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Abstract

In this article we are interested in positive classical solutions of

−∆u+ a(x) · ∇u+ V (x)u = up + γuq in RN ,

and
−∆u+ a(x) · ∇u = up + γ|∇u|q in RN ,

in the case of N ≥ 4, p > N+1
N−3 and γ ∈ R. We assume that V is a smooth non-

negative potential and a(x) is a smooth vector field, both of which satisfy natural
decay assumptions. Under suitable assumptions on q we prove the existence of positive
classical solutions.

2010 Mathematics Subject Classification.
Key words.

1 Introduction and statement of main results

In this article we are interested in positive classical solutions of the following variants of the
Lane-Emden and viscous Hamilton-Jacobi equations given by

−∆u+ a(x) · ∇u+ V (x)u = up + γuq in RN , (1)

and
−∆u+ a(x) · ∇u = up + γ|∇u|q in RN , (2)

1



where p, q > 1, γ ∈ R and

(A1) : a(x) is a smooth vector field satisfing lim
R→∞

A(R) = 0 where A(R) := sup
|x|≥R

|x||a(x)|,

(A2) : V (x) ≥ 0 is a smooth potential satisfing lim
R→∞

Ṽ (R) = 0 where Ṽ (R) := sup
|x|≥R

|x|2V (x).

Throughout this work we take α := 2
p−1

. We begin by recalling the bounded domain version

of (1) in the case of a(x) = 0, V (x) = 0 and γ = 0 given by{
−∆u = up in Ω,

u = 0 on ∂Ω,
(3)

where Ω is a bounded domain in RN with N ≥ 3. Define the critical exponent ps = N+2
N−2

and

note that it is related to the critical Sobolev imbedding exponent 2∗ := 2N
N−2

= ps + 1. For
1 < p < ps H

1
0 (Ω) is compactly imbedded in Lp+1(Ω) and hence standard methods show the

existence of a positive minimizer of

min
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|p+1dx

) 2
p+1

.

This positive minimizer is a positive solution of (3) see for instance the book [19]. For p ≥ ps
H1

0 (Ω) is no longer compactly imbedded in Lp+1(Ω) and so to find positive solutions of (3)
one needs to take other approach. For p ≥ ps the well known Pohozaev identity [18] shows
there are no positive solutions of (3) provided Ω is star shaped. For general domains in the
critical/supercritical case, p ≥ ps, the existence versus nonexistence of positive solutions of
(3) is a very delicate question; see [5, 7, 17].

We now recall (1) in the case of a(x) = 0, V (x) = 0 and γ = 0. There has been much work
done on the existence and nonexistence of positive classical solutions of

−∆w = wp in RN . (4)

As in the bounded domain case the critical exponent ps plays a crucial role. For 1 < p < ps
there are no positive classical solutions of (4) and for p ≥ ps there exist positive classical
solutions, see [3, 4, 13, 12]. The moving plane method shows that all positive classical
solutions, satisfying certain assumptions, are radial about a point. In [6] the existence versus
nonexistence of stable positive solutions of −∆u + a(x) · ∇u = up in RN was considered.
Results were obtained that depended on smallness assumptions on a and removing this
smallness assumption was the motivation for the current work. The interested reader should
consult [21, 14] for this question in the case of a = 0.

In the current work our approach to finding positive classical solutions of (1) and (2) are
motivated by the approach from Dávila-del Pino-Musso-Wei [10]. In [10] they examined
equations of the form −∆u(x) +V (x)u(x) = u(x)p in RN and they treated the equation as a
perturbation of the pure power problem (4). To solve the perturbed problem they first needed
a detailed study of the linearized operator associated with (4) given by L(φ) := ∆φ+pwp−1φ,
where w is the positive radial solution of (4) with w(0) = 1 (see below for the asymptotics
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of w). This analysis had already been carried out on the weighted spaces X0 and Y2 in
Dávila-del Pino-Musso [8] where they obtained positive solutions of (4) on exterior domains.
We now state their exact linear theory which requires us to define some Banach spaces on
the punctured domain RN\{0}: for σ > 0 define X0 := {φ ∈ C(RN\{0}) : ‖φ‖X0 < ∞}
where

‖φ‖X0 := sup
0<|x|≤1

|x|σ|φ(x)|+ sup
|x|≥1

|x|α|φ(x)|;

Y2 := {f ∈ C(RN\{0}) : ‖f‖Y2 <∞} where

‖f‖Y2 := sup
0<|x|≤1

|x|σ+2|f(x)|+ sup
|x|≥1

|x|α+2|f(x)|.

Theorem A. [8, 10] Suppose N ≥ 4 and p > N+1
N−3

. Then for all 0 < σ < N − 2 there is
some C > 0 such that for every f ∈ Y2 there exists some φ ∈ X0 such that L(φ) = f in
RN\{0} and ‖φ‖X0 ≤ C‖f‖Y2.

Asymptotics of w. The asymptotics of w are

w(r) = β
1
p−1 r

−2
p−1 (1 + o(1)) as r →∞,

where

β = β(p,N) =
2

p− 1

(
N − 2− 2

p− 1

)
> 0,

see [14] for this and for more detailed asymptotics.

As mentioned earlier (1) was examined in [6] in the case of γ = 0 and V (x) = 0 under a
smallness assumption on a(x). This work involved an existence portion where the above
linear theory needed to be extended to a slightly different Banach space: X1 := {φ ∈
C1(RN\{0}) : ‖φ‖X1 <∞} where

‖φ‖X1 := sup
0<|x|≤1

(
|x|σ|φ(x)|+ |x|σ+1|∇φ(x)|

)
+ sup
|x|≥1

(
|x|α|φ(x)|+ |x|α+1|∇φ(x)|

)
.

Corollary A. [6] Suppose N ≥ 4 and p > N+1
N−3

. For 0 < σ < N − 2 there is some C > 0

such that for every f ∈ Y2 there exists some φ ∈ X1 such that L(φ) = f in RN\{0} and
‖φ‖X1 ≤ C‖f‖Y2.

1.1 Statement of main results

We now state our results. Our first theorem is with regards to (1).

Theorem 1. Suppose N ≥ 4, q > p > N+1
N−3

and (A1), (A2) are satisfied.

1. Suppose γ ≥ 0. Then there is a smooth positive solution u of (1).
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2. Suppose γ < 0 and
‖(div(a)− 2V )+‖

L
N
2 (RN )

< 2SN ,

where (div(a)−2V )+ is the positive part of div(a)−2V and SN is the optimal constant
in the critical Sobolev imbedding, see Lemma 5. Then there is a smooth positive solution
u of (1).

Note that ‖(div(a)− 2V )+‖
L
N
2 (RN )

< 2SN is trivially satisfied if a(x) is divergence free. We

now consider (2) for which we obtain various results; each result corresponds to a fixed point
argument on a different space. We feel the most natural approach to take when considering
(2) is given by the approach we take in part 4 of Theorem 2. This approach relies on a linear
Liouville theorem that we suspect should hold but we have not managed to prove it so we
add the needed condition to the hypothesis.

Theorem 2. Suppose γ ∈ R, N ≥ 4, p > N+1
N−3

and q > 2p
p+1

.

1. Suppose a(x) = 0. Then there exists a positive classical solution of (2).

2. Suppose a(x) satisfies (A1) and q < 2. Then there is a positive classical solution of
(2).

3. Suppose a(x) is divergence free and satisfies (A1) and suppose q ≥ p. Then there is a
positive classical solution of (2).

4. Suppose a(x) is divergence free and satisfies (A1) and suppose for all 0 < σ < 1 the only
smooth solutions ψ of ∆ψ(x)−a(x) ·∇ψ(x) = 0 in RN , which satisfies |∇ψ(x)| ≤ C

|x|σ ,

are the constant solutions (see Remark 1 part (c) for comments on this assumption).
Then there is a positive classical solution of (2).

We now state our final result regarding (2). In the first two theorems we work on various
function spaces and in all cases we take the parameter σ > 0 small (which relates to allowable
blow up at the origin) when we apply Banach’s fixed point theorem. In our final result we
don’t take σ > 0 small. Doing this allows us to gain a range of allowable q when solving (2).
Here we only consider the case of q > 2 since the case of q < 2 is handled in the previous
theorem. We will obtain positive solutions of (2) under the assumption that

2

p− 1
(q − 1)2 − (q − 1) + 1 > 0. (5)

We now examine this condition in some detail. For p < 9, (5) is satisfied for all q. For p > 9,
(5) has two zeros: q− < q+, which are explicitly given by

q± := 1 +
p− 1

4

(
1±

√
1− 8

p− 1

)
.

We can now state our final result.

Theorem 3. Suppose q > 2, γ ∈ R, N ≥ 4, p > N+1
N−3

and a is divergence free and satisfies
(A1).
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1. Suppose p < 9. Then there is a positive classical solution of (2).

2. Suppose p > 9 and 2 < q < q− or q > q+. Then there is a positive classical solution of
(2).

Remark 1. (a) For presentation purposes we decided to not include the term V (x)u in (2).
But the same methods can easily be applied to extend Theorem 2 and Theorem 3 to this
case.

(b) We mention that if one assumes that a(x) decays more quickly than given by (A1) then
one can obtain existence results for (2) for a larger range of q; see Remark 2.

(c) Here we consider the assumption on a(x) in Theorem 2 part 4. We suspect the linear
Liouville theorem assumed in Theorem 2 part 4 should hold assuming only (A1), but we
are unable to prove this. Here we show that with enough decay assumptions on a(x)
one does have the required Liouville theorem. Without loss of generality we can assume
β = 1 and suppose ψ is a smooth solution of ∆ψ(x)− a(x) · ∇ψ(x) = 0 in RN .

Claim. We first claim that a bounded solution ψ must be constant and for this we would
like to thank Connor Mooney for pointing this out to us. Set φ(x) := ψ(x) − infRN ψ
and note that φ is a nonnegative bounded solution of the same equation. By the strong
maximum principle we can assume that φ does not attain its supremum or infimum on
RN . So we have inf∂BR φ = infBR φ→ 0 as R →∞. For λ > 0 set φλ(x) := φ(λx) and
so 0 = ∆φλ(x) − (λa(λx)) · ∇φλ(x) in Ω0 := {x ∈ RN : 1

4
< |x| < 4}. Note that exists

some C > 0 (independent of λ) such that λ|a(λx)| ≤ C in Ω0. By Harnack’s inequality
there is some C such that

sup
Ω00

φλ ≤ C inf
Ω00

φλ,

where Ω00 := {x ∈ RN : 1
2
< |x| < 2}. By the maximum principle (and using the above

inequality) gives
sup
|x|<2

φ(λx) = sup
Ω00

φ(λx) ≤ C inf
|x|=2

φ(λx)→ 0,

as λ → ∞. From this we see supBR φ → 0 as R → ∞ and hence we must have φ = 0
implying ψ is constant. This completes the proof of the claim.

