
Math 807T - Using Math to Understand Our World

Workshop 2009

Introduction

In this class we’re going to look at some real life problems that people really used math
to solve- problems that are important to business, science, medicine, and other sectors of
society. You’ve probably already done a bit of this in your other classes. Can you give some
examples? What questions did you answer?

In this class we will face more real-world questions such as “How can you tell the time of
death of a dead body?” and “How can you keep an outbreak of an infectious disease from
turning into an epidemic?” or “How can you identify children who are at risk of developing
adulthood obesity?” We’ll start with questions of this type and then we will think about
how we might use mathematics to answer the questions. This is a little bit different from
what you usually do in a math class, where you are given problems that have already been
formulated as math questions, but it is very much like what is done in the real world.

These types of questions are the type that many applied mathematicians study. An
applied mathematician is someone who describes a real-world situation using the language
of mathematics and then uses that mathematics to answer important questions- basically
applying mathematics to the real world. A pure mathematician is someone who proves
theorems about mathematics. Often applied mathematicians use pure mathematics, for
example, a lot of pure mathematics went into developing RSA cryptography. Remember all
those theorems! This semester we will be applied mathematicians.
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One note: Applied mathematics does not mean everyday mathematics. Everyday math-
ematics is the type we use to answer questions like: “If carpeting cost $7.50 per square foot,
how much will it cost to carpet a 9 × 16 ft room?” or “If Limited Too is having a 40%
off sale, how much is that $56 dress that I’ve been wanting?”. Everyday mathematics is
important, but it is not quite the same as applied mathematics. In everyday mathematics,
it is clear what the math question is. In applied mathematics, while it might be clear what
the question is, it is not always clear what the math question is (for example, you know that
you want to know if a teacher is cheating on a standardized test, but you may not know
how exactly to use mathematics to determine that). Applied mathematicians must think
first about how to put the problem into mathematical language. Even before that, they
must understand the problem well, be it in biology, finance, medicine, business or whatever.
And then the mathematical analysis used to answer the question is usually more complex,
with more steps, than in everyday mathematics. Many of the problems we will address in
this workshop will be closer to everyday mathematics than applied mathematics because
it takes more than a day to solve an applied mathematics problem. But the problems in
this workshop have been chosen to develop your ability to deal with more complex applied
mathematics problems which you will face in the projects.

Coming up with a mathematical statement of a real-life problem is called modeling.
Sometimes a model can be just a simple equation. Here’s a popular example. It turns out
that crickets chirp faster when it’s warm outside and slower when it’s colder. In fact, you
can estimate the temperature by counting the number of times a cricket chirps in a minute.
If C is the number of chirps in a minute, then the temperature T is T = C/4 + 37. The
equation T = C/4 + 37 is a model of how the temperature depends on the number of chirps
(or vice versa). It’s not exact- if you count the number of chirps, divide by 4, and add 37,
most of the time you will not get exactly the current temperature. But it’s close. It’s a good
model of what happens in real life. How do you think biologists came up with this model?

Solving problems in applied mathematics can be an arduous endeavor. As applied mathe-
maticians, we will have to read a lot of background information about our real-life problems.
We will need to know what factors affect our real-world system and how these factors in-
teract. We may have to try out several models before coming up with one that seems to
work. Or we may use an already-existing model, but we may have to read a lot in order to
understand how to use it. Solving a real applied mathematics problem is so involved that

2



we will only solve 5 or 6 problems this semester, once we complete the workshop.

You’ve probably got the idea by now, that an important part of applied mathematics is
coming up with the models. Often models are written in terms of functions that show how
one quantity depends on another quantity (for example, temperature and chirps). For this
reason, we will first spend some time reviewing what you already know about functions and
learning about some new functions. The most common types of functions used in modeling
are: linear, polynomial (usually quadratic or cubic), exponential and trigonometric.

Today we will discuss linear functions, polynomials, and exponential functions, but mostly
exponential functions.

1 Linear Functions

What do you know about linear functions? What makes a function linear? What would the
graph of a linear function look like? A table? A formula?

Is the cricket function linear or not linear? How do you know?
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Is this linear? How can you tell?

0 0
.1 .01
.2 .04
1 1

If you’re given some data from an experiment, how can you tell whether or not it is
linear? Here is some data about the temperature of a cooling cup of coffee. Is it linear?

Time (in mins) Temperature (◦ F)
0 200
10 181
20 163
30 146

One thing to keep in mind is that real life data is usually not as pretty as made-up data.
It doesn’t always fit a linear, polynomial or exponential pattern exactly and you are stuck
deciding which sort of model would be best for your problem. This data looks like it might
be fairly closely approximated by a linear model, but we will see later that an exponential
model is better.

