Name: \qquad

Quiz 9 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

(1) A diagonalization of the matrix A is given in the form $P^{-1} A P=D$. List the eigenvalues of A, their algebraic and geometric multiplicities, and bases for the corresponding eigenspaces.

$$
\left[\begin{array}{rrr}
-1 / 4 & 3 / 4 & -1 / 4 \\
1 / 8 & 1 / 8 & 1 / 8 \\
5 / 8 & -3 / 8 & -3 / 8
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 3 \\
2 & 0 & 2 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & 3 & 1 \\
1 & 2 & 0 \\
-1 & 3 & -1
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

Solution: The eigenvalues of A are the diagonal entries of D. Thus, A has eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=6$.

Bases for the eigenspaces can be found by selecting the columns of P which correspond to the diagonal entries of D. So, a basis for E_{-2} is

$$
\left\{\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

and a basis for E_{6} is

$$
\left\{\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]\right\}
$$

We see that $\lambda_{1}=-2$ has algebraic and geometric multiplicity 2 , and $\lambda_{2}=6$ has algebraic and geometric multiplicity 1 .
(2) Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 1 \\ 3 & -1\end{array}\right]$. Show that A and B are not similar matrices.

Solution: If A and B were similar, then they would have equal characteristic polynomials.

The characteristic polynomial of A is

$$
\operatorname{det}\left[\begin{array}{cc}
(1-\lambda) & 3 \\
2 & (2-\lambda)
\end{array}\right]=(1-\lambda)(2-\lambda)-6=\lambda^{2}-3 \lambda-4 .
$$

The characteristic polynomial of B is

$$
\operatorname{det}\left[\begin{array}{cc}
(1-\lambda) & 1 \\
3 & (-1-\lambda)
\end{array}\right]=(1-\lambda)(-1-\lambda)-3=\lambda^{2}-4
$$

Since A and B have different characteristic polynomials they cannot be similar.
(3) Is the following statement true or false? Carefully justify your answer. [4 pts]

Let A be a diagonalizable $n \times n$ matrix such that each eigenvalue λ satisfies

$$
|\lambda|<1 \text {. Then } \lim _{k \rightarrow \infty} A^{k} \text { equals the } n \times n \text { zero matrix. }
$$

Solution: This statement is true. Since A is diagonalizable, there exists an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. We know that the diagonal entries of D are the eigenvalues of A. Moreover,

$$
\lim _{k \rightarrow \infty} A^{k}=\lim _{k \rightarrow \infty}\left(P D P^{-1}\right)^{k}=P\left(\lim _{k \rightarrow \infty} D^{k}\right) P^{-1} .
$$

Now, D^{k} is a diagonal matrix for which each diagonal entry equals the k th power of an eigenvalue of A. But, as $k \rightarrow \infty$, the k th power of any eigenvalue of A approaches 0 . That is,

$$
\lim _{k \rightarrow \infty} D^{k}
$$

equals the zero matrix. Therefore, $\lim _{k \rightarrow \infty} A^{k}$ equals the $n \times n$ zero matrix.

