Dr. S. Cooper

Fall 2008

?

(1) Find det
$$\begin{bmatrix} 2 & -3 & 0 & 1 \\ 5 & 4 & 2 & 0 \\ 1 & -1 & 0 & 3 \\ -2 & 1 & 0 & 0 \end{bmatrix}$$
 by hand.
(2) Assume that det $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 7$. What is det $\begin{bmatrix} g & h & i \\ 2d + a & 2e + b & 2f + c \\ a & b & c \end{bmatrix}$
(3) Use the adjoint to compute the inverse of $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$.

(4) Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. Show that $\mathbf{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$ is an eigenvector of A. What is the corresponding eigenvalue?

(5) Let
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
.

- (a) Find all the eigenvalues of A by hand.
- (b) For each eigenvalue you found, find a basis for the corresponding eigenspace by hand.
- (c) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

(6) Is
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
 diagonalizable?

- (7) Find $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}^{10}$ without using a calculator.
- (8) Let $P = \begin{bmatrix} 0.2 & 0.3 & 0.4 \\ 0.6 & 0.1 & 0.4 \\ 0.2 & 0.6 & 0.2 \end{bmatrix}$.
 - (a) Is P a regular transition matrix?
 - (b) Find the long range transition matrix L of P.
- (9) Solve the system of differential equations

$$\begin{array}{rcl} x_1' & = & x_1 + x_2 \\ x_2' & = & x_1 - x_2 \end{array}$$

where $x_1(0) = 1$ and $x_2(0) = 0$

(10) Let $\mathbf{v_1} = \begin{bmatrix} 3\\1\\1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$ and $\mathbf{v_3} = \begin{bmatrix} -1/2\\-2\\7/2 \end{bmatrix}$. Show that $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is an orthogonal basis for \mathbb{R}^3 and find $[\mathbf{w}]_{\mathcal{B}}$ if $\mathbf{w} = \begin{bmatrix} 6\\1\\-8 \end{bmatrix}$ (11) Is $Q = \begin{bmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66}\\1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66}\\1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}$ orthogonal? If so, find its inverse. (12) Let $W = \left\{ \begin{bmatrix} x\\y\\z \end{bmatrix} : x = t, y = -t, z = 3t \right\}$. Find W^{\perp} and give a basis for W^{\perp} . (13) Find the orthogonal decomposition of $\mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ with respect to $W = span\left(\begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right)$.

(14) Find an orthogonal basis for the column space of the matrix $A = \begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}$

(15) Find all least squares solutions to the inconsistent system

```
\begin{array}{rcl} x+y&=&-3\\ x+y&=&-1\\ x+w&=&0\\ x+w&=&2\\ x+z&=&5\\ x+z&=&1 \end{array}
```

- (16) A square matrix A is skew-symmetric if $A^T = -A$. Is the set of all 2×2 skew-symmetric matrices, with the usual matrix addition and scalar multiplication, a vector space?
- (17) Is W a subspace of V? If W is a subspace, verify this using the definition and find dim(W). If W is not a subspace, give an explicit example showing how it fails to be one.

(a)
$$V = \mathbb{R}^3$$
 and $W = \left\{ \begin{bmatrix} a \\ b \\ |a| \end{bmatrix} \right\}$
(b) $V = \mathcal{P}_2$ and $W = \{p(x) \in \mathcal{P}_2 : xp'(x) = p(x)\}$
(c) $V = M_{22}$ and $W = \left\{ A \in M_{22} : \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A = A \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \right\}$

- (18) Show that $\mathcal{B} = \{1 + x, x + x^2, 1 + x^2\}$ is a basis for \mathcal{P}_2 .
- (19) The sets $\mathcal{B} = \{1, x, x^2\}$ and $\mathcal{C} = \{1 + x, x + x^2, 1 + x^2\}$ are two bases for \mathcal{P}_2 . Find $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and use this to find $[1 + 2x x^2]_{\mathcal{C}}$.
- (20) Are the following transformations linear? Be sure to support your answer.

(a)
$$T: \mathcal{P}_2 \to \mathcal{P}_2$$
 where $T(a + bx + cx^2) = a + b(x+1) + c(x+1)^2$
(b) $T: \mathbb{R}^2 \to \mathcal{P}_1$ such that $T\begin{bmatrix} 1\\2 \end{bmatrix} = 1 + 2x, T\begin{bmatrix} 3\\4 \end{bmatrix} = 5 - x$ and $T\begin{bmatrix} -5\\-6 \end{bmatrix} = -9 + 5x$

(21) Consider the linear transformations $T : \mathbb{R}^2 \to \mathcal{P}_1$ and $S : \mathcal{P}_1 \to \mathcal{P}_2$ such that

$$T\left[\begin{array}{c}a\\b\end{array}\right] = a + (a+b)x$$

and

$$S(p(x)) = xp(x)$$

Find $(S \circ T) \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.