We now show under sufficient decay assumptions on a(x) that ψ is bounded and then
from the above we see ψ is constant. Recall that −∆ψ(x) = −a(x) · ∇ψ(x) =: g(x)
(which is smooth) in RN and recalling we have decay on ∇ψ(x) and assuming decay
assumptions on a(x) we see that g(x) can be made to decay as quickly as we like. Define

ψ̃(x) :=

∫
RN

CN
|y|N−2

g(x− y)dy

and note that ψ̃ is bounded (provided g decays quick enough). So we have ψ − ψ̃ is
harmonic in RN and note that it grows at most sublinearly at |x| = ∞. From this we
can conclude that ψ−ψ̃ = constant and hence ψ = ψ̃−constant and hence ψ is bounded.
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(d) Here we mention that the linear theory developed in [8, 10] (which closely corresponds
to our linear theory on X2) is enough to handle (1) and (2) in the case of q < 2. To
consider (2) in the case of q > 2 one needs to consider a different class of function spaces
and this naturally brings up some interesting Liouville theorems. We believe these new
function spaces and associated linear theory is our main contribution in this work.

We mention that in the works [8, 10, 9] the case of N+2
N−2

< p ≤ N+1
N−3

was also examined but
one needs extra arguments and for this reason we choose to omit this case. We also mention
that many of these ideas extend to exterior domains and this is examined [1]. In that work
we were unable to handle (2) in the case of q ≥ 2.

1.2 Outline of the approach

For the outline of our approach we consider an equation which includes both (1) and (2) as
special cases. Consider the equation

−∆u+ a(x) · ∇u+ V (x)u = up + γ1u
q1 + γ2|∇u|q2 , in RN . (6)

To find a positive classical solution of (6) it is sufficient, via the scaling v(x) = λ
−2
p−1u(λ−1x) =

λ−αu(λ−1x), to find a positive solution of

−∆v + aλ(x) · ∇v + V λ(x)v = vp + γ1λ
θ1vq1 + γ2λ

θ2|∇v|q2 , in RN , (7)

for some λ > 0 where θ1 := 2(q1−p)
p−1

and θ2 := (p+1)q2−2p
p−1

and where aλ(x) := λ−1a(λ−1x) and

V λ(x) := λ−2V (λ−1x). Instead of solving (7) directly we replace the vp with |v|p and we will
show v > 0 after. We look for solutions of the form v = w + φ; hence φ will need to satisfy

−Lλ(φ) = |w + φ|p − wp − pwp−1φ

+γ1λ
θ1|w + φ|q1 + γ2λ

θ2|∇w +∇φ|q2

−aλ · ∇w − V λw, (8)

where
Lλ(φ) = L(φ)− Tλ(φ) = L(φ)− aλ(x) · ∇φ− V λ(x)φ.

We will look for solutions of (8) in the case of small λ > 0 and we will treat the terms λθ1|w+
φ|q1 and λθ2|∇w+∇φ|q2 as perturbation terms. This will require that θ1 and θ2 are both pos-
itive. To solve (8) the approach will be to apply a fixed point argument and hence the invert-
ibility of Lλ, on a suitable space, will be crucial. By Theorem A [8] L : X0 → Y2 has a contin-
uous right inverse. Our idea is to view Lλ as a perturbation of L in the Fredholm sense; Lλ =
L−Tλ where Tλ is a compact operator. Of course Tλ : X0 → Y2 is not a compact operator and
so this forces us to adjust the spaces involved. We now define a suitable Banach space. Define
X2 :=

{
φ ∈ C1(RN\{0}) ∩H2

loc(RN\{0}) : ∆φ ∈ C(RN\{0}), and ‖φ‖X2 <∞
}
, where

‖φ‖X2 := sup
0<|x|≤1

(
|x|σ|φ(x)|+ |x|σ+1|∇φ(x)|+ |x|σ+2|∆φ(x)|

)
+ sup
|x|≥1

(
|x|α|φ(x)|+ |x|α+1|∇φ(x)|+ |x|α+2|∆φ(x)|

)
.
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We then show that Tλ : X2 → Y2 is a compact operator and hence Lλ and L have the
same Fredholm index. Using this we are able to show the existence of a continuous right
inverse of Lλ : X2 → Y2 for sufficiently small λ (whose norm is bounded in λ). This re-
sult will essentially rely on a Liouville theorem of the form: the only smooth solution of
−∆ψ+ a · ∇ψ+ V ψ = 0 in RN with |ψ(x)| ≤ |x|−σ is ψ = 0. This result will follow directly
from the maximum principle. We now return to the specific cases (1) and (2).

In Section 2 we consider (1) using the approach which is outlined above which results in
Theorem 1. We comment that the needed linear theory is the right inverse of Lλ : X2 → Y2

whose operator norm is bounded independently of small λ.

In Section 3 we consider (2). Using a fixed point argument on X2, as outlined above, we
are able to obtain a positive solution for 2p

p+1
< q < 2; which is part 2 of Theorem 2. The

condition 2p
p+1

< q is completely natural since this condition is equivalent to θ2 > 0 in (6).

The restriction q < 2 is not expected and is not related to the the equation (2) but rather
is a result from our choice of space to perform a fixed point argument. To allow for larger
values of q we need to apply a fixed point argument on a space whose functions are less
singular near the origin. Picking a space whose norm includes a term like supB1

|∇φ| is a
good choice for obtaining positive solutions of (2) for any q > 2p

p+1
, provided a(x) = 0. This

accounts for Theorem 2 part 1 and the function space we use here is denoted by Z∞, see
Lemma 3.

Another choice we consider is a space which allows slightly more blow up at the origin; Z1

where Zλ := {φ ∈ C(RN) ∩ C1(RN\{0}) : ‖φ‖Zλ <∞} where

‖φ‖Zλ := sup
|x|≤1

(
|φ(x)|+ λ1−σ|x|σ|∇φ(x)|

)
+ sup
|x|≥1

(
|x|α|φ(x)|+ |x|α+1|∇φ(x)|

)
.

To apply a fixed point argument on Z1 we need to show that Lλ : Z1 → Y1 has a continuous
right inverse, which is bounded independent of λ, for small λ > 0, where Y1 := {f ∈
C(RN\{0}) : ‖f‖Y1 <∞} and

‖f‖Y1 := sup
0<|x|≤1

|x|σ+1|f(x)|+ sup
|x|≥1

|x|α+2|f(x)|.

We are able to prove this result up to a needed linear Liouville theorem which we assume;
this accounts for Theorem 2 part 4.

Without assuming the needed linear Liouville theorem we can weaken slightly the space Z1

to obtain the needed result. We prove Lλ : Zλ → Y1 has a continuous right inverse whose
norm is bounded independently of λ, for small λ > 0. Note that the space Zλ gives slightly
weaker estimates on the gradient after considering the fact that λ is small. This will be
sufficient to apply a fixed point argument in Zλ and enables us to find positive solutions of
(2) provided q ≥ p. This is given in Theorem 2 part 3.

We now come to Theorem 3. Here the approach is the same is in the proof of Theorem 2
part 3; a fixed point argument in Zλ. The only difference now is we won’t take σ > 0 small.
This allows us to gain a larger range of q. With this larger range of σ one needs to be a bit
careful when applying various elliptic regularity results.
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2 Equation (1); −∆u + a · ∇u + V u = up + γuq

In this section we obtain positive solutions of (1). The main issue will be to obtain a
continuous right inverse for Lλ : X2 → Y2 whose norm is bounded above by some constant
independent for all sufficiently small λ. The first subsection develops this theory and then
we move on to the fixed point argument.

2.1 The linear theory of Lλ(φ) := ∆φ+pwp−1φ−aλ·∇φ−V λφ : X2 → Y2

Before examining Lλ on the desired spaces we need to examine the operator L(φ) = ∆φ +
pwp−1φ.

Lemma 1. Suppose N ≥ 4 and p > N+1
N−3

. For 0 < σ < N − 2 there exists some C > 0 such

that for every f ∈ Y2 there exists some φ ∈ X2 such that L(φ) = f in RN\{0}. In addition
‖φ‖X2 ≤ C‖f‖Y2 .

Proof. Let f ∈ Y2. By Corollary A there is some φ ∈ X1 and C > 0 (independent of f and
φ) such that ‖φ‖X1 ≤ C‖f‖Y2 . Using the equation L(φ) = f in RN\{0} directly along with
the above X0 bounds on φ and the asymptotic behaviour of w at r =∞ gives

sup
0<|x|≤1

|x|σ+2|∆φ(x)|+ sup
|x|≥1

|x|α+2|∆φ(x)| ≤ C2‖f‖Y2 .

Combining this with the X1 bounds on φ, from Corollary A, gives the desired result.

It follows from Lemma 1 and the fact that L : X2 → Y2 is continuous that L has a continuous
right inverse F : Y2 → X2. Consequently, X̃2 := F (Y2) is a closed subspace of X2, hence
a Banach space with the norm of X2. In fact we can decompose X2 as X2 = ker(L) ⊕ X̃2

where ker(L) is the finite dimensional kernel of L. In particular notice that L : X̃2 → Y2

is a operator with Fredholm index zero. We now wish to examine the linear operator Lλ =
L− Tλ : X̃2 → Y2. The first step will be showing the mapping Tλ is compact.

Lemma 2. For each fixed 0 < λ <∞ the operator Tλ : X2 → Y2 is compact.

Proof. Set T i : X2 → Y2 by T 1(φ) := a(x) · ∇φ(x) and T 2(φ) := V (x)φ(x) and note that if
T i is compact for i = 1, 2, then so is Tλ for all λ > 0.

Consider a sequence φm ∈ X2 with ‖φm‖X2 ≤ C. Then note that we have |∆φm(x)|, |∇φm(x)|, φm(x)
bounded provided we stay away from the origin. So we see that for any q <∞ we have φm
bounded in W 2,q(δ ≤ |x| ≤ δ−1) for any δ > 0. So by a diagonal argument we see that there

is a subsequence {φm}m (which we don’t rename) which is convergent in C1, 1
2 (δ ≤ |x| ≤ δ−1)

for all δ > 0. We now show that T 1(φm) is Cauchy in Y2.
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Let ε > 0 be small and fix R > 1 big enough such that sup|z|≥R |z||a(z)| ≤ ε. Then we have

sup
|x|≥1

|x|2+α|T 1(φm)− T 1(φk)| ≤ sup
1≤|x|≤R

|x|2+α|a(x) · ∇(φm(x)− φk(x))|

+ sup
R≤|x|

|x|2+α|a(x) · ∇(φm(x)− φk(x))|

≤ R2+α sup
1≤|x|≤R

|a(x)| sup
1≤|x|≤R

|∇(φm(x)− φk(x))|

+ sup
R≤|x|

|x||a(x)||x|1+α|∇(φm(x)− φk(x))|

≤ R2+α sup
1≤|x|≤R

|a(x)| sup
1≤|x|≤R

|∇(φm(x)− φk(x))|

+ε2C.

