## Problem Set 3 <br> Due: Thursday, February 10

Work all of the following problems. Remember, you are encouraged to work together on Problem Sets, but each student must turn in his or her own write-up. Be sure to adhere to the Rules and Expectations outlined in the Course Information Sheet.

## 1 Traditional Problems

1. (Gallian, Chapter 3 Exercises, \#4) Prove that in any group, an element and its inverse have the same order.
2. (Gallian, Chapter 3 Exercises, \#9) Show that if $a$ is an element of a group $G$, then $|a| \leq|G|$.
3. (Gallian, Chapter 3 Exercises, $\# 20$ ) Let $G$ be a group, and let $a \in G$. Prove that $C(a)=C\left(a^{-1}\right)$.
4. (Gallian, Chapter 3 Exercises, $\# 26$ ) If $H$ is a subgroup of $G$, then by the centralizer $C(H)$ of $H$ we mean the set $\{x \in G \mid x h=h x$ for all $h \in H\}$. Prove that $C(H)$ is a subgroup of $G$.
5. (Gallian, Chapter 4 Exercises, \#22) Prove that a group of order 3 must be cyclic.
6. (Gallian, Chapter 3 Exercises, \#44) Suppose $G$ is a group that has exactly eight elements of order 3. How many subgroups of order 3 does $G$ have?

## 2 Computer Problems

As outlined on Problem Set 0, please intersperse your GAP commands and output with your explanations. You should create a log file as described in Chapter -1 of the lab manual. If you type up your solutions, you can cut and paste from this log file into your solution file; please use a different font so it is easy to tell what is what. If you hand-write your solutions, you should still print out your log file; then physically cut and paste it into your solutions.

1. (Lab Manual, Chapter 2 Exercises, \#2.5) Read about the command GL ( $n, p$ ) in Chapter 2 of the lab manual. Use this command to find the order of $\mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$ and $\mathrm{SL}\left(2, \mathbb{Z}_{p}\right)$ for $p=3,5,7$ and 11. What relationship do you see between the orders of $\mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$ and $\operatorname{SL}\left(2, \mathbb{Z}_{p}\right)$ and $p-1$ ? Does this relationship hold for $p=2$ ? Based on these examples, does it appear that $p$ always divides the order of $\operatorname{SL}\left(2, \mathbb{Z}_{p}\right)$ ? What about $p-1$ ? What about $p+1$ ? Guess a formula for the order of $\operatorname{SL}\left(2, \mathbb{Z}_{p}\right)$. Guess a formula for the order of $\mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$.
