Name: \qquad

Quiz 13 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

(1) Let V be the vector space $V=\left\{p(x) \in \mathcal{P}_{2}: p(3)=0\right\}$.
(a) Find a basis for V. Be sure to show all of your work.

Solution: Note that

$$
\begin{aligned}
V & =\left\{p(x) \in \mathcal{P}_{2}: p(3)=0\right\} \\
& =\left\{p(x)=a+b x+c x^{2} \in \mathcal{P}_{2}: p(3)=0\right\} \\
& =\left\{p(x)=a+b x+c x^{2} \in \mathcal{P}_{2}: a+3 b+9 c=0\right\} \\
& =\left\{p(x)=(-3 b-9 c)+b x+c x^{2} \in \mathcal{P}_{2}\right\} \\
& =\left\{p(x)=b(-3+x)+c\left(-9+x^{2}\right) \in \mathcal{P}_{2}\right\} \\
& =\operatorname{span}\left(-3+x,-9+x^{2}\right)
\end{aligned}
$$

We now verify that our spanning polynomials are also linearly independent. So, suppose we have scalars c_{1} and c_{2} such that

$$
c_{1}(-3+x)+c_{2}\left(-9+x^{2}\right)=0+0 x+0 x^{2} .
$$

Equivalently,

$$
\left(-3 c_{1}-9 c_{2}\right)+c_{1} x+c_{2} x^{2}=0+0 x+0 x^{2} .
$$

Comparing coefficients, we see that $c_{1}=c_{2}=0$. Thus,

$$
\mathcal{B}=\left\{-3+x,-9+x^{2}\right\}
$$

is a basis for V.
(b) What is the dimension of V ?

Solution: Since the above basis for V has two polynomials, $\operatorname{dim}(V)=2$.
(2) In M_{22}, let \mathcal{B} be the standard basis $\mathcal{B}=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ and let \mathcal{C} be the basis $\mathcal{C}=\{A, B, C, D\}$, where

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], D=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Find the change of basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$. (Hint: You can find the appropriate coordinate vectors by inspection, but show your work and not just the final matrix.) [10 pts]

Solution: We have the linear combinations:

$$
\begin{aligned}
& E_{11}=A+0 B+0 C+0 D \\
& E_{12}=-A+B+0 C+0 D \\
& E_{21}=0 A-B+C+0 D \\
& E_{22}=0 A+0 B-C+D
\end{aligned}
$$

So,

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{llll}
{\left[E_{11}\right]_{\mathcal{C}}} & {\left[E_{12}\right]_{\mathcal{C}}} & {\left[E_{21}\right]_{\mathcal{C}}} & {\left[E_{22}\right]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

