1)
16 = ¢llz,

1 Rt
0 qg—1
+COA (1 + R e+ Aq(l_g)) .

So for Jy to be a contraction on By in 7, it is sufficient that

C(R? 4+ RP) + CAN'6) + C6° ™ + CN + CA\710-)R? 1 CN°R? < R, (38)
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and

1 g-1 1
C(R+ R +CN (1 + R 4 ;B ) < (39)

M=o T xal-o) | = o
As in the previous cases we will satisfy these two conditions by first fixing R > 0 small and
then fixing 0 < § < 1 small and finally taking A\ > 0 sufficiently small. Examining (38) and
(39) we see this is possible provided:
(a) 0 >0, (b)f—¢q(1—0)>0,and (c)0—(1—0)>0.
Note that since ¢ > 2 and ¢ > 0 small (b) implies (a) and (c). Writing out (b) gives ¢ > %
So for this range of ¢ and by taking R > 0 small we can argue as the proof where we used
the fixed point on Z; to see there is a positive C*¢ solution (for some small € > 0) v of (21).
Recall in that proof one needed to take o > 0 sufficiently small to apply some regularity

theory. So there is a positive solution of (21) provided ¢ > QT“ =p.

Proof of Theorem 3. If one argues exactly as in the proof of Theorem 2 we see that J), is
a contraction on By in Z) provided the various parameters satisfy (38) and (39). As in the
previous cases the procedure will be to take fix R > 0 small and then to fix 0 < § < 1 small
and then take A > 0 small. It is clear this procedure will work provided:

() 6>0, (i)0—q(1—0)>0, (ii)0—(1—0)>0.

We now pick the parameters. Recall we are assuming that ¢ satisfies ¢ > 2 and (5); which is

the condition aq + q%l > o+ 2. We now pick € > 0 small such that ag + qqu >a+2+eq
and we define o := q_% — e. By picking £ > 0 smaller yet again, we have 0 < o < 1 after
one considers g > 2. We now show (i)-(iii) are satisfied. Firstly recall that 6 > 0 is just the
condition that ¢ > 22 which we are assuming. Since ¢ > 1 we see that (iii) follows from (ii).
A computation shows that (ii) is equivalent to cg + qqu > a+2+¢eq. So for these choices of
parameters there exists a fixed point, ¢ € Bg, of J,. By taking R > 0 small enough we have
that v = w + ¢ is positive solution of (20), at least on the punctured domain RV\{0}. Note
that v has enough regularity near the origin for it to satisfy (20) in the sense of distributions.
We now investigate the regularity of v. For this one needs to perform an iteration argument

and for this we consider the following simplified model problem: suppose 0 < v, satisfies
—Avy = |Vl? + g(z) in Q, vo = 0 on 02, (40)

where vy satisfies (40) in the sense of distributions and is suitably smooth away from the
origin which we assume is contained in €. Note that if |Vug|? € LT () for some T' > N then
elliptic regularity shows that vy € W2T(Q2) and we can then apply the Sobolev imbedding
to see that |Vup|? is bounded, and one can then easily see that v € C?9(Q) for some small
0 > 0. We now perform an iteration to show the following:

if [Vol? € L™(Q) for some Ty > & > 1 (¢ is the conjugate index of ¢) then [Vl € LT(Q)
for some 7' > N.

Suppose |Vov|? € LT (Q) for some T}, > g. Then by elliptic regularity we have vy € W21 ()
and hence |Vvg| € WHTn(Q). If T,, > N then by the Sobolev imbedding theorem we have
|Vvg| bounded and we are done. We now suppose T,, < N. If T,, = N then elliptic regularity
shows that v € W2 (Q) and hence |[Vv| € WEN(Q) € LT(Q) for all T' < oo and we are done.

Now suppose T,, < N. Then we have |Vuy| € Lt (€2) and hence we have |[Vug|? € LT+1(Q)
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where
NT,

(N - Tn)q'

Now note that 7,,.1 > T,, provided T,, > %. So if 1oy > % > 1 then we have T, < T}, for
0 < n, provided we can continue the iteration. It is also clear that after a finite number of
iterations there is some T}, < N such that T,,,; > N. If T},,; > N then we are done and the
case of equality is covered above.

