Name: ____

Quiz 7 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

	-1		
(1) Let $A =$		0	
	 -1	1	

	$\begin{bmatrix} 2 \end{bmatrix}$	
(a) Using the definition of eigenvector, show that $\mathbf{x} =$	0	is an eigenvector
	2	
of A. What is the eigenvalue of \mathbf{x} ?		[3 pts]

Solution: The vector \mathbf{x} is non-zero and

$$A\mathbf{x} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 2 & 0 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0\mathbf{x}.$$

Since $A\mathbf{x} = 0\mathbf{x}$, \mathbf{x} is an eigenvector of A with eigenvalue $\lambda = 0$.

(b) $\lambda = 2$ is an eigenvalue of A. Find a basis for the corresponding eigenspace E_2 . What is the geometric multiplicity of the eigenvalue $\lambda = 2$? [8 pts] Solution: To find a basis for E_2 we find the null space of (A - 2I):

$$[A-2I \mid \mathbf{0}] = \begin{bmatrix} -1 & -1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ -1 & -1 & -1 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Thus,

$$E_2 = span\left(\begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} \right).$$

A basis for E_2 is

$$\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}.$$

Since dim $(E_2) = 2$, the geometric multiplicity of $\lambda = 2$ is 2.

(2) Suppose that
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 4$$
. What is $\begin{vmatrix} a & b & c \\ 4d - 2g & 4e - 2h & 4f - 2i \\ g & h & i \end{vmatrix}$? Be sure to show all of your work. [4 pts]

Solution: Observe that we have the following row reductions:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \rightarrow B = \begin{bmatrix} a & b & c \\ 4d & 4e & 4f \\ g & h & i \end{bmatrix} \rightarrow C = \begin{bmatrix} a & b & c \\ 4d - 2g & 4e - 2h & 4f - 2i \\ g & h & i \end{bmatrix}.$$

By Theorem 4.3,

$$\det(C) = \det(B) = 4\det(A) = 4(4) = 16$$

(3) Suppose that A and B are n × n matrices with det(A) = -3 and det(B) = 5.
Find det(B⁻¹A). Be sure to show all of your work. [5 pts] Solution:

$$\det(B^{-1}A) = \det(B^{-1})\det(A) = \frac{1}{\det(B)}\det(A) = -\frac{3}{5}.$$