Here are some exercises to limber up your linear skills, and maybe even get you into the
modeling mood.

Exercises

1. Graph the two lines y = 4 − 2x and 4y = 12x + 7 (preferably without a calculator).
Where do they intersect? Be precise.
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2. Acme Car Rental offers cars at $40 a day and 15 cents a mile. Zoomy Car Rental offers
cars at $50 a day and 10 cents a mile. For each rental company, express the rental cost
mathematically if you are going to rent the car for three days. Which company offers
the better deal?

3. Consider the problem of search and rescue teams trying to find lost hikers in remote
areas of the West. To search for an individual, members of the search team separate
and walk parallel to one another through the area to be searched. If the search team
members are close together they will be more likely to be successful than if they are
far apart. Let d be the distance between searchers (and suppose they are all the same
distance apart). In a study called An Experimental Analysis of Grid Sweep Searching,
a lot of data about searcher distances and success rates was recorded. The following
table comes from that report

Separation distance Percent found
20 90
40 80
60 70
80 60
100 50

Write a function P (d) to model the success rate. If d = 0, what is P? Does this make
sense? If P = 0, what is d? Does this make sense?

4. Consider the models you used in the previous questions. In which cases do you think
your model was exact and in which cases do you think it was a good approximation?
Support your answers.

5. You can often use linear functions (and other types of functions) to represent a trade-off
between two things. For example, the function in 3 might be thought of as representing
a trade-off between searcher distance and success rate. Here’s another trade-off that
one of your students might face. Emma goes into the candy store to buy some tootsie
rolls and some York peppermint patties. Tootsie roles are 2 cents each and peppermint
patties are 5 cents each. Emma has $1 and she’s going to spend it all. She needs to
figure out how many of each to buy. What are her options? Write a linear function to
represent her options and draw a graph that shows all the options. Label your axes. If
Emma buys 14 peppermint patties, how many Tootsie rolls can she buy? What if she
buys only 6 peppermint patties? (Remark: it’s ok that your graph includes fractional
values of candies- we’ll just ignore those values for this application).
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6. Governments must make trade-offs similar to the one that Emma had to make in
Exercise 5. For example, there is an ongoing battle in the government as to how much
money to spend on defense programs and how much to spend on social programs.
This is the famous “guns and butter” problem. There is only so much money and
the more you spend on defense, the less you have for butter and vice versa. Suppose
the government has $12,000,000 to spend on guns and butter and guns cost $400 each
and butter costs $2000 a ton. Write a linear function that represents the governments
options and draw a graph. Label your axes.

7. Here is a more complicated trade-off problem. For now, just read this problem. It
will be our fourth project later this semester. One day, a few years ago (in the days
of VCR’s), Wendy Hines received the following somewhat desperate email from her
friend Tom:

Dear Wendy,

VCR tape will record 120 minutes in LP mode: it will record (3X) 360 minutes in EP
mode. We frequently record tapes for later viewing. If a movie is e.g. 137 minutes,
it obviously will not fit on the tape in LP mode ( 17 minutes short). If I want to
record most of the movie in the best quality mode (i.e. LP=60 min.of recording per
hour)then I must record some portion in the slower EP mode(120 min per hour) in
order to get most of the movie recorded in the better quality LP (60 min per hr) mode.
With my inadequate and antiquated memory of math, I often guess at the necessary
mix of recording speeds.. Unfortunately, I sometimes estimate wrongly-resulting in
missing the last few minutes of a movie....very frustrating!!! Intuitively, I know there
must be an algebraic formula to indicate how much EP and LP recording time must be
allocated....but I cannot come up with a successful formula........Your challenge: is there
such a formula that can be relied upon that is better than my “guessing” and prevent
“short” taping incidences. If there is such a formula..it could save my marriage.

Thanks for listening,

Tom

Here’s where the work of an applied mathematician really starts. Tom, who is a
psychologist, has not stated his problem in a way that is very easy to understand,
and he has stated it in English, not math. Our main challenge when we get to this
project will be to figure out exactly what Tom is saying and figure out exactly what
his trade-off is.
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2 How Does Your Function Grow?

Linear functions grow at a constant rate- i.e. they grow (or decrease) by the same amount
from step to step. But in real life there are a lot of things whose growth rate is always
increasing or decreasing. Imagine, for example, a glass of cold lemonade warming up in a
hot room. Does the lemonade change temperature by the same amount every ten minutes?
How do you think a graph of the temperature might look?