From this we see that

lim sup
k,m→∞

(
sup
|x|≥1

|x|2+α|T 1(φm)− T 1(φk)|

)
≤ 2εC

but ε > 0 was arbitrary and hence the limit is zero. We now consider the other portion of
the Y2 norm.

Fix ε > 0 small and let 0 < δ < 1 be small such that sup|x|≤δ |x||a(x)| ≤ ε. Now note that

sup
|x|≤1

|x|2+σ|T 1(φm)− T 1(φk)| ≤ sup
|x|≤δ
|x||a(x)|

(
|x|1+σ|∇φm(x)−∇φk(x)|

)
+ sup

δ≤|x|≤1

|x|2+σ|a(x)||∇φm(x)−∇φk(x)|

≤ ε2C + sup
δ≤|x|≤1

|x|2+σ|a(x)| sup
δ≤|x|≤1

|∇φm(x)−∇φk(x)|

and again using the convergence of the gradients away from the origin we see that

lim
k,m→∞

(
sup
|x|≤1

|x|2+σ|T 1(φm)− T 1(φk)|

)
≤ 2εC.

So combining with the previous result we have lim supk,m→∞ ‖T 1(φm) − T 1(φk)‖Y2 = 0 and
hence {T 1(φm)}m is Cauchy in Y2. An identical argument shows that T 2 is a compact
operator.

We now state our main linear result for this section.

Proposition 1. (Lλ : X2 → Y2) Let N ≥ 4, p > N+1
N−3

and suppose (A1) and (A2) hold.
Then for 0 < σ < N −2 there is some λ0 > 0 small such that for all 0 < λ < λ0 the operator
Lλ : X̃2 → Y2 is continuous, one to one and onto with continuous inverse. In addition the
norm of the inverse is bounded above by a constant independent of λ.

Proof. Fix 0 < σ < N − 2. Recall that Lλ = L−Tλ : X̃2 → Y2, Tλ is compact and hence the
Fredholm index of Lλ is equal to the Fredholm index of L, which is zero. So we first suppose
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that Lλ is not onto Y2 for small λ. Hence there is some λm ↘ 0 such that Lm := Lλm is
not onto Y2 and hence there is some φm ∈ X̃2 with ‖φm‖X2 = 1 such that Lm(φm) = 0 in
RN\{0}. Now suppose that Lλ is onto but the inverse operator is not bounded uniformly in
λ. Then there is some λm ↘ 0 and fm ∈ Y2, φm ∈ X̃2 such that Lm(φm) = fm in RN\{0},
‖fm‖Y2 → 0 and ‖φm‖X2 = 1. Now note we can view the first case as a special case of the
second case.

Hence if either condition fails there is some λm ↘ 0, fm → 0 in Y2, φm ∈ X̃2, ‖φm‖X2 = 1
such that Lm(φm) = fm in RN\{0}. We now derive a contradiction.

We re-write Lm(φm) = fm as L(φm) = fm + aλm(x) · ∇φm + V λm(x)φm. Using the linear
theory for L we see that there is some C > 0 such that

C‖φm‖X2 ≤ ‖fm‖Y + ‖aλm · ∇φm + V λmφm‖Y2 . (9)

We now examine in detail the second Y2 norm on the right hand side. A computation shows
that

‖aλm · ∇φm + V λmφm‖Y2 = Im + Jm,

where Im is the portion of the norm in the unit ball and Jm is the portion outside the unit
ball. We first estimate Jm,

Jm ≤ sup
|x|≥1

|x|2+α
(
|aλm(x)||∇φm|+ V λm(x)|φm(x)|

)
≤ sup

|x|≥1

|x|
λm
|a(

x

λm
)||x|α+1|∇φm|

+ sup
|x|≥1

|x|2

λ2
m

V (
x

λm
)|x|α|φm|

≤ (A(λ−1
m ) + Ṽ (λ−1

m ))‖φm‖X2 .

Let 0 < ε0 be small which we pick later and we now write Im ≤ I1
m + I2

m + I3
m where

I1
m := sup

|x|≤λmε0
|x|σ+2

(
|aλm(x)||∇φm(x)|+ V λm(x)|φm(x)|

)
≤ sup

|z|≤ε0

(
|z||a(z)|+ |z|2|V (z)|

)
‖φm‖X2 .

We now define

I2
m := sup

λmε0≤|x|≤λmε−1
0

|x|σ+2
(
|aλm(x)||∇φm(x)|+ V λm(x)|φm(x)|

)
,

which we will later show goes to zero via a Liouville theorem. Finally we define

I3
m := sup

ε−1
0 λm≤|x|≤1

|x|σ+2
(
|aλm(x)||∇φm(x)|+ V λm(x)|φm(x)|

)
.

We estimate I3
m exactly as we did in the case of Jm to see that

I3
m ≤

(
A(ε−1

0 ) + Ṽ (ε−1
0 )
)
‖φm‖X2 .
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Now fix 0 < ε0 small enough such that

sup
|z|≤ε0

(
|z||a(z)|+ |z|2|V (z)|

)
+ A(ε−1

0 ) + V (ε−1
0 ) ≤ C

2
.

We can then combine the above estimates to arrive at

C

2
‖φm‖X2 ≤ ‖fm‖Y2 +

(
A(λ−1

m ) + Ṽ (λ−1
m )
)
‖φm‖X2 + I2

m,

which gives us a contradiction if we can show that I2
m → 0.

We now define the rescaled functions ψm(x) := λσmφm(λmx). Let εk ↘ 0 with ε0 > ε1 and
set Ak := {x ∈ RN : εk < |x| < ε−1

k }. Using the bound sup|x|≤1 |x|σ|φm(x)| ≤ 1 one sees that
|ψm(x)| ≤ |x|−σ on |x| < λ−1

m . In particular, for each k ≥ 0 we have ψm bounded on Ak+1

for large enough m. Also note that ψm satisfies

∆ψm(x)−a(x)·∇ψm(x)−V (x)ψm(x) = λσ+2
m fm(λmx)−pw(λmx)p−1λ2

mψm(x) in Ak+1. (10)

Define gm(x) to be the right hand side of (10) and note that gm → 0 uniformly in Ak+1. Fix
t > N large. By elliptic regularity theory there is some Ct,k such that

‖ψm‖W 2,t(Ak) ≤ Ct,k‖gm‖Lt(Ak+1) + Ct,k‖ψm‖L1(Ak+1).

Note that the right hand side of this inequality is bounded by some C̃k. So using a diagonal
argument and the Sobolev imbedding we can assume that {ψm}m (after passing to a suitable

subsequence) is bounded in C1, 3
4 (Ak) for each k ≥ 0 and there is some ψ : RN\{0} → R such

that ψm → ψ in C
1, 1

2
loc (RN\{0}). This is enough to pass to the limit in (10) to see that ψ is

a weak solution of
∆ψ − a(x) · ∇ψ − V (x)ψ(x) = 0 in RN\{0}.

Also note that ψ(x) satisfies the pointwise bounds |ψ(x)| ≤ |x|−σ and |∇ψ(x)| ≤ |x|−σ−1.
Since 0 < σ < N − 2 we can apply Lemma 7 to see that ψ is a distributional solution of
∆ψ−a(x)·∇ψ−V (x)ψ = 0 in RN . We can then apply distributional elliptic regularity theory
to see that ψ is smooth on RN . We now show ψ = 0. Firstly note that since ψ is smooth and
decays to zero as |x| → ∞, we can apply the strong maximum principle to see that ψ ≥ 0
in RN . We can then apply the maximum principle to see that supBR ψ = sup∂BR ψ → 0 as

R→∞. This shows that ψ = 0. We now recall that ψm → ψ = 0 in C1, 1
2 (Ak) for any k and

in particular for k = 0. Note that we can estimate I2
m as

I2
m := sup

λmε0≤|x|≤λmε−1
0

|x|σ+2
(
|aλm(x)||∇φm(x)|+ V λm(x)|φm(x)|

)
,

= sup
ε0≤|z|≤ε−1

0

|z|σ+2 (|a(z)||∇ψm(z)|+ V (z)|ψm(z)|)→ 0,

as m → ∞ after considering the above mentioned convergence of ψm. This shows that
I2
m → 0 which gives us the desired contradiction.
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2.2 Equation (1); the fixed point argument

To find a positive classical solution of (1) it is sufficient (via a scaling argument) to find a
positive classical solution v of

−∆v + aλ(x) · ∇v + V λ(x)v = vp + γλθvq RN , (11)

for some λ > 0 where θ := 2(q−p)
p−1

> 0. To do this we will find a positive classical solution of

−∆v + aλ(x) · ∇v + V λ(x)v = |v|p + γλθ|v|q in RN . (12)

Considering our function spaces X2 and Y2 are spaces defined on the punctured domain we
first solve

−∆v + aλ(x) · ∇v + V λ(x)v = |v|p + γλθ|v|q in RN\{0}. (13)

To do this we look for solutions of the form v = w+φ where w is as in the previous sections.
Then we need φ to satisfy

Lλ(φ) = aλ(x) · ∇w + V λ(x)w

−
(
|w + φ|p − wp − pwp−1φ

)
−γλθ|w + φ|q in RN\{0}.

To solve this equation for φ we apply a fixed point argument on a suitable closed ball in X̃2

centered at the origin. Fix 0 < σ small and let 0 < λ0 be as promised by Proposition 1.
Given 0 < λ < λ0 and φ ∈ X̃2 define Jλ(φ) =: ψλ ∈ X̃2 where ψλ satisfies

Lλ(ψλ) = aλ(x) · ∇w + V λ(x)w

−
(
|w + φ|p − wp − pwp−1φ

)
−γλθ|w + φ|q in RN\{0}. (14)

We will now show that Jλ is a contraction on the closed ball of radius R centered at the
origin in X̃2, which we denote by BR, for suitable 0 < R and 0 < λ < λ0.

Into. Let φ ∈ BR. We now estimate the terms on the right hand side of (14). By Lemma 6
we have ∣∣|w + φ|p − pwp−1φ− wp

∣∣ ≤ C
(
wp−2φ2 + |φ|p

)
.

Set Γ = |w + φ|p − pwp−1φ− wp. Then one sees

‖Γ‖Y2 ≤ C sup
|x|≤1

|x|σ+2
(
wp−2φ2 + |φ|p

)
+C sup

|x|≥1

|x|α+2
(
wp−2φ2 + |φ|p

)
:= CI1 + CI2.

