Name:

Quiz 3 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

(1) Solve the system

$$
\begin{aligned}
w-x-y+2 z & =1 \\
2 w-2 x-y+3 z & =3 \\
-w+x-y & =-3
\end{aligned}
$$

Solution: We row reduce the augmented matrix:

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 2 & 1 \\
2 & -2 & -1 & 3 & 3 \\
-1 & 1 & -1 & 0 & -3
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-2 R_{1} \& R_{3} \rightarrow R_{3}+R_{1}}\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 2 & 1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & -2 & 2 & -2
\end{array}\right]} \\
& \xrightarrow{R_{3} \rightarrow R_{3}+2 R_{2}}\left[\begin{array}{rrrr|r}
1 & -1 & -1 & 2 & 1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We see that x and z are free variables. Let $x=s$ and $z=t$ for some $s, t \in \mathbb{R}$. Then

$$
\begin{aligned}
y-z=1 & \Longrightarrow y=z+1=t+1 \\
w-x-y+2 z=1 & \Longrightarrow \quad w=x+y-2 z+1=s+(t+1)-2 t+1=s-t+2
\end{aligned}
$$

So, the solution set for this system is

$$
\left\{\left[\begin{array}{c}
s-t+2 \\
s \\
t+1 \\
t
\end{array}\right]: s, t \in \mathbb{R}\right\}
$$

(2) Let $A=\left[\begin{array}{rrr}-2 & -4 & 7 \\ -3 & -6 & 10 \\ 1 & 2 & -3\end{array}\right]$.

You can assume that A row reduces to $B=\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(a) Is B in reduced row echelon form? Briefly explain your answer. [3 pts]

Solution: B is not in reduced row echelon form since the leading entry in the second row is not the only nonzero entry in its column.
(b) What is the rank of A ?

Solution: The rank of A equals the number of leading entries in B. Thus, $\operatorname{rank}(A)=2$.
(3) Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{k}}$ be vectors in \mathbb{R}^{n}. Define $\operatorname{span}\left(\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{k}}\right)$.

Solution: $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{k}}\right)$ is the set of all linear combinations of $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{k}}$.
(4) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be in \mathbb{R}^{n}. Show that \mathbf{v} is in $\operatorname{span}(\mathbf{u}, \mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}+\mathbf{w})$.

Solution: We have $\mathbf{v}=-1 \mathbf{u}+1(\mathbf{u}+\mathbf{v})+0(\mathbf{u}+\mathbf{v}+\mathbf{w})$.