Suppose a population of bacteria doubles every 6 hours (which it is likely to do). Does
it increase by the same amount every 6 hours?

To know what functions to use for a model, we have to have some understanding of how
different functions grow or decrease. In this section we’ll explore this some.

Task 1: Use your calculator to graph the functions f(x) = x, f(x) = x2, f(x) = x3,
f(x) = x4 and f(x) = x5 for x between 0 and 10 and draw graphs on the same axis here.
How do these functions compare?
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These, of course, are examples of polynomial functions, but a polynomial function can
have many terms. For example 3x3 + 2x2 − 6x is a polynomial. If the highest power in your
polynomial is 2, then we might call the polynomial a quadratic function (though it’s still a
polynomial, too). If the highest power is 3, we call the polynomial a cubic function. What
do we call it if the highest power is 1?

People who do modeling as a profession need to know a lot about how different types of
functions behave, how to make a function have certain values at certain places, and grow
or decrease in the right way at other places. It takes a lot of training to become fluent at
modeling.

Task 2: Graph the polynomial function f(x) = 3x3 + 2x2 − 6x. How low does it go? How
high does it go? Where is the function zero?

Usually an applied mathematician has to work backwards. She or he has to take a graph
(probably made up of data points) and find a function that nearly fits it.

In the next few tasks we will learn something interesting about polynomial functions.

Task 3: Make a table that shows the values of the function f(x) = 2x for integer values of
x (use x = 0, 1, 2, 3, 4, 5, 6). Add an extra column onto your table and in that column write
the differences between consecutive entries in the second column. Now make another table
for f(x) = x2, only this time add on two extra columns and in each of those columns write
the difference between consecutive entries in the previous column. Do the same thing for
f(x) = x3 and f(x) = x4. What do you notice?

8



9



Task 4: Try the same thing for f(x) = x2 − x and the function in Task 2. What happens?
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Task 5: How might what you just learned be useful? Suppose a laboratory scientist is studying
how much a metal rod will stretch when you pull on the ends. He does some experiments and
takes some data which is in the table below. What sort of function should you use to model
the amount of stretching as a function of the applied force (you don’t have to come up with
the specific function, just figure out what sort of function you would want to look for)?

Applied force Amount of stretching
1 N .09 mm
2 N .76 mm
3 N 2.61 mm
4 N 6.24 mm
5 N 12.25 mm
6 N 21.24 mm
7 N 33.81 mm

In real life, data is never this nice. The differences never work out exactly. You might get
the following data and then when you work out the differences, you would have to decide if
the 3rd differences were close enough to being constant. Once you decided to go with a cubic
polynomial for your model, you’d have to then figure out exactly which cubic polynomial
works best. There’s a lot of work, and math, involved in coming up with polynomial models.
But once you finally have your model, you can use it to predict how much the rod will stretch
under even greater forces, or just under forces that you haven’t tried yet (like 4.5 N). This
ability to predict is crucial in science and industry.

Applied force Amount of stretching
1 N .08 mm
2 N .76 mm
3 N 2.6 mm
4 N 6.25 mm
5 N 12.27 mm
6 N 21.24 mm
7 N 33.8 mm

By the way, the cubic polynomial that fits the data (exactly!) in the first table is s(f) =
.1s3 − .01s2. The data in the second table comes pretty close to matching this.

Task 6: Bacteria often reproduce by simply splitting in two, and then each half grows to
the size of the original one. Imagine the following scenario: a single bacterium is sitting in
a Petri dish filled with agar (yummy stuff that bacteria like to eat). The bacterium splits
into two. Each of those grow and split into two more, so now there are four. Each of those
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four split into two more, etc. Count the bacteria after each division. Make a table that
shows on one side the number of times you have counted the bacteria so far, and on the
other side the number of bacteria you counted each time (let your first entry be 1 and 1).
Look at the differences. What happens? Can you think up a function for the number of
bacteria of the form B = f(n) where n is the number of times you have counted and B is the
number of bacteria? Even though this function for B matches the story exactly, it is really
an approximation. In real-life, the number of bacteria is probably not exactly B, as a few
bacteria might die, or a bacteria might occasionally split into three and not two, or not split
at all.