I1 = sup
|x|≤1

(
|x|2−σwp−2 (|x|σφ(x))2 + |x|σ+2−σp (|φ(x)||x|σ)p

)
≤ sup

|x|≤1

(
|x|2−σwp−2‖φ‖2

X0
+ |x|σ+2−σp‖φ‖pX0

)
≤ C‖φ‖2

X0
+ C‖φ‖pX0

12



for small enough σ > 0. One can similarly show, using 2 + α = pα and 2 − α = α(p − 2),
that

I2 ≤ sup
|x|≥1

(|x|αw)p−2 ‖φ‖2
X0

+ ‖φ‖pX0

≤ C‖φ‖2
X0

+ ‖φ‖pX0
.

For 0 < σ sufficiently small and since q ≥ p a computation shows that ‖wq‖Y2 ≤ C and
‖|φ|q‖Y2 ≤ 2‖φ‖qX0

. Hence we have ‖|w + φ|q‖Y2 ≤ C + C‖φ‖qX0
.

We now examine the ‖aλ · ∇w + V λw‖Y2 term. We decompose |x| ≤ 1 into |x| ≤ δ and
δ ≤ |x| ≤ 1 where we will specify δ later. Set Mλ(x) := |aλ(x)||∇w| + V λ(x)w. First note
that a computation shows

sup
|x|≥1

|x|α+2Mλ(x) ≤ (A(λ−1) + Ṽ (λ−1))‖w‖X2 .

A similar computation shows that

sup
|x|≤δ
|x|2+σMλ(x) ≤ Cδσ,

where C depends on supz∈RN (|z||a(z)|+ |z|2V (z)). A similar computation shows that

sup
δ≤|x|≤1

|x|2+σMλ(x) ≤ CA(λ−1δ) + CṼ (λ−1δ)

where C is independent of λ and δ. Combining these three estimates gives

‖aλ · ∇w + V λw‖Y2 ≤ CA(λ−1δ) + CṼ (λ−1δ) + Cδσ. (15)

Combining these results and using the inverse bound on Lλ given in Proposition 1 gives

‖ψλ‖X2 ≤ Cδσ + CA(λ−1δ) + CṼ (λ−1δ) + C(‖φ‖2
X0

+ ‖φ‖pX0
) + C|γ|λθ(C + ‖φ‖qX0

).

Now using the fact that φ ∈ BR gives

‖ψλ‖X2 ≤ Cδσ + CA(λ−1δ) + CṼ (λ−1δ) + CR2 + CRp + Cλθ(1 +Rq).

So for Jλ(BR) ⊂ BR it is sufficient that 0 < δ < 1, 0 < λ < λ0 and 0 < R satisfy

Cδσ + CA(λ−1δ) + Ṽ (λ−1δ) + CR2 + CRp + Cλθ + CλθRq ≤ R. (16)

Contraction. Let φ̂, φ ∈ BR ⊂ X̃2 and set Jλ(φ̂) = ψ̂λ, Jλ(φ) = ψλ. First note that by
Lemma 6 we have

|Lλ(ψ̂λ − ψλ)| ≤ C
(
wp−2(|φ|+ |φ̂|) + |φ|p−1 + |φ̂|p−1

)
|φ̂− φ|

+Cλθ
(
|w|q−1 + |φ̂|q−1 + |φ|q−1

)
|φ̂− φ| =: H1 +H2.

We now estimate the Y2 norms of the right hand side. So we have
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sup
|x|≤1

|x|σ+2|H1| ≤ sup
|x|≤1

(
|x|2wp−2|φ|+ |x|2|φ|p−1

)
sup
|x|≤1

|x|σ|φ̂− φ|

where we have dropped the φ̂ terms for simplicity of notation. First note that sup|x|≤1 |x|2wp−2|φ| ≤
R and sup|x|≤1 |x|2|φ|p−1 ≤ Rp−1 since σ > 0 is small and 0 < w ≤ 1. Similarly we have

sup
|x|≥1

|x|α+2|H1| ≤ sup
|x|≥1

(
|x|2wp−2|φ|+ |x|2|φ|p−1

)
sup
|x|≥1

|x|α|φ̂− φ|

and a computation shows sup|x|≥1 |x|2wp−2|φ| ≤ CR after considering the asymptotic decay of
w. Similarly sup|x|≥1 |x|2|φ|p−1 ≤ Rp−1. Combining the above two estimates gives ‖H1‖Y2 ≤
C(R+Rp−1)‖φ̂−φ‖X2 . Similarly one can show that ‖H2‖Y2 ≤ Cλθ (1 +Rq−1) ‖φ̂−φ‖X2 for
q ≥ p. Using these estimates and the estimates on Lλ gives that

‖ψ̂λ − ψλ‖X2 ≤ C
(
R +Rp−1 + λθ(1 +Rq−1)

)
‖φ̂− φ‖X2 .

So for Jλ to have a Lipschitz constant on BR at most 1
2

it is sufficient that

C(R +Rp−1) + Cλθ(1 +Rq−1) ≤ 1

2
. (17)

We now pick the parameters R, δ, λ so that Jλ is a contraction on BR; ie. it is sufficient
that (16) and (17) to be satisfied. The approach will be to fix R > 0 small and then to fix
0 < δ < 1 sufficiently small and then to finally pick λ > 0 small. Doing this one easily sees
they can satisfy both (16) and (17).

Hence we can apply Banach’s contraction mapping principle to see that there is some φ ∈ BR

such that Jλ(φ) = φ. From this we can conclude that v = w + φ satisfies (13). Moreover
notice that by taking 0 < R < 1 small enough we can assume that the v > 0 in say
{x : |x| ≥ 1

2
}. By taking σ > 0 smaller, if necessary, we can now apply Lemma 7 to see

that v satisfies (12) in the sense of distributions. By taking σ > 0 smaller again we can now
apply elliptic regularity theory to see that v is a classical solution of (12). To complete the
proof we need to show that v is positive. The approach depends on the sign of γ.

Case 1. 0 ≤ γ. One can now apply the strong maximum principle on B 1
2

to see that v > 0

in B 1
2

and hence v > 0 in RN . This complete the proof of Theorem 1 part 1.

Case 2. γ < 0. We now fix 0 < R < 1 as above. Then note that we are free to take λ as
small as we like. So let λm ↘ 0 and let φm ∈ BR ⊂ X̃2 be a fixed point for Jλm on BR. We
set vm := w + φm and so vm is positive outside of B 1

2
⊂ RN and satisfies

−∆vm + aλm · ∇vm + V λmvm = |vm|p + γλθm|vm|q RN . (18)

Our goal is to show that for large enough m that vm ≥ 0 in RN . Towards this define
Ωm := {x ∈ RN : vm(x) < 0} and lets assume Ωm is non-empty for all m. Also note that Ωm

is contained in the unit ball in RN . Now note that vm satisfies
−∆vm + aλm · ∇vm + Cm(x)vm = |vm|p in Ωm

vm = 0 on ∂Ωm,
vm < 0 in Ωm,

(19)

14



where Cm(x) := V λm − λθm|γ||vm|q−1.

We now apply Corollary 1 to see that vm ≥ 0 in Ωm provided

‖(div(aλm)− 2V λm + 2λθm|γ||vm|q−1)+‖
L
N
2 (Ωm)

< 2SN ,

and hence it is sufficient that

‖(div(aλm)− 2V λm)+‖
L
N
2 (Ωm)

+ 2|γ|λθm‖|vm|q−1‖
L
N
2 (Ωm)

< 2SN .

Now note that a change of variables shows that it is sufficient that

‖(div(a)− 2V )+‖
L
N
2 (RN )

+ 2|γ|λθm‖|vm|q−1‖
L
N
2 (Ωm)

< 2SN .

Now recalling that vm is bounded in X2 we see that for sufficiently small σ > 0 that the
second term converges to zero and hence to have vm ≥ 0 in Ωm for large m it is sufficient
that ‖(div(a) − 2V )+‖

L
N
2 (RN )

< 2SN . We can now apply the strong maximum principle to

(18) see that vm > 0 in RN . We can then apply elliptic regularity to see that vm is smooth.
We can now remove the absolute values and the proof of Theorem 1 part 2 is complete. 2

3 Equation (2); −∆u + a · ∇u = up + γ|∇u|q

In this section we are interested in obtaining positive solutions of the nonlinear problem
(2). As before we first perform a scaling argument to show it is sufficient to find a positive
solution v of

−∆v(x) + aλ(x) · ∇v(x) = v(x)p + γλθ|∇v(x)|q (20)

where θ = ( 2
p−1

+ 1)q − 2
p−1
− 2, (in this section θ will always refer to this quantity which

differs from the previous section). Instead of solving this we consider

−∆v(x) + aλ(x) · ∇v(x) = |v(x)|p + γλθ|∇v(x)|q. (21)

We look for solutions of the form v = w + φ and so we need φ to satisfy

−Lλ(φ) = |w + φ|p − wp − pwp−1φ

−aλ · ∇w + γλθ|∇w +∇φ|q in RN (22)

where Lλ(φ) := ∆φ+ pwp−1φ− aλ(x) · ∇φ.

3.1 The linear theory

Proposition 2. Suppose N ≥ 4, p > N+1
N−3

, 0 < σ < 1 and suppose a is a smooth divergence
free vector field which satisfies satisfies (A1).

1. Suppose the only smooth solutions ψ of ∆ψ(x)−a(x)·∇ψ(x) = 0 in RN , which satisfies
|∇ψ(x)| ≤ C0

|x|σ (for some C0 > 0), are the constant solutions. Then there is some small
0 < λ0 and C > 0 such that for all 0 < λ < λ0 and every f ∈ Y1 there is some φλ ∈ Z1

such that Lλ(φλ) = f in RN . Moreover ‖φλ‖Z1 ≤ C‖f‖Y1.
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2. There is some small 0 < λ0 < 1 and C > 0 such that for every f ∈ Y1 there is some
φλ ∈ Zλ such that Lλ(φλ) = f in RN . Moreover ‖φλ‖Zλ ≤ C‖f‖Y1.

Proof. 1. We begin by proving the desired result on the small class Y1 ∩ L∞ and we then
extend to all of Y1 later; note that Y1 ∩ L∞ is not dense in Y1. So show there is some small
0 < λ0 < 1 and C > 0 such that for all 0 < λ < λ0 and f ∈ L∞(RN) ∩ Y1 there is some
φλ ∈ Z1 such that Lλ(φλ) = f in RN and ‖φλ‖Z1 ≤ C‖f‖Y1 .
We now prove this result. Let 0 < λ0, and C > 0 be from Proposition 1 and suppose 0 < λ <
λ0 and f ∈ L∞(RN)∩ Y1. Using 1, Lemma 7 there is some φλ ∈ Z1 such that Lλ(φλ) = f in
RN . In addition we have the estimate that ‖φλ‖X2 ≤ C‖f‖Y2 ≤ C‖f‖Y1 . By elliptic regular-
ity we also see there is some Cλ such that ‖φλ‖Z1 ≤ Cλ‖f‖Y1 . We would like to now show this
constant Cλ can be taken independently of λ. So towards a contradiction we suppose there is
some fm ∈ Y1 ∩L∞(RN) such that fm → 0 in Y1 and there is some φm ∈ Z1 ∩C1,δ

loc (RN) such
that Lλm(φm) = fm in RN with λm → 0 and ‖φm‖Z1 = 1. Also note that Proposition 1 we
have that ‖φm‖X2 → 0 and hence we must have sup|x|≥1(|x|α|φm(x)|+ |x|α+1|∇φm(x)|)→ 0
and this would then imply sup|x|≤1(|φm(x)|+ |x|σ|∇φm(x)|)→ 1. We now try and estimate

these two terms to obtain a contradiction. First we fix N
2
< t < N

σ+1
and then notice that

‖fm‖Lt(B1) ≤ C‖fm‖Y1 .

