Name: \qquad

Quiz 14 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

(1) Let $T: \mathcal{P}_{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{l}
a-b \\
b+c
\end{array}\right]
$$

(a) Find a basis for the kernel of T.

Solution:

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{a+b x+c x^{2}: T\left(a+b x+c x^{2}\right)=\mathbf{0}\right\} \\
& =\left\{a+b x+c x^{2}:\left[\begin{array}{c}
a-b \\
b+c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} \\
& =\left\{a+b x+c x^{2}: a=b, c=-b\right\} \\
& =\left\{b+b x-b x^{2}\right\} \\
& =\operatorname{Span}\left(1+x-x^{2}\right)
\end{aligned}
$$

Thus, a basis for $\operatorname{ker}(T)$ is $\left\{1+x-x^{2}\right\}$.
(b) Without finding the range of T, find $\operatorname{rank}(T)$.

Solution: By part (a), we see that nullity $(T)=1$. So, by the Rank Theorem,

$$
\operatorname{dim}\left(\mathcal{P}_{2}\right)=3=\operatorname{Rank}(T)+N u l l i t y(T)=\operatorname{Rank}(T)+1 \Longrightarrow \operatorname{Rank}(T)=3-1=2
$$

(c) Is $\mathbf{v}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ in the range of T ? If so, find $p(x)$ such that $T(p(x))=\mathbf{v} . \quad[2 \mathrm{pts}]$ Solution: Yes, \mathbf{v} is in the range of T. Indeed, $T\left(x^{2}\right)=\mathbf{v}$.
(2) Let $T: V \rightarrow W$ be a linear transformation.
(a) Complete the definition: T is one-to-one if

Solution: $T(\mathbf{u})=T(\mathbf{v}) \Longrightarrow \mathbf{u}=\mathbf{v}$ for all \mathbf{u}, \mathbf{v} in V.
(b) Suppose $T: \mathcal{P}_{1} \rightarrow \mathbb{R}^{3}$ is defined by

$$
T(a+b x)=\left[\begin{array}{c}
2 a \\
a-b \\
0
\end{array}\right] .
$$

Is T 1-1? Is T onto? Be sure to justify your answers.
Solution: We have

$$
\begin{aligned}
\operatorname{ker}(T) & =\{a+b x: T(a+b x)=\mathbf{0}\} \\
& =\left\{a+b x:\left[\begin{array}{c}
2 a \\
a-b \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\} \\
& =\{a+b x: a=0=b\} \\
& =\{\mathbf{0}\}
\end{aligned}
$$

Since $\operatorname{ker}(T)=\{\mathbf{0}\}$ (where $\mathbf{0}=0+0 x$), we conclude that T is 1-1.
T is not onto since $\operatorname{range}(T) \neq \mathbb{R}^{3}$. To see this, note that

$$
\operatorname{Range}(T)=\left\{\left[\begin{array}{c}
s \\
t \\
0
\end{array}\right]: s, t \in \mathbb{R}\right\} .
$$

So any vector in \mathbb{R}^{3} whose third component is not zero will never be in range (T).