A function of the form of B is called an exponential function (can you guess why?).
Exponential functions grow faster than any power function (and hence any polynomial).
Here are some graphs that show the functions f(x) = x2, f(x) = x5 and f(x) = 2x. The
power function may be bigger at first, but the exponential function always beats it out in
the end.
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Exercises (These will be handed in)

1. Below is some data showing the stopping distance of an Alpha Romeo sports car for
different speeds.

Speed (in mph) Stopping distance (in feet)
70 177
40 57.8
130 610.5
100 361
140 708
160 925

Find a model (i.e., an equation) for the stopping distance and use it to predict the
stopping distance if the car were going 200 mph. (hint: assume your model has the
form y = kxn where k is a fixed number and n is a power).

2. Notice that in the data above, the speeds are given every 30 mph, and the differences
work out almost exactly. In real life, data is seldom so nice. Here is some more realistic
stopping distance data for Toyota’s new Escargo.

Speed (in mph) Stopping distance (in feet)
35 74
50 149
90 490.5
100 590

Can you find a reasonable model for this data? This is pretty challenging, but remem-
ber that from the above exercise you have some idea of what form your model might
take. Once you’ve got a model you’re happy with, use it to figure out the stopping
distance at interstate speeds (assuming you’re going the speed limit).

3. Gulliver, in his travels, discovered that the Lilliputions were increasing 2.6% in popu-
lation each year. Here is a table of the population for the ten years that Gulliver spent
in Lilliputia (the population is measured in thousands).
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Year Population (in thousands)
1780 255.97
1781 262.63
1782 269.46
1783 276.46
1784 283.65
1785 291.03
1786 298.59
1787 306.36
1788 314.32
1789 322.49

If Gulliver goes back to Lilliputia in ten years (i.e., in 1799) how many Lilliputions
will there be? What will the increase have been between 1798 and 1799, both in raw
numbers and in percentages? What if he goes back in 40 years? In 50? What’s going
to happen to the Lillipution population in the long run? How does this compare to
the bacteria population we talked about earlier?

4. Graph the functions f(x) = x20 and f(x) = 1.5x. Which function is bigger? Explain.

5. In which problems did you use exponential models and in which did you use power
models?
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3 More About Exponential Functions

Modeling with polynomial functions is a very interesting and deep topic that we have only
scratched the surface of. Unfortunately we don’t have time to do more than that. But at
least this gives you a little flavor for the topic.

We will spend the rest of the Workshop talking about exponential functions. They are
very useful in modeling- they come up all the time, more often than polynomial functions
-and they are not too hard to work with. Here is an everyday example where exponential
functions describe what’s happening.

Task 1: Suppose you deposit $100 into a savings account and the savings account earns
8% interest. Normally interest is compounded (i.e., added on) several times a year. Let’s
suppose that in this case interest is compounded quarterly (i.e., every three months). That
means that 8/4% is added on each quarter (you divide the interest rate by the number of
times it is compounded each year). So after the first three months the bank adds $2 to your
account. How much money will you have after 2 quarters if you always put the interest back
into your savings account? 3 quarters? a year? Can you find a function, M(q), that tells
you how much money you will have after q quarters?

Remark: Normally when a bank lists interest rates for savings accounts, they list two
numbers- the regular interest rate (or nominal rate) and the APY. APY stands for annual
percentage yield and is the percentage increase of the principal in a year’s time. Normally,
unless the interest is compounded only annually, the APY is a bit larger than the nominal
rate.

Task 2: What is the APY for the 8% savings account above? When Wendy Hines wrote
these notes, she checked out Wells Fargo and found out that they give a whopping 2.23%
interest rate for accounts between $10,000 and $25,000, compounded quarterly. What is the
APY?
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Task 3: We’ve used exponential functions to model the value of a bank account accruing
interest and the size of a growing population. How are these two problems similar?

Before, we said that exponential functions grow faster than almost every other function,
but it may seem that at a 2.23% interest rate, or even at an 8% interest rate, your money
doesn’t grow too quickly. Sometimes you have to wait a bit for the exponential function to
really take off. Here’s an old story about a forgotten savings account- it goes something like
this. One day, in 1996, a man by the name of Samuel Johnson was in his attic going through
a trunk that had belonged to his grandfather. In the trunk he found an old bank passbook
that had apparently been in his family for a long time. The last transaction in the passbook
was dated July 31, 1790. The balance at that time was $244.82. On top of the page was
printed the current interest rate: 4.5% compounded quarterly.

Task 4: How much money was the account worth in 1996? Samuel took the passbook to
the bank, which still existed, but they no longer had any record of the account and they
weaseled out of paying Samuel his money.

Exponential functions may grow slowly at first, but as you see, at some point they will
really take off. Any time you put some money in the bank and don’t touch it and let it
accrue interest (i.e., let the interest compound), the value of your savings will be given by
an exponential function.

