Problem Set 4
 Due: Thursday, February 17

Work all of the following problems. Remember, you are encouraged to work together on Problem Sets, but each student must turn in his or her own write-up. Be sure to adhere to the Rules and Expectations outlined in the Course Information Sheet.

1 Traditional Problems

1. (Gallian, Chapter 4 Exercises, \#35) Determine the subgroup lattice for $\mathbb{Z}_{p^{n}}$, where p is a prime and n is some positive integer.
2. (Gallian, Chapter 4 Exercises, \#36) Prove that a finite group is the union of proper subgroups if and only if the group is not cyclic.
3. (Gallian, Supplementary Exercises for Chapters 1-4, \#34) Suppose that G is a group that has exactly one nontrivial proper subgroup. Prove that G is cyclic and $|G|=p^{2}$, where p is prime.
4. (Gallian, Supplementary Exercises for Chapters 1-4, \#38) If p is an odd prime, prove that there is no group that has exactly p elements of order p.

2 Computer Problems

As outlined on Problem Set 0, please intersperse your GAP commands and output with your explanations. You should create a log file as described in Chapter -1 of the lab manual. If you type up your solutions, you can cut and paste from this log file into your solution file; please use a different font so it is easy to tell what is what. If you hand-write your solutions, you should still print out your log file; then physically cut and paste it into your solutions.

1. Let $G=\langle a\rangle$ be the cyclic group of order 30 generated by the element a. Since G is cyclic of order 30, we know that every subgroup of G cyclic, that there is a subgroup of G of order d if and only if d divides 30, and, when d divides 30 , the subgroup of G having order d is unique. Use GAP to find a generator for the smallest subgroup H of G containing:
(a) a^{4} and a^{6}
(b) a^{10} and a^{2}
(c) a^{15} and a^{2}
(d) a^{9} and a^{12}
(e) a^{8} and a^{12}
2. Fill in the blank in the following conjecture: If $G=\langle a\rangle$ is a cyclic group of order n, then the smallest subgroup containing the elements a^{i} and a^{j} is $\left\langle a^{t}\right\rangle$, where $t=$ \qquad You do not need to prove your conjecture. (Do more examples if you need to.)
3. Test your conjecture from Computer Problem (2) by repeating Computer Problem (1) with $n=60$.

Hints for the Computer Problems: The command
c30 := CyclicGroup(IsPermGroup,30);
sets up the cyclic group of order 30 as all powers of the 30 -cycle $(1,2, \ldots, 30)$. The command a := c30.1;
tells GAP to assign the name a to this 30-cycle. The command
h := Subgroup (c30, [a^4, a^6]);
sets up h to be the smallest subgroup of $c 30$ containing the elements a^{4} and a^{6}. Once you've done this, the command

Size(h) ;
will return $|h|$, and the command
h = Subgroup (c30, [a^3]);
will return either "true" or "false", depending on whether h is the same subgroup as $\left\langle a^{3}\right\rangle$. (Note the difference between " $=$ " and " $:="$!)

