Name: \qquad

Quiz 4 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

(1) Let $A_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], A_{2}=\left[\begin{array}{ll}0 & 1 \\ 2 & 4\end{array}\right], A_{3}=\left[\begin{array}{cc}2 & 5 \\ 10 & 24\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 3 \\ 6 & 10\end{array}\right]$.

Write B as a linear combination of A_{1}, A_{2} and A_{3} by solving a system of linear equations.

Solution: We need to find scalars $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that

$$
B=\left[\begin{array}{rr}
-1 & 3 \\
6 & 10
\end{array}\right]=c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3}=\left[\begin{array}{cc}
c_{1}+2 c_{3} & c_{2}+5 c_{3} \\
2 c_{2}+10 c_{3} & 2 c_{1}+4 c_{2}+24 c_{3}
\end{array}\right]
$$

Thus, we need to solve the system

$$
\begin{aligned}
c_{1}+2 c_{3} & =-1 \\
c_{2}+5 c_{3} & =3 \\
2 c_{2}+10 c_{3} & =6 \\
2 c_{1}+4 c_{2}+24 c_{3} & =10
\end{aligned}
$$

We row reduce the augmented matris of this system

$$
\left[\begin{array}{rrr|r}
1 & 0 & 2 & -1 \\
0 & 1 & 5 & 3 \\
0 & 2 & 10 & 6 \\
2 & 4 & 24 & 10
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & 2 & -1 \\
0 & 1 & 5 & 3 \\
0 & 2 & 10 & 6 \\
0 & 4 & 20 & 12
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & 2 & -1 \\
0 & 1 & 5 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We let $c_{3}=t \in \mathbb{R}$. Then

$$
\begin{aligned}
& c_{2}=-5 c_{3}+3=-5 t+3 \\
& c_{1}=-2 c_{3}-1=-2 t-1
\end{aligned}
$$

Letting $t=1$, we have

$$
B=-3 A_{1}-2 A_{2}+A_{3} .
$$

(2) Let $A=\left[\begin{array}{rr}3 & 0 \\ -1 & 5\end{array}\right]$ and $B=\left[\begin{array}{rrr}4 & -2 & 1 \\ 0 & 2 & 3\end{array}\right]$. Compute $A B$.

Solution:

$$
\left[\begin{array}{rr}
3 & 0 \\
-1 & 5
\end{array}\right]\left[\begin{array}{rrr}
4 & -2 & 1 \\
0 & 2 & 3
\end{array}\right]=\left[\begin{array}{rrr}
12 & -6 & 3 \\
-4 & 12 & 14
\end{array}\right] .
$$

(3) Suppose that \mathbf{u}, \mathbf{v} are linearly independent vectors. Show that the vectors $\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}$ are also linearly independent.

Solution: Suppose that for some scalars $c_{1}, c_{2} \in \mathbb{R}$ we have the equation

$$
c_{1}(\mathbf{u}+\mathbf{v})+c_{2}(\mathbf{u}-\mathbf{v})=\mathbf{0} .
$$

Then, rearranging this equation, we see that

$$
\left(c_{1}+c_{2}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v}=\mathbf{0} .
$$

Since \mathbf{u} and \mathbf{v} are linearly independent, it must be the case that

$$
\begin{aligned}
& c_{1}+c_{2}=0 \\
& c_{1}-c_{2}=0
\end{aligned}
$$

This system implies that $c_{1}=-c_{2}$ and $c_{1}=c_{2}$. However, this can only happen if $c_{1}=c_{2}=0$. So, by definition, $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ must also be linearly independent.