Compound interest has a huge impact on how debts and savings grow. If you google
“compound interest” you will get literally millions of hits, most of them from financial
companies trying to explain to you how compound interest makes you a lot of money, and
why, to get the full effect of compound interest, you need to start saving money early.

16



Task 5: For example, suppose at age 40, you invested $5000 in a money market fund that
makes 6% compounded annually. How much will this investment be worth when you retire?
What if you had made the investment when you were 25? What if instead your parents had
invested it for you when you were born? What if they had been able to find a fund that paid
9% annually?

If you added $100 a month to the fund, your money would grow even faster. You’d be
amazed! It takes some more math to calculate savings when you’re also making a monthly
or yearly contribution, so we’ll save that for a project later in the semester. In that project,
we will also see how credit card debt grows exponentially, if you don’t pay it all off each
month.

One way that people like to think about exponential functions is to talk about doubling
times.

Task 6: If you invest $100 at an interest rate of 8% compounded quarterly, how long does
it take for your investment to double (assuming that all interest is put back into the account
and that you don’t add or take out anything from the account)? How long does it take for it
to double again? And again?
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Each exponential function has its own fixed doubling time. Exponential functions grow
so quickly because more and more is doubled each time.

Task 7: What is the doubling time for the $5000 investment at 6% compounded annually?
When will it double again? How much money will you have after the first doubling time?
After it doubles again? And again? What is the doubling time for the function f(x) = 1.5x?

Task 8: There is a famous story about the meeting between a Chinese emperor and the
inventor of the game of chess. The emperor was so delighted by the new game that he offered
the inventor anything he wanted in the kingdom. The inventor said that all he wanted was
some grains of rice. “I would like one grain of rice on the first square of the chessboard, two
grains on the second, four grains on the third, and so on. I would like all of the grains of rice
that are put on the chessboard in this way.” Thinking this would amount to no more than
a bushel of rice, the emperor readily agreed. Let’s try this. What do you think will happen?
How many grains of rice will be on the last square? (Extra credit if you can figure out how
many were on the entire chessboard). Do you think this is more or less than a bushel? Notice
that the amount in the last square is more than the amount on all the previous squares put
together. In fact, this is true for every square: the amount on any square is more than the
amount on all the previous squares put together. This shows how doubling can make things
grow amazingly quickly.
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Task 9: Discuss: which would you rather (1) I give you $10000 a year for 64 years or (2)
I give you $.01 the first year, $.02 the second year, $.04 the third year and so on, doubling
the previous years amount each year, for 64 years?

The enormity of exponential growth has very important real-world implications. With
these examples in mind, think about what it means to say something like “world oil con-
sumption is growing at a rate of 2.3% per year”. In 2000, world oil consumption was about
27,740,000,000 barrels. The total amount of oil believed to remain in the earth is about 1027
billion barrels. If we do the math and add up the total amount used for the next several
years (finding out how much is used in 2020 is not hard, but adding up the total amount
used between now and 2020 is a little harder), we would discover that we will run out of
oil in about 27 years, unless consumption is drastically reduced. Even still, there is a finite
amount of oil in the earth, and we will run out sooner or later.

Task 10: If oil consumption continues to grow at a rate of 2.3% per year, how long until
consumption doubles? How many barrels will be used per year then? How many barrels will
be used per year after it doubles a second time?

When we do our project about exponential growth of credit card debt, we will be able
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to apply the math we learn there to predict growth of the national debt, which is currently
a little over $8 trillion. Scary, huh? And we will be able to show that the world will run out
of oil in 27 years.

Every exponential function has the form f(x) = Cbx where C and b are fixed numbers.
C is called the initial value because it is the value of f(x) = Cbx when x = 0, for example in
the interest problems, C is the initial principal. What is C in the rice problem? The number
b is called the base. It can be any positive number. What is b in the interest problems? in
the bacteria problem? in the rice problem?

Exercises (These will be handed in)

1. Review the uses of exponential functions we have talked about so far. In which exam-
ples are exponential models exact and in which are they approximations?

2. Using your results from Exercise 3 in Section 2, what is the doubling time for the
population of Lilliputia? The world’s population currently has a doubling time of
about 38 years. How big of a problem do you think this is?