L∞(B1) estimate on φm.
Decompose φm on B1 as φm = φm + φ̂m where

∆φm − aλm · ∇φm = fm − pwp−1φm in B1, φm = 0 on ∂B1, (23)

and
∆φ̂m − aλm · ∇φ̂m = 0 in B1, φ̂m = φm on ∂B1. (24)

We will now use Lemma 1.3 from [2] which we restate for the reader convenience. Suppose
Ω a bounded domain in RN , and b(x) a divergence free vector field defined on Ω and T > N

2
.

Then there is some C = C(Ω, N, T ) (independent of b) such that for all g ∈ LT (Ω), there is
a solution w of −∆w + b(x) · ∇w = g in Ω with w = 0 on ∂Ω. Moreover ‖w‖L∞ ≤ C‖g‖LT .

Now we return to our problem. Since a is divergence free we see there is some Ct > 0 such
that supB1

|φm| ≤ Ct‖fm − pwp−1φm‖Lt(B1) ≤ Ct‖fm‖Lt(B1) + Ctp‖φm‖Lt(B1). Using the X0

estimate on φm and the prior estimate relating the Lt norm of fm to the Y1 norm, gives
supB1

|φm| ≤ Ct‖fm‖Y1 + Ct‖fm‖Y2 . Using the maximum principle we see that supB1
|φ̂m| ≤

sup|x|=1 |φm| ≤ C‖fm‖Y2 . Combining the estimates gives sup|x|≤1 |φm| ≤ C‖fm‖Y1 → 0.

Gradient estimates on φm.
Considering the above L∞(B1) and the earlier X2 estimate on φm one sees there must be
some 0 < |xm| → 0 such that |xm|σ|∇φm(xm)| ≥ 3

4
. We now consider the rescaled functions

ψm(x) := |xm|σ−1(φm(|xm|x)−φm(|xm|x0)) where |x0| = 1 is fixed. Then note that ψm(x0) =
0 and |∇ψm(x)| ≤ |x|−σ for |x| ≤ 1

|xm| and |∇ψm(zm)| ≥ 3
4

where zm := xm
|xm| ∈ S

N−1. Now

consider the annuli Ak := {x ∈ RN : 1
k
< |x| < k} where k ≥ 2 an integer. Using the

Arzelá-Ascoli Theorem along with a diagonal argument one can find some ψ ∈ C(RN\{0})
and a subsequence of ψm such that ψm → ψ uniformly on each Ak for k ≥ 2. In addition
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note that ψm satisfies

∆ψm(x)− βma(βmx) · ∇ψm(x) = gm(x),

where

gm(x) := |xm|σ+1fm(|xm|x)− pw(|xm|x)p−1|xm|2ψm(x)− pw(|xm|x)p−1|xm|σ+1φm(|xm|x0),

and βm := |xm|
λm

. Note that gm → 0 uniformly in Ak for any k ≥ 2. Using elliptic regularity

and the Sobolev imbedding theorem we see that ψm is bounded in C1,δ(Ak) for each k ≥ 2
and hence we can pass to another subsequence to obtain that ψm → ψ in C1,δ(Ak) for all
k ≥ 2. One should note that advection term does not cause any problems on the annuli,
even if βm → ∞, after considering the assumptions on a. By passing to a subsequence we
can assume that βm → β ∈ [0,∞].
Hence ψ satisfies the bound |∇ψ(x)| ≤ |x|−σ and ∆ψ(x) − βa(βx) · ∇ψ(x) = 0 in RN\{0}
where we interpret this equation as just ∆ψ = 0 in the case of β =∞. The bound on ψ near
the origin is sufficient to show that ψ is a smooth solution of ∆ψ(x) − βa(βx) · ∇ψ(x) = 0
in RN . We now separate the two cases:
(i) β ∈ {0,∞}, (ii) 0 < β <∞.
In the first case we have ∆ψ = 0 in RN with the stated decay assumption on ∇ψ. Hence
ψxi is a harmonic function on RN which decays to zero and hence the maximum principle
shows that ψxi = 0 and hence ψ is constant.
(ii) Set φ0(x) := ψ(x

β
) and note ∆φ(x) − a(x) · ∇φ(x) = 0 in RN with the desired decay of

the gradient. We can then apply the hypothesis to see φ is constant and hence ψ is constant.
But we now recall that we have ψm → ψ = 0 in C1,δ(AK) for all k ≥ 2. In particular we
have |∇ψm(zm)| → 0 giving us the desired contradiction. This completes the proof of the
apriori estimate.

We now extend the result to the full space Y1. Let σ,C, λ0 be as above and let 0 < λ < λ0 and
f ∈ Y1. Then there is some φ ∈ X2 such that Lλ(φ) = f in RN\{0} and we can extend the
pde to the full space after noting the regularity of f . Also we have ‖φ‖X2 ≤ C‖f‖Y2 ≤ C‖f‖Y1
from our earlier estimates. Define the continuous cut off of f(x) by fm(x) where fm(x) is
defined by fm(x) = f(x) for |f(x)| ≤ m and f(x) = m for f(x) ≥ m and lastly define
fm(x) = −m for f(x) ≤ −m. Note that fm is bounded and for large m, fm and f may
only differ near the origin. In addition note that ‖fm‖Y1 ≤ ‖f‖Y1 . By the above esti-
mates there is some φm ∈ Z1 such that Lλ(φm) = fm and ‖φm‖Z1 ≤ C‖fm‖Y1 ≤ C‖f‖Y1 .
Also note that fm → f in Y2 and hence φm → φ in X2 and hence for all ε > 0 we have
|∇φm(x)| → |∇φ(x)| uniformly on ε ≤ |x| ≤ 1. Using this and the estimates on φm
one sees that sup|x|≤1 |x|σ|∇φ(x)| ≤ C‖f‖Y1 . Also note that since φm → φ in X2 and
supB1

|φm| ≤ C‖f‖Y1 we see that supB1
|φ| ≤ C‖f‖Y1 . Using this and the X2 bound on φ we

see that φ ∈ Z1 and ‖φ‖Z1 ≤ C‖f‖Y1 .

We now give a claim which we will need for the proof of part 2 of this proposition.
Claim. Let N ≥ 4, 0 < σ < 1 and 0 < ε ≤ 1. Then there is some C1 = C1(N, σ) > 0
(independent of ε) such that for all f ∈ Y in

1 there is some φ ∈ Zin
1 such that

−∆φ = f in Bε, φ = 0 on ∂Bε. (25)
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In addition one has the estimate ‖φ‖Zin1 ≤ C1‖f‖Y in1 where ‖φ‖Zin1 := sup|x|≤ε |x|σ|∇φ(x)|
and ‖f‖Y in1 := sup|x|≤ε |x|σ+1|f(x)|.
To prove this claim one first sees, via a scaling argument, that it is sufficient to prove the
result for ε = 1. A local regularity argument then shows that the only possible problem with
the gradient estimate is near the origin. One then applies the same rescaling argument as
in the proof of part 1 of the proposition. The main difference now being that since a(x) = 0
we have the needed Liouville theorem to complete the proof.

2. We now prove part 2. Let 0 < σ < 1 and let C, λ0 > 0 be as promised from Proposition
1 and by taking λ0 small we can assume it is less than one. Let f ∈ Y1. By Proposi-
tion 1 there is some φλ ∈ X2 such that Lλ(φλ) = f in RN\{0}. In addition we have that
‖φλ‖X2 ≤ C‖f‖Y2 ≤ C‖f‖Y1 and noting that the norms agree outside B1 we need only obtain
estimates inside the unit ball. Additionally note that one can show that Lλ(φλ) = f in RN

and not just on the punctured domain. As in the first part of this proposition one can show
there is some C such that supB1

|φλ| ≤ C‖f‖Y1 . So to complete the proof we need only to
obtain the desired gradient bounds on the unit ball.

Gradient estimates on φλ. First note that using the X2 bound on φλ gives
λ1−σ sup 1

4
≤|x|≤1 |x|σ|∇φλ(x)| ≤ C‖f‖Y1 . So we need only prove the gradient estimate in B 1

4
.

The proof will involve splitting B 1
4

into two regions:

(i) λε < |x| < 1
4
, and (ii) |x| ≤ λε,

where ε > 0 will be some small but fixed parameter.

Region (i); λε < |x| < 1
4
.

Fix ε > 0 small, λε < |x| < 1
4

and consider the rescaled functions ψλ(y) := φλ(x + |x|y) for
y ∈ B 1

2
. Then note that ψλ satisfies

∆ψλ(y)−|x|
λ
a(
x+ |x|y

λ
)·∇ψλ(y) = |x|2f(x+|x|y)−p|x|2w(x+|x|y)p−1ψλ(y) := gλ(y) in B 1

2
.

(26)

Also note that the gradient term satisfies |x|
λ
|a(x+|x|y

λ
)| ≤ 2A( |x|

2λ
) ≤ 2 sup0≤R 2A(R). Fix

N < t. Using elliptic regularity shows that

sup
B 1

4

|∇ψλ| ≤ C‖gλ‖Lt(B 1
2

) + C‖ψ‖L1(B 1
2

).

Writing this estimate out gives

sup
B 1

4

|∇ψλ| ≤ C|x|1−σ‖f‖Y1 + C‖ψλ‖L1(B1) ≤ C|x|1−σ‖f‖Y1 + C‖f‖Y1 ≤ C‖f‖Y1 .

