Math 314/814 Exam 2 Review Exercises

Dr. S. Cooper
Fall 2008
(1) Find det $\left[\begin{array}{rrrr}2 & -3 & 0 & 1 \\ 5 & 4 & 2 & 0 \\ 1 & -1 & 0 & 3 \\ -2 & 1 & 0 & 0\end{array}\right]$ by hand.
(2) Assume that det $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=7$. What is det $\left[\begin{array}{ccc}g & h & i \\ 2 d+a & 2 e+b & 2 f+c \\ a & b & c\end{array}\right]$?
(3) Use the adjoint to compute the inverse of $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3\end{array}\right]$.
(4) Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Show that $\mathbf{u}=\left[\begin{array}{r}6 \\ -5\end{array}\right]$ is an eigenvector of A. What is the corresponding eigenvalue?
(5) Let $A=\left[\begin{array}{rrr}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$.
(a) Find all the eigenvalues of A by hand.
(b) For each eigenvalue you found, find a basis for the corresponding eigenspace by hand.
(c) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
(6) Is $A=\left[\begin{array}{rrr}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$ diagonalizable?
(7) Find $\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]^{10}$ without using a calculator.
(8) Let $P=\left[\begin{array}{lll}0.2 & 0.3 & 0.4 \\ 0.6 & 0.1 & 0.4 \\ 0.2 & 0.6 & 0.2\end{array}\right]$.
(a) Is P a regular transition matrix?
(b) Find the long range transition matrix L of P.
(9) Solve the system of differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}+x_{2} \\
x_{2}^{\prime} & =x_{1}-x_{2}
\end{aligned}
$$

where $x_{1}(0)=1$ and $x_{2}(0)=0$
(10) Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}-1 / 2 \\ -2 \\ 7 / 2\end{array}\right]$. Show that $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal basis for \mathbb{R}^{3} and find $[\mathbf{w}]_{\mathcal{B}}$ if $\mathbf{w}=\left[\begin{array}{r}6 \\ 1 \\ -8\end{array}\right]$
(11) Is $Q=\left[\begin{array}{rrr}3 / \sqrt{11} & -1 / \sqrt{6} & -1 / \sqrt{66} \\ 1 / \sqrt{11} & 2 / \sqrt{6} & -4 / \sqrt{66} \\ 1 / \sqrt{11} & 1 / \sqrt{6} & 7 / \sqrt{66}\end{array}\right]$ orthogonal? If so, find its inverse.
(12) Let $W=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x=t, y=-t, z=3 t\right\}$. Find W^{\perp} and give a basis for W^{\perp}.
(13) Find the orthogonal decomposition of $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ with respect to

$$
W=\operatorname{span}\left(\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right],\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]\right) .
$$

(14) Find an orthogonal basis for the column space of the matrix $A=\left[\begin{array}{rrr}3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8\end{array}\right]$
(15) Find all least squares solutions to the inconsistent system

$$
\begin{aligned}
x+y & =-3 \\
x+y & =-1 \\
x+w & =0 \\
x+w & =2 \\
x+z & =5 \\
x+z & =1
\end{aligned}
$$

(16) A square matrix A is skew-symmetric if $A^{T}=-A$. Is the set of all 2×2 skew-symmetric matrices, with the usual matrix addition and scalar multiplication, a vector space?
(17) Is W a subspace of V ? If W is a subspace, verify this using the definition and find $\operatorname{dim}(W)$. If W is not a subspace, give an explicit example showing how it fails to be one.
(a) $V=\mathbb{R}^{3}$ and $W=\left\{\left[\begin{array}{c}a \\ b \\ |a|\end{array}\right]\right\}$
(b) $V=\mathcal{P}_{2}$ and $W=\left\{p(x) \in \mathcal{P}_{2}: x p^{\prime}(x)=p(x)\right\}$
(c) $V=M_{22}$ and $W=\left\{A \in M_{22}:\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] A=A\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]\right\}$
(18) Show that $\mathcal{B}=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$ is a basis for \mathcal{P}_{2}.
(19) The sets $\mathcal{B}=\left\{1, x, x^{2}\right\}$ and $\mathcal{C}=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$ are two bases for \mathcal{P}_{2}. Find $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and use this to find $\left[1+2 x-x^{2}\right]_{\mathcal{C}}$.
(20) Are the following transformations linear? Be sure to support your answer.
(a) $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ where $T\left(a+b x+c x^{2}\right)=a+b(x+1)+c(x+1)^{2}$
(b) $T: \mathbb{R}^{2} \rightarrow \mathcal{P}_{1}$ such that $T\left[\begin{array}{l}1 \\ 2\end{array}\right]=1+2 x, T\left[\begin{array}{l}3 \\ 4\end{array}\right]=5-x$ and $T\left[\begin{array}{l}-5 \\ -6\end{array}\right]=-9+5 x$
(21) Consider the linear transformations $T: \mathbb{R}^{2} \rightarrow \mathcal{P}_{1}$ and $S: \mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$ such that