3. What are C and b for the Lilliputian population model in Exercise 3 of Section 2?

4. If a 5% interest rate is compounded monthly, what is the APY?

5. Suppose Wendy Hines initially invests $1000 in the account from Exercise 4 when her
daughter is born. Write a function that shows how much the account is worth after n
years. Sketch a graph of this function that goes up to 90 years. How much will the
account be worth when she goes to college? When she retires?
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4 The Exponential Number e

The most common base for exponential functions is the number e. The value of e is about
2.718. Does your calculator have an e button? If so, you can type e1 and see several digits of
e. To write down the digits of e exactly would require an infinite number of digits after the
decimal place, and so it is easier to just write “e”. You might wonder why such a weird looking
number is so popular. Unfortunately that’s pretty hard to explain. One early appearance
of e actually came out of the work of a mathematician named Jacob Bernoulli, in the late
1600’s (there was a whole family, including three generations, of Bernoulli mathematicians).
Bernoulli wanted to understand how compound interest worked to cause investments and
debts to grow. He came up with the formula P (1 + r/n)n to describe the value of an
investment with principal P invested at a rate r compounded n times per year.

Task 1: When we say “value” what do we mean? the value when? Is this formula the same
as the one you found for compound interest?

Bernoulli wondered, “What happens if I compound more often? Will that have a big
effect on how fast the value of an investment increases?” So he compared, for example,
the growth of investments with quarterly compounding, monthly compounding and daily
compounding.

Task 2: Does it make a big difference how often interest is compounded?

21



Bernoulli, being a mathematician, wondered what would happen if compounding was
continuous. What does it even mean to “compound continuously”? Well it’s more often
than every hour.

Task 3a: What would n be if you compounded every hour?

It’s more often than every minute.
Task 3b: What would n be if you compounded every minute?

It’s more often than every second.
Task 3c: What would n be if you compounded every second?

Suppose, for the moment, that the interest rate is r = 1 (in percents that’s 100%- a good
deal!) and that your initial investment is $1.

Task 4a: What would the balance be after a year if you compound hourly? every minute?
every second? What happens to the expression (1 + 1/n)n as n gets larger and larger?

We say that

e = lim
n→∞

(
1 +

1

n

)n

.

It turns out that
er = lim

n→∞

(
1 +

r

n

)n

.
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Task 4b: Use your calculator and different values of r to convince yourself of this. Record
the computations that you did here.

If we compound continuously then after a year, with a principal of P and an interest rate
of r, we have

P lim
n→∞

(
1 +

r

n

)n

= Per

dollars.

Task 5: Give a formula for the value of the investment after ten years. After t years.

The number e is not a very good base for investment formulas that don’t use continuous
compounding, nor is it very good for the bacteria division or rice problem, but it turns out
to be very convenient for many scientific applications.

Exercises

1. Graph ex and e2x. How do they compare? Now graph ex · ex and e2x. Make an
observation. Do you remember any laws of exponents that could account for this
observation?

2. Suppose you are lucky enough to find a bank with an 8% interest rate compounded
continuously. Suppose you deposit $100. Write a formula for the amount of money in
the account after t years. What is the APY?
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5 The Undoing of the Exponential Function

Task 1: On your calculator, compute e2. There is another curious button on your calculator
called ln. Compute ln of the number you just got. What happened? Now compute e10 and
then compute ln of that number. Compute ln(e3.4). Compute ln(ex) for a few other values
of x, or even graph ln(ex). What happens? There’s a word for this. We say ln x is the

of the exponential function ex.

VERY IMPORTANT FACT: ln(ex) = x

Task 2: Suppose we invest $100 at 8% compounded continuously. Can you use the VERY
IMPORTANT FACT, instead of trial and error, to figure out how long it takes the in-
vestment to double? In order to find out how long it takes the value of the investment to
double, do you really need to know the amount of the principal? Why or why not? How long
would it take the investment to double if the investment rate were 7%?

Task 3: Solve the following: 4e3x = 24, 400e.01t = 1000
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Every exponential function has it own associated logarithm function. The function f(x) =
2x has the associated logarithm function g(y) = log2 y. The function f(x) = 10x has the
associated logarithm function g(y) = log10 y. The function f(x) = bx has the associated
logarithm function g(y) = logb y. The number b is called the base just as it is for exponential
functions. The natural logarithm is really just loge. It’s called the natural logarithm just
because it’s used so often.

Task 4: What is the base of log2 y? loge y? ln y?

Task 5: Write a VERY IMPORTANT FACT for log2. What is log2 8? log2 32?

In this class, we’ll only use the natural logarithm. The algebra of exponentials and
logarithms is very useful in applied mathematics and is a topic in Algebra II. Unfortunately,
we don’t have time do study this topic in any depth. We will just use logarithms to help us
solve problems.

