\qquad

Quiz 7 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!
(1) Let $A=\left[\begin{array}{rrr}1 & -1 & -1 \\ 0 & 2 & 0 \\ -1 & -1 & 1\end{array}\right]$.
(a) Using the definition of eigenvector, show that $\mathbf{x}=\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$ is an eigenvector of A. What is the eigenvalue of \mathbf{x} ?

Solution: The vector \mathbf{x} is non-zero and

$$
A \mathbf{x}=\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 2 & 0 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=0 \mathbf{x}
$$

Since $A \mathbf{x}=0 \mathbf{x}, \mathbf{x}$ is an eigenvector of A with eigenvalue $\lambda=0$.
(b) $\lambda=2$ is an eigenvalue of A. Find a basis for the corresponding eigenspace E_{2}. What is the geometric multiplicity of the eigenvalue $\lambda=2$? [8 pts] Solution: To find a basis for E_{2} we find the null space of $(A-2 I)$:

$$
[A-2 I \mid \mathbf{0}]=\left[\begin{array}{rrr|r}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right) .
$$

A basis for E_{2} is

$$
\left\{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

Since $\operatorname{dim}\left(E_{2}\right)=2$, the geometric multiplicity of $\lambda=2$ is 2 .
(2) Suppose that $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=5$. What is $\left|\begin{array}{ccc}a & b & c \\ 2 d-3 g & 2 e-3 h & 2 f-3 i \\ g & h & i\end{array}\right|$? Be sure to show all of your work.

Solution: Observe that we have the following row reductions:
$A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \rightarrow B=\left[\begin{array}{ccc}a & b & c \\ 2 d & 2 e & 2 f \\ g & h & i\end{array}\right] \rightarrow C=\left[\begin{array}{ccc}a & b & c \\ 2 d-3 g & 2 e-3 h & 2 f-3 i \\ g & h & i\end{array}\right]$.
By Theorem 4.3,

$$
\operatorname{det}(C)=\operatorname{det}(B)=2 \operatorname{det}(A)=2(4)=8 .
$$

(3) Suppose that A and B are $n \times n$ matrices with $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=-5$. Find $\operatorname{det}\left(B^{-1} A\right)$. Be sure to show all of your work.

Solution:

$$
\operatorname{det}\left(B^{-1} A\right)=\operatorname{det}\left(B^{-1}\right) \operatorname{det}(A)=\frac{1}{\operatorname{det}(B)} \operatorname{det}(A)=-\frac{2}{5}
$$