Writing this out in terms of φλ gives |x||∇φλ(x)| ≤ C‖f‖Y1 . Now recall that λε < |x| < 1
4

and hence ε1−σλ1−σ|x|σ|∇φλ(x)| ≤ C‖f‖Y1 and so

λ1−σ sup
λε<|x|< 1

4

|x|σ|∇φλ(x)| ≤ C‖f‖Y1
ε1−σ .
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Region (ii), |x| ≤ λε.
We now fix ε > 0 sufficiently small such that 1− C1 supB2ε

|y||a(y)| > 0; this constant C1 is
from the Claim stated at the end of the proof of part 1 of this proposition. Now consider
the rescaling ψλ(y) = φλ(λy) for |y| < 2ε. We decompose ψλ on B2ε via ψλ = ψ1

λ +ψ2
λ where

∆ψ1
λ(y)− a(y) · ∇ψ1

λ(y) = λ2f(λy)− pλ2w(λy)p−1ψλ in B2ε

with ψ1
λ = 0 on ∂B2ε and where ψ2

λ(y) satisfies

∆ψ2
λ(y)− a(y) · ∇ψ2

λ(y) = 0 in B2ε

with ψ2
λ = ψλ on ∂B2ε.

Estimate on ψ1
λ. Re-write the equation for ψ1

λ as

∆ψ1
λ(y) = a(y) · ∇ψ1

λ(y) + λ2f(λy)− pλ2w(λy)p−1ψλ =: gλ(y) in B2ε

with ψ1
λ = 0 on ∂B2ε. We now apply the above Claim to see we have

sup
|y|≤2ε

|y|σ|∇ψ1
λ(y)| ≤ C1 sup

|y|≤2ε

|y|σ+1|gλ(y)|.

To estimate the right hand side of this consider

sup
|y|≤2ε

|y|σ+1|gλ(y)| ≤ sup
|y|≤2ε

|y||a(y)||y|σ|∇ψ1
λ(y)|

+ sup
|y|≤2ε

λ2|y|σ+1|f(λy)|

+pλ2 sup
|y|≤2ε

|y|σ+1|ψλ(y)|

≤
(

sup
B2ε

|y||a(y)|
)

sup
B2ε

|y|σ|∇ψ1
λ|(y)|

+λ1−σ sup
|x|≤2ε

|x|σ+1|f(x)|

+λ2−σC‖f‖Y2 .

So combining the above estimates give(
1− C1 sup

B2ε

|y||a(y)|
)

sup
|y|≤2ε

|y|σ|∇ψ1
λ(y)| ≤ C1λ

1−σ sup
|x|≤2ε

|x|σ+1|f(x)|+CC1λ
2−σ‖f‖Y2 , (27)

and hence there is some C2 = C2(ε) such that

sup
|y|≤2ε

|y|σ|∇ψ1
λ(y)| ≤ C2λ

1−σ‖f‖Y1 . (28)

Estimate on ψ2
λ. Using the fact that a(x) is a smooth vector field we can apply elliptic

regularity theory to see for t > N there is some Ct,ε such that

‖ψ2
λ‖W 2,t(Bε) ≤ Ct,ε

∫
B2ε

|ψ2
λ(y)|dy.
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The Sobolev imbedding theorem and the maximum principle, along with our uniform esti-
mate on φλ gives

sup
Bε

|∇ψ2
λ(y)| ≤ Ct,E

∫
B2ε

|ψ2
λ(y)|dy ≤ C̃ε,t sup

|y|=2ε

|ψλ(y)| = C̃ε,t sup
|x|=2λε

|φλ(x)| ≤ Ct,ε‖f‖Y1 .

(29)

Combining the ψiλ estimates.
Combining (28) and (29) gives

|∇ψλ(y)| ≤ C‖f‖Y1
(
1 + λ1−σ|y|−σ

)
,

for all 0 < |y| < ε. Writing this out in terms of φλ gives

λ1−σ sup
|x|<λε

|x|σ|∇φλ(x)| ≤ (εσ + λ1−σ)‖f‖Y1 .

This is the desired estimate on region (ii). We can now combine with the estimate on region
(i) to see we have

λ1−σ sup
B 1

4

|x|σ|∇φλ(x)| ≤ C‖f‖Y1 .

We include one last linear result which we will use to prove Theorem 2 part 1; the case of
a(x) = 0. We mention we really do not need to prove this separately since this result can be
proven using another of our approaches, but it is much easier to prove it this way. This will
require that we define another class of function spaces. Define

‖f‖Y∞ := sup
|x|≤1

|f(x)|+ sup
|x|≥1

|x|α+2|f(x)|, and

‖φ‖Z∞ := sup
|x|≤1

(|φ(x)|+ |∇φ(x)|) + sup
|x|≥1

(|x|α|φ(x)|+ |x|α+1|∇φ(x)|),

and note that our notation for the function spaces Zλ for 0 < λ < λ0 and Z1 are consistent
with each other but that Z∞ is not consistent with the others.

Lemma 3. Let N ≥ 4 and p > N+1
N−3

. Then there is some C > 0 such that for every f ∈ Y∞
there is some φ ∈ Z∞ such that L(φ) = f in RN and ‖φ‖Z∞ ≤ C‖f‖Y∞.

Proof. The existence of a solution follows from Theorem A and then one applies elliptic
regularity to complete the proof.

3.2 Equation (2); the fixed point arguments

In this section we prove Theorem 2 which contains four different parts. To prove this result
we apply fixed point arguments in a variety of different spaces to obtain a solution φ of
(22). We now formally define the nonlinear mapping. Given φ in a suitable space we define
Jλ(φ) =: ψλ where ψλ satisfies

−Lλ(ψλ) = |w + φ|p − wp − pwp−1φ

−aλ · ∇w + γλθ|∇w +∇φ|q, (30)
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where the domain where the equation is satisfied on is either all of RN or the punctured
space RN\{0}; which will depend on which function space we are working. To show the Jλ
is well defined we require that the right hand side of (30) is in a suitable space and we can
then apply the appropriate linear theory; these computations are included below in the part
we label into. When showing Jλ is contraction mapping there will be, as usual, two portions.
One portion will be showing the mapping is into add the other part will be the contraction
part. Since we are considering a number of spaces we will collect all the calculations associ-
ated with the into portion into one section and the contraction portion into another. After
this we return and examine each space individually and perform the contraction mapping
on each space. Note that in the case of a(x) = 0 that Lλ is just L. To avoid unnecessary
duplication we will continue to write this as Lλ. Keep in mind that the spaces Y∞ and Z∞
will only be utilized in the case of a(x) = 0.

3.2.1 Some computations.

Here we collect various computations that we will need when performing the fixed point
arguments later.
Into. For k ∈ {1, 2,∞} we have

‖Lλ(ψλ)‖Yk ≤ ‖|w + φ|p − wp − pwp−1φ‖Yk
+‖aλ · ∇w‖Yk + Cλθ (‖|∇w|q‖Yk + ‖|∇φ|q‖Yk) . (31)

We now examine these terms in the various spaces.

(i) ‖|w + φ|p − wp − pwp−1φ‖Yk . In the previous section we have shown that ‖|w + φ|p −
wp − pwp−1φ‖Y2 ≤ C(‖φ‖2

X0
+ ‖φ‖pX0

). The identical calculation shows that

‖|w + φ|p − wp − pwp−1φ‖Y1 ≤ C(‖φ‖2
Zλ

+ ‖φ‖pZλ),

for 0 < λ < λ0 and λ = 1. One also sees that

‖|w + φ|p − wp − pwp−1φ‖Y∞ ≤ C(‖φ‖2
Z∞ + ‖φ‖pZ∞).

(ii) ‖aλ · ∇w‖Yk . Let 0 < δ < 1. In the previous section we obtained the estimate
‖aλ · ∇w + V λw‖Y2 ≤ CA(λ−1δ) + CV (λ−1δ) + Cδσ. If one carries out the same proof but
drops the V λ term one sees that ‖aλ · ∇w‖Y2 ≤ CA(λ−1δ) + Cδσ+2 where C is independent
of δ and 0 < λ < λ0. The identical calculation shows that ‖aλ ·∇w‖Y1 ≤ CA(λ−1δ) +Cδσ+1.
As mentioned above we will only utilize Y∞, Z∞ in the case of a(x) = 0.

(iii) ‖|∇w|q‖Yk + ‖|∇φ|q‖Yk . Here we show some details since this term was not examined
in the previous sections. We begin with w. Note

sup
|x|≥1

|x|2+α|∇w(x)|q ≤ sup
|x|≥1

|x|2+α C

|x|(α+1)q
,

which is finite provided q ≥ α+2
α+1

. We now consider |x| ≤ 1. Note that since w is smooth we

have sup|x|≤1 |x|β|∇w(x)|q ≤ C for all 0 ≤ β <∞. In particular we have ‖|∇w|q‖Yk ≤ C for
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k ∈ {1, 2,∞} provided the above condition on q is satisfied. We now examine ‖|∇φ|q‖Yk .
First note that for |x| ≥ 1 we have |x|α+1|∇φ(x)| ≤ ‖φ‖X for X ∈ {X2, Z1, Zλ, Z∞}. So we
have sup|x|≥1 |x|α+2|∇φ(x)|q ≤ ‖φ‖qX for X ∈ {X2, Z1, Zλ, Z∞} provided q ≥ α+2

α+1
. We now

consider |x| ≤ 1 and now the results will depend on which space we are in. First note that
for |x| ≤ 1 we have

|x|σ+1|∇φ(x)| ≤ ‖φ‖X2 , |∇φ(x)| ≤ ‖φ‖Z∞ , λ1−σ|x|σ|∇φ(x)| ≤ ‖φ‖Zλ ,

where the last result holds for 0 < λ < λ0 and λ = 1. Using these estimates gives

1. for α+2
α+1
≤ q ≤ σ+2

σ+1
one has ‖|∇φ|q‖Y2 ≤ 2‖φ‖qX2

,

2. for α+2
α+1
≤ q ≤ 1

σ
+ 1 one has ‖|∇φ|q‖Y1 ≤ ‖φ‖

q
Zλ

(
λ−(1−σ)q + 1

)
for 0 < λ < λ0 and

λ = 1.

3. for α+2
α+1
≤ q one has ‖|∇φ|q‖Y∞ ≤ 2‖φ‖qZ∞ .

Contraction. Let φ̂, φ ∈ BR where BR is the closed ball of radius R centered at the origin
in either X2, Zλ, Z1 or Z∞. We set ψ̂λ := Jλ(φ̂) and ψλ := Jλ(φ). Then

−Lλ(ψ̂λ − ψλ) = |w + φ̂|p − |w + φ|p − pwp−1(φ̂− φ)

+γλθ(|∇w +∇φ̂|q − |∇w +∇φ|q). (32)

Hence, for k ∈ {1, 2,∞} we have

‖Lλ(ψ̂λ − ψλ)‖Yk ≤ ‖|w + φ̂|p − |w + φ|p − pwp−1(φ̂− φ)‖Yk
+|γ|λθ‖|∇w +∇φ̂|q − |∇w +∇φ|q‖Yk . (33)

We now estimate the various quantities from (33). We begin with the first term on the right,
‖|w + φ̂|p − |w + φ|p − pwp−1(φ̂− φ)‖Yk .