Exercises

1. Suppose we deposit $5000 into a bank account that gives 5% interest compounded
continuously. Use ln to determine when the balance in the account would be $1,000,000.

2. Repeat Task 5 for log10 y. What is the base of log10 y? What is log10 10? log10 10000?
log10 3? log10 30?

3. What happens if you take the logb of a negative number (for any base b)?

4. Graph ln x. Explain why the graph looks the way it does (the next problem might help
you with this one).

5. Graph both ln x and ex on the same graph. Do you notice any graphical relationship
between these two functions? Can you think of a reason why they might be related in
this way? You could also compare log10 x and 10x if you want another example to look
at.
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6 Review

Is your head spinning? Let’s review. We talked a little bit about linear functions. We talked
even less about polynomials. We saw a few situations in the exercises that we could model
using linear functions and we saw an example where we could use a quadratic model (the
stopping distance exercise). We talked a lot about exponential functions. Linear functions
have a steady increase, polynomials grow faster, but exponentials grow the fastest. Many
real-life things grow exponentially. We talked a lot about how investments grow exponentially
if you leave them sit and always add the interest back in. We also saw that bacteria division
and rice-grain doubling are exponential. We talked about examples of exponential population
growth. If something increases by a fixed percent over each time period, then it is growing
exponentially.

We talked about the special exponential base e, which we will use quite often in the
weeks to come. We also saw how logarithms “undo” exponentials and how to use ln to solve
equations with e. We learned how to find the doubling time of exponential functions. These
skills will soon be very useful as we try to solve some real-world problems.

Review Exercises (These are to be handed in)

Here are some problems to try that will help you to consolidate what we have learned
today and help you move your focus towards exponential functions with base e.

1. Describe some things you might do to determine whether some given data is linear,
polynomial or exponential. You may refer to exercises or tasks.

2. Populations are often thought to grow exponentially until they begin to run out of
resources, at which time they begin to level off. Suppose we have a population of
rabbits in a park and on May 1 we did a rabbit census (don’t laugh- people really do
this) and found that there were 426 rabbits in the park. If t stands for the number of
days since May 1, then we might model this population as R(t) = 426ert where r is
the per capita growth rate per day (that is, the number of new rabbits each existing
rabbit makes, on average, per day). Presumably (hopefully!) r will be substantially
less than one. How do we measure r in practice and how do we use this model to
predict things about the growth of the population? Well suppose our park workers do
a second census on June 1 and find that there are now 600 rabbits. How could you use
that information to find r? Find r and use that to determine the doubling time for the
rabbit population. What will the population be on Sept. 1? Why is this information
useful? Notice that with this model, we could have fractions of rabbits. That’s ok, it’s
just an approximation.
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3. Brazil experienced exponential inflation during the last half of the 20th century (before
its currency was revalued). Suppose the price of a loaf of bread was given by b(t) =
.35e.34t where t is years since 1950. What was the price of bread in 1950? (the Brazilian
unit of currency is the real- pronounced “hay-yal”)? What was the price in 1995? You
can probably imagine why they got rid of lower denominational notes. By 1995, the
smallest note was the million real. What was the yearly inflation rate during this
period? By what year was the price of bread one real?

4. Solve

(a) 3e2x = 20

(b) 170e.7x = 420

(c) ln(ex) = 1 (this one is really quick if you spot the trick)

5. Fill in the blanks. If oil consumption increases by a fixed percentage each year (i.e.,
the same percentage every year) then we say that consumption is growing . If
a savings account grows with a fixed interest rate year after year (and you don’t take
any money out or put any money in, except for the interest) then your savings grows

. If a population doubles every 10 years then it is growing .

6. If we deposit $1000 and are lucky enough to find a bank that compounds continuously,
write a function that describes the value of our savings after t years if the interest rate
is 7%. Assume that we don’t withdraw or deposit any money into the account after
the initial deposit, except that we always return the interest back to the account.

7. Suppose some quantity can be modeled as q(t) = q0e
rt. There is a rule called The Rule

of 70 which says that the doubling time is approximately 70/r. Where does this come
from? How accurate is it?
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7 Exponential Decay

In most of our previous examples, the exponent was always positive, but it can be negative,
too.

Task 1: Graph the function f(x) = e−x. What is f(0)? f(1)? f(3.5)?

We say that such a function decays exponentially.
Here is another example of exponential decay. Consider a full glass of water in a straight

up and down glass. Now pour half of the water out and note the new height of the water.
Now pour half of that water out and note the height again. Continue doing this.

