Name: _

Quiz 14 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

(1) Let $T: \mathcal{P}_2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(a+bx+cx^{2}) = \begin{bmatrix} a-b \\ b+c \end{bmatrix}.$$

(a) Find a basis for the kernel of T.

[5 pts]

Solution:

$$ker(T) = \{a + bx + cx^{2} : T(a + bx + cx^{2}) = \mathbf{0}\}$$

$$= \begin{cases} a + bx + cx^{2} : \begin{bmatrix} a - b \\ b + c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{cases}$$

$$= \{a + bx + cx^{2} : a = b, c = -b\}$$

$$= \{b + bx - bx^{2}\}$$

$$= Span(1 + x - x^{2})$$

Thus, a basis for ker(T) is $\{1 + x - x^2\}$.

(b) Without finding the range of T, find rank(T). [3 pts] Solution: By part (a), we see that nullity(T) = 1. So, by the Rank Theorem, $\dim(\mathcal{P}_2) = 3 = Rank(T) + Nullity(T) = Rank(T) + 1 \implies Rank(T) = 3 - 1 = 2.$

(c) Is
$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 in the range of T ? If so, find $p(x)$ such that $T(p(x)) = \mathbf{v}$. [2 pts] Solution: Yes, \mathbf{v} is in the range of T . Indeed, $T(1) = \mathbf{v}$.

- (2) Let $T:V\to W$ be a linear transformation.
 - (a) Complete the definition: T is one-to-one if [2 pts] $Solution: T(\mathbf{u}) = T(\mathbf{v}) \implies \mathbf{u} = \mathbf{v} \text{ for all } \mathbf{u}, \mathbf{v} \text{ in } V.$
 - (b) Suppose $T: \mathcal{P}_1 \to \mathbb{R}^3$ is defined by

$$T(a+bx) = \begin{bmatrix} 0 \\ 2a \\ a-b \end{bmatrix}.$$

Is T 1-1? Is T onto? Be sure to justify your answers.

[8 pts]

Solution: We have

$$ker(T) = \{a + bx : T(a + bx) = \mathbf{0}\}$$

$$= \begin{cases} a + bx : \begin{bmatrix} 0 \\ 2a \\ a - b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{cases}$$

$$= \{a + bx : a = 0 = b\}$$

$$= \{\mathbf{0}\}$$

Since $ker(T) = \{0\}$ (where 0 = 0 + 0x), we conclude that T is 1-1.

T is not onto since $range(T) \neq \mathbb{R}^3$. To see this, note that

$$Range(T) = \left\{ \begin{bmatrix} 0 \\ s \\ t \end{bmatrix} : s, t \in \mathbb{R} \right\}.$$

So any vector in \mathbb{R}^3 whose first component is not zero will never be in range(T).