Name: _____

Quiz 4 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

$$Good Luck!$$
(1) Let $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}, A_3 = \begin{bmatrix} 2 & 5 \\ 10 & 24 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 3 \\ 6 & 10 \end{bmatrix}$.
Write B as a linear combination of A_1, A_2 and A_3 by solving a system of linear equations. [10 pts]

Solution: We need to find scalars $c_1,c_2,c_3\in\mathbb{R}$ such that

$$B = \begin{bmatrix} -1 & 3 \\ 6 & 10 \end{bmatrix} = c_1 A_1 + c_2 A_2 + c_3 A_3 = \begin{bmatrix} c_1 + 2c_3 & c_2 + 5c_3 \\ 2c_2 + 10c_3 & 2c_1 + 4c_2 + 24c_3 \end{bmatrix}.$$

Thus, we need to solve the system

$$c_1 + 2c_3 = -1$$

$$c_2 + 5c_3 = 3$$

$$2c_2 + 10c_3 = 6$$

$$2c_1 + 4c_2 + 24c_3 = 10$$

We row reduce the augmented matrix of this system

1	0	2	-1	\longrightarrow	1	0	2	-1	\longrightarrow	1	0	2	-1
0	1	5	3		0	1	5	3		0	1	5	3
0	2	10	6		0	2	10	6		0	0	0	0
2	4	24	10		0	4	20	12		0	0	0	0
-			_		-			_					_

We let $c_3 = t \in \mathbb{R}$. Then

$$c_{2} = -5c_{3} + 3 = -5t + 3$$

$$c_{1} = -2c_{3} - 1 = -2t - 1$$

Letting t = 1, we have

$$B = -3A_1 - 2A_2 + A_3.$$

(2) Let
$$A = \begin{bmatrix} 3 & 0 \\ -1 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & -2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$. Compute AB . [5 pts]

Solution:

$$\begin{bmatrix} 3 & 0 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 4 & -2 & 1 \\ 0 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 12 & -6 & 3 \\ -4 & 12 & 14 \end{bmatrix}.$$

(3) Suppose that \mathbf{u}, \mathbf{v} are linearly independent vectors. Show that the vectors $\mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}$ are also linearly independent. [5 pts]

Solution: Suppose that for some scalars $c_1, c_2 \in \mathbb{R}$ we have the equation

$$c_1(\mathbf{u}+\mathbf{v})+c_2(\mathbf{u}-\mathbf{v})=\mathbf{0}.$$

Then, rearranging this equation, we see that

$$(c_1+c_2)\mathbf{u}+(c_1-c_2)\mathbf{v}=\mathbf{0}.$$

Since \mathbf{u} and \mathbf{v} are linearly independent, it must be the case that

$$c_1 + c_2 = 0$$

 $c_1 - c_2 = 0$

This system implies that $c_1 = -c_2$ and $c_1 = c_2$. However, this can only happen if $c_1 = c_2 = 0$. So, by definition, $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ must also be linearly independent.