Task 2: Write a function h(n) for the height of the water after the nth pouring (so h(0) = 1).
Notice that here the base is less than 1. How is this like having a negative exponent?

Here is some space to draw the function f(x) = (1/2)x (in the example above, n could
only be an integer, but x can be anything).
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There are many real-life examples of exponential decay. Perhaps the most famous one
is radioactive decay. All atoms are made up of protons, neutrons and electrons. Uranium
atoms have lots and lots of protons, neutrons and electrons and, because uranium atoms are
very unstable, sometimes these particles go zinging off to other places (we say the uranium
“decays” or “breaks down”). This is called radioactivity. The particles that zing off are
called alpha particles and beta particles and they can do damage to living cells that they
zing into. Once alpha particles and beta particles have zung off, the remaining atom is no
longer a uranium atom. The new atom is also radioactive, however, and more alpha and
beta particles will zing off. Eventually, as alpha and beta particles zing off, the uranium will
be transformed into something no longer radioactive, but this takes a long time.

Uranium is a well-known radioactive element, but because it decays into other radioactive
elements, it can be a little confusing to talk about the decay of uranium. Instead, lets talk
about the decay of radioactive iodine isotopes (an isotope is a version of an element that has
a different number of neutrons than the regular version does- isotopes tend to be radioactive).
Iodine-129 and iodine-131 are both radioactive, but when they undergo radioactive decay,
they turn into nonradioactive elements. As time goes on, more and more of the iodine isotope
decays until eventually there is no more radioactive iodine left. The remaining substance
is safe. It turns out that if I0 is the amount of iodine isotope initially in a lump of stuff
(measured in milligrams perhaps), then I(t) = I0e

−rt is the amount of iodine isotope after
time t where the decay rate is r. This is really an approximation; it won’t be exact, but will
be pretty close. Decay rates for most radioactive substances have been determined in the
lab.

Remark: $1 for anyone who can find the contradiction in the above paragraph.

What chemists usually measure, rather than the decay rate itself, is what’s called the
half-life. This is analogous to the doubling time in exponential growth. The half-life is the
time it takes for half of the radioactive substance to decay.

Task 3: What would r be if the half-life of a radioactive substance is 20 years? (be careful
with the signs)

As mentioned, when uranium undergoes radioactive decay, other radioactive elements
result. The half-life of uranium is about 760 million years, but in nuclear reactors uranium
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is broken down much more quickly than that. Two of the byproducts of the decay of uranium
are radioactive iodine-129 and iodine-131. These are part of what we call “nuclear waste”.
The half-life of iodine-129 is 15.7 million years and the half-life of iodine-131 is 8 days. Here
are two problems about iodine-129 and iodine-131.

Exercises (These are to be handed in)

1. The Snake River Plain aquifer is the most important underground water resource
in the northwest U.S. It is the sole source of drinking water for 200,000 people. It
is the main source of irrigation water for crops and fisheries in Idaho. Over 75%
of trout eaten in the U.S. comes from Idaho fisheries (and where do your potatoes
come from?). In 2001, a PhD student named Michelle Boyd at the Idaho National
Engineering and Environmental Laboratory (INEEL) measured the amounts of various
nuclear contaminants in the aquifer. She knew that there were problems because
INEEL used to be a big producer of nuclear weapons from 1950 until the end of the
Cold War, and they took little care to dispose of their nuclear waste carefully. Basically
they just dumped it into the aquifer. Nuclear waste is no longer being dumped into
the aquifer, but of course what’s already been dumped is still there. She found out
that there are areas in the aquifer where the amount of iodine-129 is 3.82 picocuries
per liter of water (a curie is a standard unit of radiation- it would be hard to explain
exactly what it means; a picocurie is a trillionth of a curie). The highest amount that
is considered safe by the FDA is 1 picocurie per liter. How long will it be until water
in the aquifer is safe?

2. I-131 is sometimes used in medical imaging. It is injected into the blood and will collect
on certain kinds of tumors. It is also used to treat hyperthyroid (overactive thyroid).
When administered to a patient, I-131 (because it’s iodine) accumulates in the thyroid
where it decays. As it decays, the particles that zing off kill part of the gland, which is
good if your thyroid is overactive. I-131 has a half life of 8 days. Suppose it takes 72
hours to ship I-131 from the producer to the hospital. What percentage of the original
amount shipped actually arrives at the hospital? Suppose it is stored at the hospital
for anther 48 hours before it is used. What percentage of the original amount is left
when it it used? How long will it be before the I-131 is completely gone?
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