4. For φ̂, φ ∈ BR ⊂ X2 the previous section shows ‖|w+ φ̂|p−|w+φ|p−pwp−1(φ̂−φ)‖Y2 ≤
C(R +Rp−1)‖φ̂− φ‖X2 .

5. For φ̂, φ ∈ BR ⊂ Zλ where 0 < λ < λ0, or λ = 1 we have, by a similar calculation,
‖|w + φ̂|p − |w + φ|p − pwp−1(φ̂− φ)‖Y1 ≤ C(R +Rp−1)‖φ̂− φ‖Zλ .

6. For φ̂, φ ∈ BR ⊂ Z∞ we have ‖|w+φ̂|p−|w+φ|p−pwp−1(φ̂−φ)‖Y∞ ≤ C(R+Rp−1)‖φ̂−
φ‖Z∞ .

We now estimate the nonlinear gradient term; ‖|∇w +∇φ̂|q − |∇w +∇φ|q‖Yk . Firstly note
that by Lemma 6 we have∣∣|∇w +∇φ̂|q − |∇w +∇φ|q

∣∣ ≤ C
(
|∇w|q−1 + |∇φ̂|q−1 + |∇φ|q−1

)
|∇φ̂−∇φ|. (34)

From this we see that

sup
|x|≥1

|x|α+2
∣∣|∇w +∇φ̂|q − |∇w +∇φ|q

∣∣ ≤ CK0 sup
|x|≥1

|x|α+1|∇φ̂−∇φ|, (35)
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where

K0 = sup
|x|≥1

|x|
(
|∇w|q−1 + |∇φ̂|q−1 + |∇φ|q−1

)
≤ sup

|x|≥1

(
(|x|α+1|∇w|)q−1 + (|x|α+1|∇φ̂|)q−1 + (|x|α+1|∇φ|)q−1

)
≤ C + sup

|x|≥1

(
(|x|α+1|∇φ̂|)q−1 + (|x|α+1|∇φ|)q−1

)
provided (α + 1)(q − 1) ≥ 1, which is equivalent to q ≥ α+2

α+1
.

7. Let φ̂, φ ∈ BR in Z∞. Then using (34) one sees that sup|x|≤1 ||∇w+∇φ̂|q−|∇w+∇φ|q| ≤
C(1 +Rq−1)‖φ̂− φ‖Z∞ and combining this with the above estimate for |x| ≥ 1 we see

‖|∇w +∇φ̂|q − |∇w +∇φ|q‖Y∞ ≤ C(1 +Rq−1)‖φ̂− φ‖Z∞ ,

provided q ≥ α+2
α+1

.

8. Let φ̂, φ ∈ BR in X2. Then we have

sup
|x|≤1

|x|σ+2
∣∣|∇w +∇φ̂|q − |∇w +∇φ|q

∣∣ ≤ CK2 sup
|x|≤1

|x|σ+1|∇φ̂−∇φ|,

whereK2 := sup|x|≤1

(
|x||∇w|q−1 + |x||∇φ̂|q−1 + |x||∇φ|q−1

)
. Note that |x|σ+1|∇φ(x)| ≤

R for |x| ≤ 1 and hence sup|x|≤1 |x||∇φ(x)|q−1 ≤ Rq−1 provided 1 ≥ (σ + 1)(q − 1),

and then note this condition on q is equivalent to q ≤ σ+2
σ+1

. So combining this with the
above results for |x| ≥ 1 we see that

‖|∇w +∇φ̂|q − |∇w +∇φ|q‖Y2 ≤ C(1 +Rq−1)‖φ̂− φ‖X2 ,

provided α+2
α+1
≤ q ≤ σ+2

σ+1
.

9. Let φ̂, φ ∈ BR in Zλ where 0 < λ < λ0 or λ = 1. Then we have

sup
|x|≤1

|x|σ+1
∣∣|∇w +∇φ̂|q − |∇w +∇φ|q

∣∣ ≤ CK1

λ1−σ sup
|x|≤1

|x|σλ1−σ|∇φ̂−∇φ|,

where K1 := sup|x|≤1

(
|x||∇w|q−1 + |x||∇φ̂|q−1 + |x||∇φ|q−1

)
. Note that for |x| ≤ 1

we have λ1−σ|x|σ|∇φ(x)| ≤ R and hence |x||∇φ(x)|q−1 ≤ λ−(1−σ)(q−1)Rq−1 provided
1 ≥ σ(q − 1). Combining this with the estimates for outside the unit ball gives

‖|∇w +∇φ̂|q − |∇w +∇φ|q‖Y1 ≤ C

(
1 +Rq−1 +

1

λ1−σ +
Rq−1

λq(1−σ)

)
‖φ̂− φ‖Zλ ,

for all 0 < λ < λ0 and λ = 1.
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We now perform the fixed point arguments. For clarity we separate by the various spaces.
In all cases we let φ̂, φ ∈ BR and Jλ(φ̂) = ψ̂λ, Jλ(φ) = ψλ where BR is in the appropriate
space.

Fixed point argument in Z∞. Completion of proof of Theorem 2 part 1. Recall in this
case we are taking a(x) = 0. Since Lλ = L : Z∞ → Y∞ has a continuous right inverse and
after considering (31), (i) and (iii) we have

‖ψλ‖Z∞ ≤ C(R2 +Rp) + Cλθ(1 +Rq), (36)

provided q ≥ α+2
α+1

. By (33), 6 and 7 we see

‖ψ̂λ − ψλ‖Z∞ ≤ C
(
R +Rp−1 + λθ + λθRq−1

)
‖φ̂− φ‖Z∞ . (37)

Also note that θ > 0 exactly when q > α+2
α+1

. So for Jλ to be a contraction on BR in Z∞ it is

sufficient that C(R2 + Rp) + Cλθ(1 + Rq) ≤ R and C
(
R +Rp−1 + λθ + λθRq−1

)
≤ 1

2
. One

easily sees that they can satisfy the two conditions by first fixing R > 0 sufficiently small and
then taking λ > 0 sufficiently small. One then can apply Banach’s fixed point argument to
see there is some φ ∈ BR such that Jλ(φ) = φ and hence φ satisfies (22). We then have that
v = w+φ satisfies (21) in RN and by taking R > 0 small enough we have that v = w+φ > 0
in RN . We then see that v is a positive classical solution of (20).

Fixed point argument in X2. Completion of proof of Theorem 2 part 2. Suppose α+2
α+1

<

q < 2 and hence we can take σ > 0 sufficiently small such that α+2
α+1

< q < σ+2
σ+1

. Since
Lλ : X2 → Y2 has a continuous right inverse for small λ whose norm is independent of
0 < λ < λ0 and after considering (31), (i), (ii) and (iii) we have

‖ψλ‖X2 ≤ C(R2 +Rp) + CA(λ−1δ) + Cδσ+2 + Cλθ(1 +Rq),

and by (33), 4 and 8 we have

‖ψ̂λ − ψλ‖X2 ≤ C(R +Rp−1 + λθ + λθRq−1)‖φ̂− φ‖X2 .

So for Jλ to be a contraction on BR in X2 it is sufficient that C(R2 + Rp) + CA(λ−1δ) +
Cδσ+2 +Cλθ(1 +Rq) ≤ R and C(R+Rp−1 + λθ + λθRq−1) ≤ 1

2
. As in the previous case we

can satisfy both conditions provided we fix R > 0 sufficiently small and then fix 0 < δ < 1
sufficiently small and then lastly take λ > 0 sufficiently small. We can then apply Banach’s
fixed point argument to see there is some φ ∈ BR such that Jλ(φ) = φ and hence φ satisfies
(22). We then have that v = w + φ satisfies (21) in RN\{0} and by taking R > 0 small
enough we have that v = w + φ > 0 for |x| ≥ 1, for instance. By taking σ > 0 small enough
(21) is satisfied in a suitable weak sense in RN . Also note that since σ > 0 is small the term
|v|p will not cause any regularity issues. The only potential problematic term is the nonlinear
gradient term |∇v|q. Note that we can re-write (21) as −∆v + aλ · ∇v = |v|p + γλθb(x) · ∇v
where b(x) := |∇v|q−2∇v. Then note by taking σ > 0 small enough we have b ∈ LQloc(RN)
for some Q > N . We can then apply elliptic regularity to see that v ∈ C1,ε

loc , for some small
ε > 0, and we then apply elliptic regularity again, after noting the right hand side of (21)
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is Hölder continuous, to see that v ∈ C2,ε0
loc for some small ε0 > 0. We then re-write (21) as

−∆v +
(
aλ(x)− γλθb(x)

)
· ∇v = |v|p and we can then apply the maximum principle to see

that v > 0 in RN .

Fixed point argument in Z1. Completion of proof of Theorem 2 part 4. Recall we are
assuming sufficient conditions on a(x) such that there is some continuous right inverse of
Lλ : Z1 → Y1 whose norm is independent of 0 < λ < λ0. Using (31), (i), (ii) and (iii) we
have

‖ψλ‖Z1 ≤ C(R2 +Rp) + CA(λ−1δ) + Cδσ+1 + Cλθ(1 +Rq)

provided we have α+2
α+2

< q < 1
σ

+ 1. By (33), 5 and 9 we see

‖ψ̂λ − ψλ‖Z1 ≤ C
(
(R +Rp−1) + λθ(1 +Rq−1)

)
‖φ̂− φ‖Z1 .

Note carefully that the only λ’s which are present are from the scaling factor in front of the
nonlinear gradient term; λθ, they are not coming from a Zλ norm. So for Jλ to be a contrac-
tion on BR in Z1 it is sufficient that C(R2 + Rp) + CA(λ−1δ) + Cδσ+1 + Cλθ(1 + Rq) ≤ R
and C

(
(R +Rp−1) + λθ(1 +Rq−1)

)
≤ 1

2
. Note these conditions are precisely the condi-

tions which we needed to apply the fixed point argument in X2. Note the restriction on
q is weaker and by taking σ > 0 small enough we can obtain a fixed point for Jλ for any
q > α+2

α+1
. One can now carry on as in the previous case to show the solution is sufficiently

regular and positive. One comment we make is that once one has a suitable weak solution
of −∆v + aλ · ∇v = |v|p + γλθ|∇v|q in RN then immediately we obtain a C1,ε solution, for
some small ε > 0, after picking σ > 0 small enough. To see this note that |∇v|q ≤ C|x|−σq
in B1 and hence |∇v|q ∈ LQloc(RN) for some Q > N after taking σ > 0 sufficiently small.

Fixed point argument in Zλ. Completion of proof of Theorem 2 part 3. There is no need
to consider q ≤ 2 since we can already obtain a positive solution in this case without the
divergence free assumption on a(x). Recall that for 0 < σ < 1 that Lλ : Zλ → Y1 has a
continuous right inverse whose norm is bounded above by a constant independent of 0 < λ
for small λ. We now assume that α+2

α+1
< q and by taking σ > 0 smaller we can assume that

q < 1
σ

+ 1. Considering this and using (31), (i), (ii) and (iii) gives

‖ψλ‖Zλ ≤ C(R2 +Rp) + CA(λ−1δ) + Cδσ+1 + Cλθ(1 +Rq(λ−(1−σ)q + 1)).