We now return to the case of (20). First notice that for € > 0 small we have

Tn+1 =

N N
o q

P B
q—1

Fix T} to be strictly between these quantities. Then note that since |Vu(z)|? < e q — for

lz| <1, and so |Vv|? € L (RY). We can then apply the above result for the model problem

loc

(the proof of the model problem easily extends to the case of (20), to see that |Vv| is locally
bounded. We can then easily obtain that v is a C%% solution for some small §.

a

Remark 2. We now give a rough outline how one can obtain a positive solution of (2) in
the case where a(x) has added decay. We arque exactly as in the proof of Theorem 3. To
show Jy has a fixed point in Bgr in Z, we require that

C(R? 4+ RP) + CAN'6) + 06"+ CN + CA\ 710 R1 1 CN°R? < R, (41)

and
CReR Yo (1oret e Lo BT ] 42
(R+ )+ + + N + N ) S o (42)

are satisfied. The difference in the current argument is we now choose the parameters R and
§ in a different manner. We choose R = R(\) = X' and § = §(\) = eATFT where £ > 0 is
chosen small and where t > 0 is picked later. Then note that with these choices of R and
we satisfy (41) and (42) provided € > 0 is sufficiently small and:

1) AAT0R) J(A) — 0 as A \(0,

2)9>t 3)0—ql—o)+qt>t, 4)0+qt>t, 5)0+t(g—1) >0,

6)0 —1+0>0, 7)0+t(¢g—1)—q(l—0)>0.

To satisfy 1) we will require that A\™'6(\) — oo as A N\, 0; which requires that t < o + 1.
Once this is satisfied that we can satisfy 1) by imposing enough decay conditions on a(x); we
omit the numerology.

4 Appendix

The following lemma follows from elliptic regularity and Sobolev imbedding. See, for in-
stance, Lemma 2.2 [20].

Lemma 4. Suppose A, CC Ay are bounded concentric annuli or balls in RY.
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1. Suppose 1 <t < oo and ¢ is a distribution defined on As such that the right hand side
of (43) is finite. Then ¢ € W?*(A;) and one has the estimate

16lhwecan sc( / |A¢<x>|tdx)t w0 [ lowlas (13)

In addition we have C' depending only on t, Ay, Ay

2. For N <t < oo one has

sup Vol < ([ 1asttar) 40 [ Jowlas (44)
Aq Ao Ao
where C' depends on t, Ay, As.

We now recall the particular maximum principle but this requires we recall the best constant
Sy associated with the critical Sobolev imbedding H} C L?" which is independent of the
domain; Sy||@]|7, < [|[Vl[7. for all ¢ € H.

Lemma 5. Mazimum Principle. [15] Suppose w € H}(Q) is a weak solution of —Aw(x)—
C(z)w = f(x) > 0 in Q where HCJFHL%(Q) < Sn. Then w >0 in Q.

For our purposes we need a slight adjustment of this result.
Corollary 1. Suppose w € H} satisfies —Aw + a(z) - Vw + C(z)w = f > 0 in Q and

I(div(a) = 20), ],y o < 25

()
Then w > 0 in €.

Proof. We follow the proof of [15]. Multiply the equation by w_ and integrate by parts to
arrive at

SN/wQ*dx§/|Vw_|2dx§/ <M—C> dexS/ <dw—@—0) w? dz,
Q Q Q 2 Q 2 I

where we used the critical Sobolev imbedding on the left. Now apply Hélder’s inequality on
the right and combine terms.
O

Lemma 6. Suppose p > 1. There exists a constant C' > 0 such that the following hold:

1. For all numbers w > 0, ¢ € R, and 923,

w+ o — pu'~l o — w?

< C(wr2¢? + |oP),
and

[+ 37— w+ 8" = pur~ (& — 6)| < € (w2(16] + I6]) + ol + 16 ~") |6 - ol
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2. Forall x,y,z € R",

[z +yl’ = |o + 2]

< C(Jalt + [yt + 2 )y - .

We now come to a slight generalization of some well known results regarding extending
distributional solutions from a punctured domain to the full space.

Lemma 7. Suppose 3< N,0<o< N -2, fe L, (RY),C € L2(RY), a € C°(RN,RY)
and ¢ € L, (RV\{0}) satisfies Ap + a(x)Ve + C(x)p = f in RN\{0} in the sense of
distributions. Suppose ezists some Cy > 0 such that |¢p(x)||x|” < Cy for all 0 < |z| < 1.
Then A¢ + a(z) - Vo + C(x)p = f(z) in RY in the sense of distributions.
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