- (22) Are the following statements true or false? Be sure to justify your answers with complete explanations or counterexamples.
 - (a) Let A be an $n \times n$ matrix. A real number λ is an eigenvalue of A if and only if $rank(A \lambda I_n) < n$.
 - (b) Suppose A is a 4×4 matrix and $RREF(A 7I_4) = I_4$. Then 7 is an eigenvalue of A.
 - (c) If A is a 3×3 matrix and det(A) = 3, then the equation $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
 - (d) If W is a subspace of \mathbb{R}^3 spanned by $\mathbf{w_1}$ and $\mathbf{w_2}$ and \mathbf{v} is any vector in \mathbb{R}^3 , then

$$proj_W(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{w_1}}{\mathbf{w_1} \cdot \mathbf{w_1}} \mathbf{w_1} + \frac{\mathbf{v} \cdot \mathbf{w_2}}{\mathbf{w_2} \cdot \mathbf{w_2}} \mathbf{w_2}.$$

- (e) If A is a 2×2 diagonalizable matrix, then A is invertible.
- (f) The polynomials $1 x, 1 + x^2, x + x^2$ form a linearly dependent set in \mathcal{P}_2 .
- (g) Let V and W be vector spaces. Let $\mathbf{v_1}, \ldots, \mathbf{v_n}$ be in V and assume $T: V \to W$ is a linear transformation. If $\{T(\mathbf{v_1}), \ldots, T(\mathbf{v_n})\}$ is linearly independent then $\{\mathbf{v_1}, \ldots, \mathbf{v_n}\}$ is linearly independent.
- (h) Let V and W be vector spaces. Let $\mathbf{v_1}, \ldots, \mathbf{v_n}$ be in V and assume $T: V \to W$ is a linear transformation. If $\{\mathbf{v_1}, \ldots, \mathbf{v_n}\}$ is linearly independent then $\{T(\mathbf{v_1}), \ldots, T(\mathbf{v_n})\}$ is linearly independent.
- (i) Suppose \mathcal{B} and \mathcal{C} are two bases for a vector space V of dimension n. If $P_{\mathcal{C}\leftarrow\mathcal{B}} = I_n$ then $\mathcal{B} = \mathcal{C}$.
- (j) For all square matrices A, det(-A) = -det(A)
- (k) If A is invertible, then $det(A^{-1}) = det(A^T)$.
- (1) If A is an $n \times n$ invertible matrix, then 0 is an eigenvalue of A.
- (23) Be prepared to state any definition or repeat a proof which was covered in class.

Answers

$$(1) -22$$

$$(2) -14$$

(3)
$$A^{-1} = \begin{bmatrix} 9 & -3/2 & -5 \\ -5 & 1 & 3 \\ -2 & 1/2 & 1 \end{bmatrix}$$

(4) $A\mathbf{u} = -4\mathbf{u}$ so the eigenvalue is -4.

(5) (a)
$$\lambda_1 = 1$$
 and $\lambda_2 = -2$
(b) Basis for $\lambda_1 = 1$: $\left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$; Basis for $\lambda_2 = -2$: $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$
(c) Yes! $P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

$$(6)$$
 No

(7)
$$\begin{bmatrix} 342 & 341 \\ 682 & 683 \end{bmatrix}$$

(8) (a) Yes
(b) $L = \begin{bmatrix} 0.304 & 0.304 & 0.304 \\ 0.354 & 0.354 & 0.354 \\ 0.342 & 0.342 & 0.342 \end{bmatrix}$
(9)

$$x_1(t) = (2 + \sqrt{2})e^{\sqrt{2}t}/4 + (2 - \sqrt{2})e^{-\sqrt{2}t}/4$$

$$x_2(t) = \sqrt{2}e^{\sqrt{2}t}/4 - \sqrt{2}e^{-\sqrt{2}t}/4$$

(10) Check that $\mathbf{v_i} \cdot \mathbf{v_j} = 0$ for each i and j; $[\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix}$

(11) Yes;
$$Q^{-1} = Q^T$$

(12) $W^{\perp} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x - y + 3z = 0 \right\}$ and has basis $\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} \right\}$
(13) $\mathbf{v} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 014/5 \end{bmatrix}$
(14) $\left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 1 \\ 3 \end{bmatrix} \right\}$

(15)
$$\overline{\mathbf{x}} = \begin{bmatrix} 3-t\\ -5+t\\ -2+t\\ t \end{bmatrix}$$

(16) Yes

- (17) (a) No
 - (b) Yes; $\dim(W) = 1$
 - (c) Yes; $\dim(W) = 2$

(18) The polynomials are linearly independent and $\dim(\mathcal{P}_2) = 3$

(19)
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{bmatrix}$$
 and $[1+2x-x^2]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$

- $(20) \quad (a) \ \mathrm{Yes}$
 - (b) No
- (21) $3x + x^2$
- (22) (a) True
 - (b) False
 - (c) False
 - (d) False
 - (e) False
 - (f) True
 - (g) True
 - (h) False
 - (i) True
 - (j) False
 - (k) False
 - (l) False