Name:

Quiz 11 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!
(1) Let $W=$ span $\left(\left[\begin{array}{r}1 \\ -1 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -2 \\ 1\end{array}\right]\right)$. Find a basis for W^{\perp}. [6 pts]

Solution: We have that

$$
W=\operatorname{span}\left(\left[\begin{array}{r}
1 \\
-1 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-2 \\
1
\end{array}\right]\right)=\operatorname{col}(A)
$$

where

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
3 & -2 \\
-2 & 1
\end{array}\right]
$$

So, by Theorem 5.10, $W^{\perp}=\operatorname{null}\left(A^{T}\right)$. We have

$$
A^{T}=\left[\begin{array}{rrrr}
1 & -1 & 3 & -2 \\
0 & 1 & -2 & 1
\end{array}\right]
$$

Thus, when we solve the system $A^{T} \mathbf{x}=\mathbf{0}$, we have $x_{1}=x_{2}-3 x_{3}+2 x_{4}=-s+t, x_{2}=$ $2 x_{3}-x_{4}=2 s-t, x_{3}=s, x_{4}=t$. So, a basis for $W^{\perp}=\operatorname{null}\left(A^{T}\right)$ is

$$
\left\{\left[\begin{array}{r}
-1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

(2) Let $\mathbf{v}=\left[\begin{array}{r}3 \\ 1 \\ -2\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{u}_{2}=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]$. Find the orthogonal projection of
\mathbf{v} onto the subspace $W=\operatorname{span}\left(\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right)$.

Solution: By definition,

$$
\operatorname{proj}_{W}(\mathbf{v})=\left(\frac{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{\mathbf{1}}}\right) \mathbf{u}_{\mathbf{1}}+\left(\frac{\mathbf{\mathbf { u } _ { \mathbf { 2 } }} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{2}}}\right) \mathbf{u}_{\mathbf{2}} .
$$

We calculate

$$
\begin{aligned}
\mathbf{u}_{1} \cdot \mathbf{v} & =2 \\
\mathbf{u}_{2} \cdot \mathbf{v} & =2 \\
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & =3 \\
\mathbf{u}_{2} \cdot \mathbf{u}_{2} & =2
\end{aligned}
$$

Thus,

$$
\operatorname{proj}_{W}(\mathbf{v})=\frac{2}{3} \mathbf{u}_{\mathbf{1}}+\frac{2}{2} \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{r}
5 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right]
$$

(3) A susbpace W of \mathbb{R}^{3} has basis vectors $\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{x}_{\mathbf{2}}=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$. Apply the Gram-Schmidt Process to find an orthogonal basis for W.

Solution: Let $\mathbf{v}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Then let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}} \\
& =\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]-\frac{7}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
2
\end{array}\right]
\end{aligned}
$$

Then the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is an orthogonal basis for W.