$$
T\left[\begin{array}{l}
a \\
b
\end{array}\right]=a+(a+b) x
$$

and

$$
S(p(x))=x p(x) .
$$

Find $(S \circ T)\left[\begin{array}{r}3 \\ -2\end{array}\right]$.
(22) Are the following statements true or false? Be sure to justify your answers with complete explanations or counterexamples.
(a) Let A be an $n \times n$ matrix. A real number λ is an eigenvalue of A if and only if $\operatorname{rank}\left(A-\lambda I_{n}\right)<$ n.
(b) Suppose A is a 4×4 matrix and $\operatorname{RREF}\left(A-7 I_{4}\right)=I_{4}$. Then 7 is an eigenvalue of A.
(c) If A is a 3×3 matrix and $\operatorname{det}(A)=3$, then the equation $A \mathbf{x}=\mathbf{0}$ has a non-trivial solution.
(d) If W is a subspace of \mathbb{R}^{3} spanned by $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ and \mathbf{v} is any vector in \mathbb{R}^{3}, then

$$
\operatorname{proj}_{W}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{1}} \cdot \mathbf{w}_{\mathbf{1}}} \mathbf{w}_{\mathbf{1}}+\frac{\mathbf{v} \cdot \mathbf{w}_{\mathbf{2}}}{\mathbf{w}_{\mathbf{2}} \cdot \mathbf{w}_{\mathbf{2}}} \mathbf{w}_{\mathbf{2}} .
$$

(e) If A is a 2×2 diagonalizable matrix, then A is invertible.
(f) The polynomials $1-x, 1+x^{2}, x+x^{2}$ form a linearly dependent set in \mathcal{P}_{2}.
(g) Let V and W be vector spaces. Let $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ be in V and assume $T: V \rightarrow W$ is a linear transformation. If $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{n}}\right)\right\}$ is linearly independent then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is linearly independent.
(h) Let V and W be vector spaces. Let $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ be in V and assume $T: V \rightarrow W$ is a linear transformation. If $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is linearly independent then $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{n}}\right)\right\}$ is linearly independent.
(i) Suppose \mathcal{B} and \mathcal{C} are two bases for a vector space V of dimension n. If $P_{\mathcal{C} \leftarrow \mathcal{B}}=I_{n}$ then $\mathcal{B}=\mathcal{C}$.
(j) For all square matrices $A, \operatorname{det}(-A)=-\operatorname{det}(A)$
(k) If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A^{T}\right)$.
(l) If A is an $n \times n$ invertible matrix, then 0 is an eigenvalue of A.
(23) Be prepared to state any definition or repeat a proof which was covered in class.

Answers

(1) -22
(2) -14
(3) $A^{-1}=\left[\begin{array}{rrr}9 & -3 / 2 & -5 \\ -5 & 1 & 3 \\ -2 & 1 / 2 & 1\end{array}\right]$
(4) $A \mathbf{u}=-4 \mathbf{u}$ so the eigenvalue is -4 .
(5) (a) $\lambda_{1}=1$ and $\lambda_{2}=-2$
(b) Basis for $\lambda_{1}=1:\left\{\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]\right\}$; Basis for $\lambda_{2}=-2:\left\{\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]\right\}$
(c) Yes! $P=\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]$
(6) No
(7) $\left[\begin{array}{ll}342 & 341 \\ 682 & 683\end{array}\right]$
(8) (a) Yes

$$
\text { (b) } L=\left[\begin{array}{lll}
0.304 & 0.304 & 0.304 \\
0.354 & 0.354 & 0.354 \\
0.342 & 0.342 & 0.342
\end{array}\right]
$$

(9)

$$
\begin{aligned}
& x_{1}(t)=(2+\sqrt{2}) e^{\sqrt{2} t} / 4+(2-\sqrt{2}) e^{-\sqrt{2} t} / 4 \\
& x_{2}(t)=\sqrt{2} e^{\sqrt{2} t} / 4-\sqrt{2} e^{-\sqrt{2} t} / 4
\end{aligned}
$$

(10) Check that $\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{j}}=0$ for each i and $j ;[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{r}1 \\ -2 \\ -2\end{array}\right]$
(11) Yes; $Q^{-1}=Q^{T}$
(12) $W^{\perp}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x-y+3 z=0\right\}$ and has basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]\right\}$
(13) $\mathbf{v}=\left[\begin{array}{r}-2 / 5 \\ 2 \\ 1 / 5\end{array}\right]+\left[\begin{array}{c}7 / 5 \\ 014 / 5\end{array}\right]$
(14)

$$
\left\{\left[\begin{array}{r}
3 \\
1 \\
-1 \\
3
\end{array}\right],\left[\begin{array}{r}
1 \\
3 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{r}
-3 \\
1 \\
1 \\
3
\end{array}\right]\right\}
$$

(15) $\overline{\mathbf{x}}=\left[\begin{array}{c}3-t \\ -5+t \\ -2+t \\ t\end{array}\right]$
(16) Yes
(17) (a) No
(b) Yes; $\operatorname{dim}(W)=1$
(c) Yes; $\operatorname{dim}(W)=2$
(18) The polynomials are linearly independent and $\operatorname{dim}\left(\mathcal{P}_{2}\right)=3$
(19) $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{rrr}1 / 2 & 1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 & 1 / 2\end{array}\right]$ and $\left[1+2 x-x^{2}\right]_{\mathcal{C}}=\left[\begin{array}{r}2 \\ 0 \\ -1\end{array}\right]$
(20) (a) Yes
(b) No
(21) $3 x+x^{2}$
(22) (a) True
(b) False
(c) False
(d) False
(e) False
(f) True
(g) True
(h) False
(i) True
(j) False
(k) False
(1) False