By (33), 5 and 9 we see

‖ψ̂λ − ψλ‖Zλ
‖φ̂− φ‖Zλ

≤ C(R +Rp−1)

+Cλθ
(

1 +Rq−1 +
1

λ1−σ +
Rq−1

λq(1−σ)

)
.

So for Jλ to be a contraction on BR in Zλ it is sufficient that

C(R2 +Rp) + CA(λ−1δ) + Cδσ+1 + Cλθ + Cλθ−q(1−σ)Rq + CλθRq ≤ R, (38)
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and

C(R +Rp−1) + Cλθ
(

1 +Rq−1 +
1

λ1−σ +
Rq−1

λq(1−σ)

)
≤ 1

2
. (39)

As in the previous cases we will satisfy these two conditions by first fixing R > 0 small and
then fixing 0 < δ < 1 small and finally taking λ > 0 sufficiently small. Examining (38) and
(39) we see this is possible provided:
(a) θ > 0, (b) θ − q(1− σ) ≥ 0, and (c) θ − (1− σ) > 0.
Note that since q ≥ 2 and σ > 0 small (b) implies (a) and (c). Writing out (b) gives q ≥ α+2

α+σ
.

So for this range of q and by taking R > 0 small we can argue as the proof where we used
the fixed point on Z1 to see there is a positive C2,ε solution (for some small ε > 0) v of (21).
Recall in that proof one needed to take σ > 0 sufficiently small to apply some regularity
theory. So there is a positive solution of (21) provided q ≥ α+2

α
= p.

Proof of Theorem 3. If one argues exactly as in the proof of Theorem 2 we see that Jλ is
a contraction on BR in Zλ provided the various parameters satisfy (38) and (39). As in the
previous cases the procedure will be to take fix R > 0 small and then to fix 0 < δ < 1 small
and then take λ > 0 small. It is clear this procedure will work provided:
(i) θ > 0, (ii) θ − q(1− σ) ≥ 0, (iii) θ − (1− σ) > 0.

We now pick the parameters. Recall we are assuming that q satisfies q > 2 and (5); which is
the condition αq + q

q−1
> α + 2. We now pick ε > 0 small such that αq + q

q−1
≥ α + 2 + εq

and we define σ := 1
q−1
− ε. By picking ε > 0 smaller yet again, we have 0 < σ < 1 after

one considers q > 2. We now show (i)-(iii) are satisfied. Firstly recall that θ > 0 is just the
condition that q > α+2

α+1
which we are assuming. Since q > 1 we see that (iii) follows from (ii).

A computation shows that (ii) is equivalent to αq+ q
q−1
≥ α+ 2 + εq. So for these choices of

parameters there exists a fixed point, φ ∈ BR, of Jλ. By taking R > 0 small enough we have
that v = w+ φ is positive solution of (20), at least on the punctured domain RN\{0}. Note
that v has enough regularity near the origin for it to satisfy (20) in the sense of distributions.
We now investigate the regularity of v. For this one needs to perform an iteration argument
and for this we consider the following simplified model problem: suppose 0 < v0 satisfies

−∆v0 = |∇v0|q + g(x) in Ω, v0 = 0 on ∂Ω, (40)

where v0 satisfies (40) in the sense of distributions and is suitably smooth away from the
origin which we assume is contained in Ω. Note that if |∇v0|q ∈ LT (Ω) for some T > N then
elliptic regularity shows that v0 ∈ W 2,T (Ω) and we can then apply the Sobolev imbedding
to see that |∇v0|q is bounded, and one can then easily see that v ∈ C2,δ(Ω) for some small
δ > 0. We now perform an iteration to show the following:
if |∇v0|q ∈ LT0(Ω) for some T0 >

N
q′
> 1 (q′ is the conjugate index of q) then |∇v0|q ∈ LT (Ω)

for some T > N .

Suppose |∇v|q ∈ LTn(Ω) for some Tn >
N
q′

. Then by elliptic regularity we have v0 ∈ W 2,Tn(Ω)

and hence |∇v0| ∈ W 1,Tn(Ω). If Tn > N then by the Sobolev imbedding theorem we have
|∇v0| bounded and we are done. We now suppose Tn ≤ N . If Tn = N then elliptic regularity
shows that v ∈ W 2,N(Ω) and hence |∇v| ∈ W 1,N(Ω) ⊂ LT (Ω) for all T <∞ and we are done.

Now suppose Tn < N . Then we have |∇v0| ∈ L
NTn
N−Tn (Ω) and hence we have |∇v0|q ∈ LTn+1(Ω)
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where

Tn+1 :=
NTn

(N − Tn)q
.

Now note that Tn+1 > Tn provided Tn >
N
q′

. So if T0 >
N
q′
> 1 then we have Tn < Tn+1 for

0 ≤ n, provided we can continue the iteration. It is also clear that after a finite number of
iterations there is some Tn < N such that Tn+1 ≥ N . If Tn+1 > N then we are done and the
case of equality is covered above.

We now return to the case of (20). First notice that for ε > 0 small we have

N

q′
<

N
q
q−1
− εq

.

Fix T0 to be strictly between these quantities. Then note that since |∇v(x)|q ≤ C

|x|
q
q−1−εq

for

|x| ≤ 1, and so |∇v|q ∈ LT0loc(RN). We can then apply the above result for the model problem
(the proof of the model problem easily extends to the case of (20), to see that |∇v| is locally
bounded. We can then easily obtain that v is a C2,δ solution for some small δ.

2

Remark 2. We now give a rough outline how one can obtain a positive solution of (2) in
the case where a(x) has added decay. We argue exactly as in the proof of Theorem 3. To
show Jλ has a fixed point in BR in Zλ we require that

C(R2 +Rp) + CA(λ−1δ) + Cδσ+1 + Cλθ + Cλθ−q(1−σ)Rq + CλθRq ≤ R, (41)

and

C(R +Rp−1) + Cλθ
(

1 +Rq−1 +
1

λ1−σ +
Rq−1

λ(1−σ)q

)
≤ 1

2
, (42)

are satisfied. The difference in the current argument is we now choose the parameters R and

δ in a different manner. We choose R = R(λ) = λt and δ = δ(λ) = ελ
t

σ+1 where ε > 0 is
chosen small and where t > 0 is picked later. Then note that with these choices of R and δ
we satisfy (41) and (42) provided ε > 0 is sufficiently small and:

1) A(λ−1δ(λ))
λt

→ 0 as λ↘ 0,
2) θ > t, 3) θ − q(1− σ) + qt > t, 4) θ + qt > t, 5) θ + t(q − 1) > 0,
6) θ − 1 + σ > 0, 7) θ + t(q − 1)− q(1− σ) > 0.

To satisfy 1) we will require that λ−1δ(λ) → ∞ as λ ↘ 0; which requires that t < σ + 1.
Once this is satisfied that we can satisfy 1) by imposing enough decay conditions on a(x); we
omit the numerology.

4 Appendix

The following lemma follows from elliptic regularity and Sobolev imbedding. See, for in-
stance, Lemma 2.2 [20].

Lemma 4. Suppose A1 ⊂⊂ A2 are bounded concentric annuli or balls in RN .
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1. Suppose 1 < t <∞ and φ is a distribution defined on A2 such that the right hand side
of (43) is finite. Then φ ∈ W 2,t(A1) and one has the estimate

‖φ‖W 2,t(A1) ≤ C

(∫
A2

|∆φ(x)|tdx
) 1

t

+ C

∫
A2

|φ(x)|dx. (43)

In addition we have C depending only on t, A1, A2

2. For N < t <∞ one has

sup
A1

|∇φ| ≤ C

(∫
A2

|∆φ(x)|tdx
) 1

t

+ C

∫
A2

|φ(x)|dx, (44)

where C depends on t, A1, A2.

We now recall the particular maximum principle but this requires we recall the best constant
SN associated with the critical Sobolev imbedding H1

0 ⊂ L2∗ which is independent of the
domain; SN‖φ‖2

L2∗ ≤ ‖∇φ‖2
L2 for all φ ∈ H1

0 .

Lemma 5. Maximum Principle. [15] Suppose w ∈ H1
0 (Ω) is a weak solution of −∆w(x)−

C(x)w = f(x) ≥ 0 in Ω where ‖C+‖
L
N
2 (Ω)

< SN . Then w ≥ 0 in Ω.

For our purposes we need a slight adjustment of this result.

Corollary 1. Suppose w ∈ H1
0 satisfies −∆w + a(x) · ∇w + C(x)w = f ≥ 0 in Ω and

‖(div(a)− 2C)+‖
L
N
2 (Ω)

< 2SN .

Then w ≥ 0 in Ω.

Proof. We follow the proof of [15]. Multiply the equation by w− and integrate by parts to
arrive at

SN

∫
Ω

w2∗

− dx ≤
∫

Ω

|∇w−|2dx ≤
∫

Ω

(
div(a)

2
− C

)
w2
−dx ≤

∫
Ω

(
div(a)

2
− C

)
+

w2
−dx,

where we used the critical Sobolev imbedding on the left. Now apply Hölder’s inequality on
the right and combine terms.

Lemma 6. Suppose p > 1. There exists a constant C > 0 such that the following hold:

1. For all numbers w > 0, φ ∈ R, and φ̂,∣∣∣|w + φ|p − pwp−1φ− wp
∣∣∣ ≤ C

(
wp−2φ2 + |φ|p

)
,

and∣∣∣|w + φ̂|p − |w + φ|p − pwp−1(φ̂− φ)
∣∣∣ ≤ C

(
wp−2(|φ|+ |φ̂|) + |φ|p−1 + |φ̂|p−1

)
|φ̂− φ|;
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2. For all x, y, z ∈ Rn,∣∣∣|x+ y|p − |x+ z|p
∣∣∣ ≤ C

(
|x|p−1 + |y|p−1 + |z|p−1

)
|y − z|.

We now come to a slight generalization of some well known results regarding extending
distributional solutions from a punctured domain to the full space.

Lemma 7. Suppose 3 ≤ N , 0 < σ < N − 2, f ∈ L1
loc(RN), C ∈ L∞loc(RN), a ∈ C∞(RN ,RN)

and φ ∈ L1
loc(RN\{0}) satisfies ∆φ + a(x)∇φ + C(x)φ = f in RN\{0} in the sense of

distributions. Suppose exists some C0 > 0 such that |φ(x)||x|σ ≤ C0 for all 0 < |x| < 1.
Then ∆φ+ a(x) · ∇φ+ C(x)φ = f(x) in RN in the sense of distributions.
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